189 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
			
		
		
	
	
			189 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
(*
 | 
						|
 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
 | 
						|
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 | 
						|
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | 
						|
 *
 | 
						|
 *)
 | 
						|
 | 
						|
(* policies for loading/computing twiddle factors *)
 | 
						|
open Complex
 | 
						|
open Util
 | 
						|
 | 
						|
type twop = TW_FULL | TW_CEXP | TW_NEXT
 | 
						|
 | 
						|
let optostring = function
 | 
						|
  | TW_CEXP -> "TW_CEXP"
 | 
						|
  | TW_NEXT -> "TW_NEXT"
 | 
						|
  | TW_FULL -> "TW_FULL"
 | 
						|
 | 
						|
type twinstr = (twop * int * int)
 | 
						|
 | 
						|
let rec unroll_twfull l = match l with
 | 
						|
| [] -> []
 | 
						|
| (TW_FULL, v, n) :: b ->
 | 
						|
    (forall [] cons 1 n (fun i -> (TW_CEXP, v, i)))
 | 
						|
    @ unroll_twfull b
 | 
						|
| a :: b -> a :: unroll_twfull b
 | 
						|
 | 
						|
let twinstr_to_c_string l =
 | 
						|
  let one (op, a, b) = Printf.sprintf "{ %s, %d, %d }" (optostring op) a b
 | 
						|
  in let rec loop first = function
 | 
						|
    | [] -> ""
 | 
						|
    | a :: b ->  (if first then "\n" else ",\n") ^ (one a) ^ (loop false b)
 | 
						|
  in "{" ^ (loop true l) ^ "}"
 | 
						|
 | 
						|
let twinstr_to_simd_string vl l =
 | 
						|
  let one sep = function
 | 
						|
    | (TW_NEXT, 1, 0) -> sep ^ "{TW_NEXT, " ^ vl ^ ", 0}"
 | 
						|
    | (TW_NEXT, _, _) -> failwith "twinstr_to_simd_string"
 | 
						|
    | (TW_CEXP, v, b) -> sep ^ (Printf.sprintf "VTW(%d,%d)" v b)
 | 
						|
    | _ -> failwith "twinstr_to_simd_string"
 | 
						|
  in let rec loop first = function
 | 
						|
    | [] -> ""
 | 
						|
    | a :: b ->  (one (if first then "\n" else ",\n") a) ^ (loop false b)
 | 
						|
  in "{" ^ (loop true (unroll_twfull l)) ^ "}"
 | 
						|
  
 | 
						|
let rec pow m n =
 | 
						|
  if (n = 0) then 1
 | 
						|
  else m * pow m (n - 1)
 | 
						|
 | 
						|
let rec is_pow m n =
 | 
						|
  n = 1 || ((n mod m) = 0 && is_pow m (n / m))
 | 
						|
 | 
						|
let rec log m n = if n = 1 then 0 else 1 + log m (n / m)
 | 
						|
 | 
						|
let rec largest_power_smaller_than m i =
 | 
						|
  if (is_pow m i) then i
 | 
						|
  else largest_power_smaller_than m (i - 1)
 | 
						|
 | 
						|
let rec smallest_power_larger_than m i =
 | 
						|
  if (is_pow m i) then i
 | 
						|
  else smallest_power_larger_than m (i + 1)
 | 
						|
 | 
						|
let rec_array n f =
 | 
						|
  let g = ref (fun i -> Complex.zero) in
 | 
						|
  let a = Array.init n (fun i -> lazy (!g i)) in
 | 
						|
  let h i = f (fun i -> Lazy.force a.(i)) i in
 | 
						|
  begin
 | 
						|
    g := h;
 | 
						|
    h
 | 
						|
  end
 | 
						|
 | 
						|
 
 | 
						|
let ctimes use_complex_arith a b =
 | 
						|
  if use_complex_arith then
 | 
						|
    Complex.ctimes a b
 | 
						|
  else
 | 
						|
    Complex.times a b
 | 
						|
 | 
						|
let ctimesj use_complex_arith a b =
 | 
						|
  if use_complex_arith then
 | 
						|
    Complex.ctimesj a b
 | 
						|
  else
 | 
						|
    Complex.times (Complex.conj a) b
 | 
						|
 | 
						|
let make_bytwiddle sign use_complex_arith g f i =
 | 
						|
  if i = 0 then 
 | 
						|
    f i
 | 
						|
  else if sign = 1 then 
 | 
						|
    ctimes use_complex_arith (g i) (f i)
 | 
						|
  else
 | 
						|
    ctimesj use_complex_arith (g i) (f i)
 | 
						|
 | 
						|
(* various policies for computing/loading twiddle factors *)
 | 
						|
 | 
						|
let twiddle_policy_load_all v use_complex_arith =
 | 
						|
  let bytwiddle n sign w f =
 | 
						|
    make_bytwiddle sign use_complex_arith (fun i -> w (i - 1)) f
 | 
						|
  and twidlen n = 2 * (n - 1)
 | 
						|
  and twdesc r = [(TW_FULL, v, r);(TW_NEXT, 1, 0)]
 | 
						|
  in bytwiddle, twidlen, twdesc
 | 
						|
 | 
						|
(*
 | 
						|
 * if i is a power of two, then load w (log i)
 | 
						|
 * else let x = largest power of 2 less than i in
 | 
						|
 *      let y = i - x in
 | 
						|
 *      compute w^{x+y} = w^x * w^y
 | 
						|
 *)
 | 
						|
let twiddle_policy_log2 v use_complex_arith =
 | 
						|
  let bytwiddle n sign w f =
 | 
						|
    let g = rec_array n (fun self i ->
 | 
						|
      if i = 0 then Complex.one
 | 
						|
      else if is_pow 2 i then w (log 2 i)
 | 
						|
      else let x = largest_power_smaller_than 2 i in
 | 
						|
      let y = i - x in
 | 
						|
	ctimes use_complex_arith (self x) (self y))
 | 
						|
    in make_bytwiddle sign use_complex_arith g f
 | 
						|
  and twidlen n = 2 * (log 2 (largest_power_smaller_than 2 (2 * n - 1)))
 | 
						|
  and twdesc n =
 | 
						|
    (List.flatten 
 | 
						|
       (List.map 
 | 
						|
	  (fun i -> 
 | 
						|
	    if i > 0 && is_pow 2 i then 
 | 
						|
	      [TW_CEXP, v, i] 
 | 
						|
	    else 
 | 
						|
	      [])
 | 
						|
	  (iota n)))
 | 
						|
    @ [(TW_NEXT, 1, 0)]
 | 
						|
  in bytwiddle, twidlen, twdesc
 | 
						|
 | 
						|
let twiddle_policy_log3 v use_complex_arith =
 | 
						|
  let rec terms_needed i pi s n =
 | 
						|
    if (s >= n - 1) then i
 | 
						|
    else terms_needed (i + 1) (3 * pi) (s + pi) n
 | 
						|
  in
 | 
						|
  let rec bytwiddle n sign w f =
 | 
						|
    let nterms = terms_needed 0 1 0 n in
 | 
						|
    let maxterm = pow 3 (nterms - 1) in
 | 
						|
    let g = rec_array (3 * n) (fun self i ->
 | 
						|
      if i = 0 then Complex.one
 | 
						|
      else if is_pow 3 i then w (log 3 i)
 | 
						|
      else if i = (n - 1) && maxterm >= n then
 | 
						|
	w (nterms - 1)
 | 
						|
      else let x = smallest_power_larger_than 3 i in
 | 
						|
      if (i + i >= x) then
 | 
						|
	let x = min x (n - 1) in
 | 
						|
	  ctimesj use_complex_arith (self (x - i)) (self x)
 | 
						|
      else let x = largest_power_smaller_than 3 i in
 | 
						|
	ctimes use_complex_arith (self (i - x)) (self x))
 | 
						|
    in make_bytwiddle sign use_complex_arith g f
 | 
						|
  and twidlen n = 2 * (terms_needed 0 1 0 n)
 | 
						|
  and twdesc n =
 | 
						|
    (List.map 
 | 
						|
       (fun i -> 
 | 
						|
	  let x = min (pow 3 i) (n - 1) in
 | 
						|
	    TW_CEXP, v, x)
 | 
						|
       (iota ((twidlen n) / 2)))
 | 
						|
    @ [(TW_NEXT, 1, 0)]
 | 
						|
  in bytwiddle, twidlen, twdesc
 | 
						|
    
 | 
						|
let current_twiddle_policy = ref twiddle_policy_load_all
 | 
						|
 | 
						|
let twiddle_policy use_complex_arith = 
 | 
						|
  !current_twiddle_policy use_complex_arith
 | 
						|
 | 
						|
let set_policy x = Arg.Unit (fun () -> current_twiddle_policy := x)
 | 
						|
let set_policy_int x = Arg.Int (fun i -> current_twiddle_policy := x i)
 | 
						|
 | 
						|
let undocumented = " Undocumented twiddle policy"
 | 
						|
 | 
						|
let speclist = [
 | 
						|
  "-twiddle-load-all", set_policy twiddle_policy_load_all, undocumented;
 | 
						|
  "-twiddle-log2", set_policy twiddle_policy_log2, undocumented;
 | 
						|
  "-twiddle-log3", set_policy twiddle_policy_log3, undocumented;
 | 
						|
] 
 |