230 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			230 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* This file was automatically generated --- DO NOT EDIT */
 | |
| /* Generated on Tue Sep 14 10:46:47 EDT 2021 */
 | |
| 
 | |
| #include "rdft/codelet-rdft.h"
 | |
| 
 | |
| #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 11 -name r2cb_11 -include rdft/scalar/r2cb.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 60 FP additions, 56 FP multiplications,
 | |
|  * (or, 4 additions, 0 multiplications, 56 fused multiply/add),
 | |
|  * 44 stack variables, 11 constants, and 22 memory accesses
 | |
|  */
 | |
| #include "rdft/scalar/r2cb.h"
 | |
| 
 | |
| static void r2cb_11(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
 | |
| {
 | |
|      DK(KP1_979642883, +1.979642883761865464752184075553437574753038744);
 | |
|      DK(KP918985947, +0.918985947228994779780736114132655398124909697);
 | |
|      DK(KP830830026, +0.830830026003772851058548298459246407048009821);
 | |
|      DK(KP1_918985947, +1.918985947228994779780736114132655398124909697);
 | |
|      DK(KP876768831, +0.876768831002589333891339807079336796764054852);
 | |
|      DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
 | |
|      DK(KP778434453, +0.778434453334651800608337670740821884709317477);
 | |
|      DK(KP634356270, +0.634356270682424498893150776899916060542806975);
 | |
|      DK(KP342584725, +0.342584725681637509502641509861112333758894680);
 | |
|      DK(KP715370323, +0.715370323453429719112414662767260662417897278);
 | |
|      DK(KP521108558, +0.521108558113202722944698153526659300680427422);
 | |
|      {
 | |
| 	  INT i;
 | |
| 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(44, rs), MAKE_VOLATILE_STRIDE(44, csr), MAKE_VOLATILE_STRIDE(44, csi)) {
 | |
| 	       E T1, Td, Th, Te, Tf, Tg, Tj, TT, Ts, TB, TK, T2, T6, T3, T4;
 | |
| 	       E T5, Ta, To, TP, TG, Tx, T7;
 | |
| 	       T1 = Cr[0];
 | |
| 	       {
 | |
| 		    E Ti, TS, Tr, TA, TJ;
 | |
| 		    Td = Ci[WS(csi, 3)];
 | |
| 		    Th = Ci[WS(csi, 5)];
 | |
| 		    Te = Ci[WS(csi, 2)];
 | |
| 		    Tf = Ci[WS(csi, 4)];
 | |
| 		    Tg = Ci[WS(csi, 1)];
 | |
| 		    Ti = FMA(KP521108558, Th, Tg);
 | |
| 		    TS = FMS(KP521108558, Tg, Te);
 | |
| 		    Tr = FMA(KP521108558, Td, Th);
 | |
| 		    TA = FNMS(KP521108558, Te, Tf);
 | |
| 		    TJ = FMA(KP521108558, Tf, Td);
 | |
| 		    Tj = FMA(KP715370323, Ti, Tf);
 | |
| 		    TT = FMA(KP715370323, TS, Td);
 | |
| 		    Ts = FNMS(KP715370323, Tr, Te);
 | |
| 		    TB = FMA(KP715370323, TA, Th);
 | |
| 		    TK = FMA(KP715370323, TJ, Tg);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T8, TN, Tm, Tv, TE;
 | |
| 		    T2 = Cr[WS(csr, 1)];
 | |
| 		    T6 = Cr[WS(csr, 5)];
 | |
| 		    T3 = Cr[WS(csr, 2)];
 | |
| 		    T4 = Cr[WS(csr, 3)];
 | |
| 		    T5 = Cr[WS(csr, 4)];
 | |
| 		    T8 = FNMS(KP342584725, T4, T3);
 | |
| 		    TN = FNMS(KP342584725, T6, T5);
 | |
| 		    Tm = FNMS(KP342584725, T5, T2);
 | |
| 		    Tv = FNMS(KP342584725, T2, T4);
 | |
| 		    TE = FNMS(KP342584725, T3, T6);
 | |
| 		    {
 | |
| 			 E T9, Tn, TO, TF, Tw;
 | |
| 			 T9 = FNMS(KP634356270, T8, T5);
 | |
| 			 Ta = FNMS(KP778434453, T9, T2);
 | |
| 			 Tn = FNMS(KP634356270, Tm, T3);
 | |
| 			 To = FNMS(KP778434453, Tn, T6);
 | |
| 			 TO = FNMS(KP634356270, TN, T4);
 | |
| 			 TP = FNMS(KP778434453, TO, T3);
 | |
| 			 TF = FNMS(KP634356270, TE, T2);
 | |
| 			 TG = FNMS(KP778434453, TF, T4);
 | |
| 			 Tw = FNMS(KP634356270, Tv, T6);
 | |
| 			 Tx = FNMS(KP778434453, Tw, T5);
 | |
| 			 T7 = T2 + T3 + T4 + T5 + T6;
 | |
| 		    }
 | |
| 	       }
 | |
| 	       R0[0] = FMA(KP2_000000000, T7, T1);
 | |
| 	       {
 | |
| 		    E Tc, Tl, Tb, Tk;
 | |
| 		    Tb = FNMS(KP876768831, Ta, T6);
 | |
| 		    Tc = FNMS(KP1_918985947, Tb, T1);
 | |
| 		    Tk = FMA(KP830830026, Tj, Te);
 | |
| 		    Tl = FMA(KP918985947, Tk, Td);
 | |
| 		    R1[0] = FNMS(KP1_979642883, Tl, Tc);
 | |
| 		    R0[WS(rs, 5)] = FMA(KP1_979642883, Tl, Tc);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TR, TV, TQ, TU;
 | |
| 		    TQ = FNMS(KP876768831, TP, T2);
 | |
| 		    TR = FNMS(KP1_918985947, TQ, T1);
 | |
| 		    TU = FNMS(KP830830026, TT, Tf);
 | |
| 		    TV = FNMS(KP918985947, TU, Th);
 | |
| 		    R1[WS(rs, 2)] = FNMS(KP1_979642883, TV, TR);
 | |
| 		    R0[WS(rs, 3)] = FMA(KP1_979642883, TV, TR);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TI, TM, TH, TL;
 | |
| 		    TH = FNMS(KP876768831, TG, T5);
 | |
| 		    TI = FNMS(KP1_918985947, TH, T1);
 | |
| 		    TL = FNMS(KP830830026, TK, Th);
 | |
| 		    TM = FMA(KP918985947, TL, Te);
 | |
| 		    R1[WS(rs, 3)] = FNMS(KP1_979642883, TM, TI);
 | |
| 		    R0[WS(rs, 2)] = FMA(KP1_979642883, TM, TI);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tz, TD, Ty, TC;
 | |
| 		    Ty = FNMS(KP876768831, Tx, T3);
 | |
| 		    Tz = FNMS(KP1_918985947, Ty, T1);
 | |
| 		    TC = FNMS(KP830830026, TB, Td);
 | |
| 		    TD = FNMS(KP918985947, TC, Tg);
 | |
| 		    R1[WS(rs, 1)] = FNMS(KP1_979642883, TD, Tz);
 | |
| 		    R0[WS(rs, 4)] = FMA(KP1_979642883, TD, Tz);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tq, Tu, Tp, Tt;
 | |
| 		    Tp = FNMS(KP876768831, To, T4);
 | |
| 		    Tq = FNMS(KP1_918985947, Tp, T1);
 | |
| 		    Tt = FMA(KP830830026, Ts, Tg);
 | |
| 		    Tu = FNMS(KP918985947, Tt, Tf);
 | |
| 		    R1[WS(rs, 4)] = FNMS(KP1_979642883, Tu, Tq);
 | |
| 		    R0[WS(rs, 1)] = FMA(KP1_979642883, Tu, Tq);
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const kr2c_desc desc = { 11, "r2cb_11", { 4, 0, 56, 0 }, &GENUS };
 | |
| 
 | |
| void X(codelet_r2cb_11) (planner *p) { X(kr2c_register) (p, r2cb_11, &desc);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 11 -name r2cb_11 -include rdft/scalar/r2cb.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 60 FP additions, 51 FP multiplications,
 | |
|  * (or, 19 additions, 10 multiplications, 41 fused multiply/add),
 | |
|  * 33 stack variables, 11 constants, and 22 memory accesses
 | |
|  */
 | |
| #include "rdft/scalar/r2cb.h"
 | |
| 
 | |
| static void r2cb_11(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
 | |
| {
 | |
|      DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
 | |
|      DK(KP1_918985947, +1.918985947228994779780736114132655398124909697);
 | |
|      DK(KP1_309721467, +1.309721467890570128113850144932587106367582399);
 | |
|      DK(KP284629676, +0.284629676546570280887585337232739337582102722);
 | |
|      DK(KP830830026, +0.830830026003772851058548298459246407048009821);
 | |
|      DK(KP1_682507065, +1.682507065662362337723623297838735435026584997);
 | |
|      DK(KP563465113, +0.563465113682859395422835830693233798071555798);
 | |
|      DK(KP1_511499148, +1.511499148708516567548071687944688840359434890);
 | |
|      DK(KP1_979642883, +1.979642883761865464752184075553437574753038744);
 | |
|      DK(KP1_819263990, +1.819263990709036742823430766158056920120482102);
 | |
|      DK(KP1_081281634, +1.081281634911195164215271908637383390863541216);
 | |
|      {
 | |
| 	  INT i;
 | |
| 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(44, rs), MAKE_VOLATILE_STRIDE(44, csr), MAKE_VOLATILE_STRIDE(44, csi)) {
 | |
| 	       E Td, Tl, Tf, Th, Tj, T1, T2, T6, T5, T4, T3, T7, Tk, Te, Tg;
 | |
| 	       E Ti;
 | |
| 	       {
 | |
| 		    E T8, Tc, T9, Ta, Tb;
 | |
| 		    T8 = Ci[WS(csi, 2)];
 | |
| 		    Tc = Ci[WS(csi, 1)];
 | |
| 		    T9 = Ci[WS(csi, 4)];
 | |
| 		    Ta = Ci[WS(csi, 5)];
 | |
| 		    Tb = Ci[WS(csi, 3)];
 | |
| 		    Td = FMA(KP1_081281634, T8, KP1_819263990 * T9) + FNMA(KP1_979642883, Ta, KP1_511499148 * Tb) - (KP563465113 * Tc);
 | |
| 		    Tl = FMA(KP1_979642883, T8, KP1_819263990 * Ta) + FNMA(KP563465113, T9, KP1_081281634 * Tb) - (KP1_511499148 * Tc);
 | |
| 		    Tf = FMA(KP563465113, T8, KP1_819263990 * Tb) + FNMA(KP1_511499148, Ta, KP1_081281634 * T9) - (KP1_979642883 * Tc);
 | |
| 		    Th = FMA(KP1_081281634, Tc, KP1_819263990 * T8) + FMA(KP1_979642883, Tb, KP1_511499148 * T9) + (KP563465113 * Ta);
 | |
| 		    Tj = FMA(KP563465113, Tb, KP1_979642883 * T9) + FNMS(KP1_511499148, T8, KP1_081281634 * Ta) - (KP1_819263990 * Tc);
 | |
| 	       }
 | |
| 	       T1 = Cr[0];
 | |
| 	       T2 = Cr[WS(csr, 1)];
 | |
| 	       T6 = Cr[WS(csr, 5)];
 | |
| 	       T5 = Cr[WS(csr, 4)];
 | |
| 	       T4 = Cr[WS(csr, 3)];
 | |
| 	       T3 = Cr[WS(csr, 2)];
 | |
| 	       T7 = FMA(KP1_682507065, T3, T1) + FNMS(KP284629676, T6, KP830830026 * T5) + FNMA(KP1_309721467, T4, KP1_918985947 * T2);
 | |
| 	       Tk = FMA(KP1_682507065, T4, T1) + FNMS(KP1_918985947, T5, KP830830026 * T6) + FNMA(KP284629676, T3, KP1_309721467 * T2);
 | |
| 	       Te = FMA(KP830830026, T4, T1) + FNMS(KP1_309721467, T6, KP1_682507065 * T5) + FNMA(KP1_918985947, T3, KP284629676 * T2);
 | |
| 	       Tg = FMA(KP1_682507065, T2, T1) + FNMS(KP1_918985947, T6, KP830830026 * T3) + FNMA(KP1_309721467, T5, KP284629676 * T4);
 | |
| 	       Ti = FMA(KP830830026, T2, T1) + FNMS(KP284629676, T5, KP1_682507065 * T6) + FNMA(KP1_918985947, T4, KP1_309721467 * T3);
 | |
| 	       R0[WS(rs, 3)] = T7 - Td;
 | |
| 	       R0[WS(rs, 4)] = Te - Tf;
 | |
| 	       R0[WS(rs, 2)] = Tk + Tl;
 | |
| 	       R1[WS(rs, 2)] = T7 + Td;
 | |
| 	       R1[WS(rs, 3)] = Tk - Tl;
 | |
| 	       R0[WS(rs, 1)] = Ti + Tj;
 | |
| 	       R1[WS(rs, 1)] = Te + Tf;
 | |
| 	       R0[WS(rs, 5)] = Tg + Th;
 | |
| 	       R1[0] = Tg - Th;
 | |
| 	       R1[WS(rs, 4)] = Ti - Tj;
 | |
| 	       R0[0] = FMA(KP2_000000000, T2 + T3 + T4 + T5 + T6, T1);
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const kr2c_desc desc = { 11, "r2cb_11", { 19, 10, 41, 0 }, &GENUS };
 | |
| 
 | |
| void X(codelet_r2cb_11) (planner *p) { X(kr2c_register) (p, r2cb_11, &desc);
 | |
| }
 | |
| 
 | |
| #endif
 | 
