221 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			221 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| 
 | |
| /* Solve an R2HC/HC2R problem via post/pre processing of a DHT.  This
 | |
|    is mainly useful because we can use Rader to compute DHTs of prime
 | |
|    sizes.  It also allows us to express hc2r problems in terms of r2hc
 | |
|    (via dht-r2hc), and to do hc2r problems without destroying the input. */
 | |
| 
 | |
| #include "rdft/rdft.h"
 | |
| 
 | |
| typedef struct {
 | |
|      solver super;
 | |
| } S;
 | |
| 
 | |
| typedef struct {
 | |
|      plan_rdft super;
 | |
|      plan *cld;
 | |
|      INT is, os;
 | |
|      INT n;
 | |
| } P;
 | |
| 
 | |
| static void apply_r2hc(const plan *ego_, R *I, R *O)
 | |
| {
 | |
|      const P *ego = (const P *) ego_;
 | |
|      INT os;
 | |
|      INT i, n;
 | |
| 
 | |
|      {
 | |
| 	  plan_rdft *cld = (plan_rdft *) ego->cld;
 | |
| 	  cld->apply((plan *) cld, I, O);
 | |
|      }
 | |
| 
 | |
|      n = ego->n;
 | |
|      os = ego->os;
 | |
|      for (i = 1; i < n - i; ++i) {
 | |
| 	  E a, b;
 | |
| 	  a = K(0.5) * O[os * i];
 | |
| 	  b = K(0.5) * O[os * (n - i)];
 | |
| 	  O[os * i] = a + b;
 | |
| #if FFT_SIGN == -1
 | |
| 	  O[os * (n - i)] = b - a;
 | |
| #else
 | |
| 	  O[os * (n - i)] = a - b;
 | |
| #endif
 | |
|      }
 | |
| }
 | |
| 
 | |
| /* hc2r, destroying input as usual */
 | |
| static void apply_hc2r(const plan *ego_, R *I, R *O)
 | |
| {
 | |
|      const P *ego = (const P *) ego_;
 | |
|      INT is = ego->is;
 | |
|      INT i, n = ego->n;
 | |
| 
 | |
|      for (i = 1; i < n - i; ++i) {
 | |
| 	  E a, b;
 | |
| 	  a = I[is * i];
 | |
| 	  b = I[is * (n - i)];
 | |
| #if FFT_SIGN == -1
 | |
| 	  I[is * i] = a - b;
 | |
| 	  I[is * (n - i)] = a + b;
 | |
| #else
 | |
| 	  I[is * i] = a + b;
 | |
| 	  I[is * (n - i)] = a - b;
 | |
| #endif
 | |
|      }
 | |
| 
 | |
|      {
 | |
| 	  plan_rdft *cld = (plan_rdft *) ego->cld;
 | |
| 	  cld->apply((plan *) cld, I, O);
 | |
|      }
 | |
| }
 | |
| 
 | |
| /* hc2r, without destroying input */
 | |
| static void apply_hc2r_save(const plan *ego_, R *I, R *O)
 | |
| {
 | |
|      const P *ego = (const P *) ego_;
 | |
|      INT is = ego->is, os = ego->os;
 | |
|      INT i, n = ego->n;
 | |
| 
 | |
|      O[0] = I[0];
 | |
|      for (i = 1; i < n - i; ++i) {
 | |
| 	  E a, b;
 | |
| 	  a = I[is * i];
 | |
| 	  b = I[is * (n - i)];
 | |
| #if FFT_SIGN == -1
 | |
| 	  O[os * i] = a - b;
 | |
| 	  O[os * (n - i)] = a + b;
 | |
| #else
 | |
| 	  O[os * i] = a + b;
 | |
| 	  O[os * (n - i)] = a - b;
 | |
| #endif
 | |
|      }
 | |
|      if (i == n - i)
 | |
| 	  O[os * i] = I[is * i];
 | |
| 
 | |
|      {
 | |
| 	  plan_rdft *cld = (plan_rdft *) ego->cld;
 | |
| 	  cld->apply((plan *) cld, O, O);
 | |
|      }
 | |
| }
 | |
| 
 | |
| static void awake(plan *ego_, enum wakefulness wakefulness)
 | |
| {
 | |
|      P *ego = (P *) ego_;
 | |
|      X(plan_awake)(ego->cld, wakefulness);
 | |
| }
 | |
| 
 | |
| static void destroy(plan *ego_)
 | |
| {
 | |
|      P *ego = (P *) ego_;
 | |
|      X(plan_destroy_internal)(ego->cld);
 | |
| }
 | |
| 
 | |
| static void print(const plan *ego_, printer *p)
 | |
| {
 | |
|      const P *ego = (const P *) ego_;
 | |
|      p->print(p, "(%s-dht-%D%(%p%))", 
 | |
| 	      ego->super.apply == apply_r2hc ? "r2hc" : "hc2r",
 | |
| 	      ego->n, ego->cld);
 | |
| }
 | |
| 
 | |
| static int applicable0(const solver *ego_, const problem *p_)
 | |
| {
 | |
|      const problem_rdft *p = (const problem_rdft *) p_;
 | |
|      UNUSED(ego_);
 | |
| 
 | |
|      return (1
 | |
| 	     && p->sz->rnk == 1
 | |
| 	     && p->vecsz->rnk == 0
 | |
| 	     && (p->kind[0] == R2HC || p->kind[0] == HC2R)
 | |
| 
 | |
| 	     /* hack: size-2 DHT etc. are defined as being equivalent
 | |
| 		to size-2 R2HC in problem.c, so we need this to prevent
 | |
| 		infinite loops for size 2 in EXHAUSTIVE mode: */
 | |
| 	     && p->sz->dims[0].n > 2
 | |
| 	  );
 | |
| }
 | |
| 
 | |
| static int applicable(const solver *ego, const problem *p_, 
 | |
| 		      const planner *plnr)
 | |
| {
 | |
|      return (!NO_SLOWP(plnr) && applicable0(ego, p_));
 | |
| }
 | |
| 
 | |
| static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
 | |
| {
 | |
|      P *pln;
 | |
|      const problem_rdft *p;
 | |
|      problem *cldp;
 | |
|      plan *cld;
 | |
| 
 | |
|      static const plan_adt padt = {
 | |
| 	  X(rdft_solve), awake, print, destroy
 | |
|      };
 | |
| 
 | |
|      if (!applicable(ego_, p_, plnr))
 | |
|           return (plan *)0;
 | |
| 
 | |
|      p = (const problem_rdft *) p_;
 | |
| 
 | |
|      if (p->kind[0] == R2HC || !NO_DESTROY_INPUTP(plnr))
 | |
| 	  cldp = X(mkproblem_rdft_1)(p->sz, p->vecsz, p->I, p->O, DHT);
 | |
|      else {
 | |
| 	  tensor *sz = X(tensor_copy_inplace)(p->sz, INPLACE_OS);
 | |
| 	  cldp = X(mkproblem_rdft_1)(sz, p->vecsz, p->O, p->O, DHT);
 | |
| 	  X(tensor_destroy)(sz);
 | |
|      }
 | |
|      cld = X(mkplan_d)(plnr, cldp);
 | |
|      if (!cld) return (plan *)0;
 | |
| 
 | |
|      pln = MKPLAN_RDFT(P, &padt, p->kind[0] == R2HC ? 
 | |
| 		       apply_r2hc : (NO_DESTROY_INPUTP(plnr) ?
 | |
| 				     apply_hc2r_save : apply_hc2r));
 | |
|      pln->n = p->sz->dims[0].n;
 | |
|      pln->is = p->sz->dims[0].is;
 | |
|      pln->os = p->sz->dims[0].os;
 | |
|      pln->cld = cld;
 | |
|      
 | |
|      pln->super.super.ops = cld->ops;
 | |
|      pln->super.super.ops.other += 4 * ((pln->n - 1)/2);
 | |
|      pln->super.super.ops.add += 2 * ((pln->n - 1)/2);
 | |
|      if (p->kind[0] == R2HC)
 | |
| 	  pln->super.super.ops.mul += 2 * ((pln->n - 1)/2);
 | |
|      if (pln->super.apply == apply_hc2r_save)
 | |
| 	  pln->super.super.ops.other += 2 + (pln->n % 2 ? 0 : 2);
 | |
| 
 | |
|      return &(pln->super.super);
 | |
| }
 | |
| 
 | |
| /* constructor */
 | |
| static solver *mksolver(void)
 | |
| {
 | |
|      static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
 | |
|      S *slv = MKSOLVER(S, &sadt);
 | |
|      return &(slv->super);
 | |
| }
 | |
| 
 | |
| void X(rdft_dht_register)(planner *p)
 | |
| {
 | |
|      REGISTER_SOLVER(p, mksolver());
 | |
| }
 | 
