295 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			295 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| 
 | |
| /* Do an R{E,O}DFT11 problem via an R2HC problem, with some
 | |
|    pre/post-processing ala FFTPACK.  Use a trick from: 
 | |
| 
 | |
|      S. C. Chan and K. L. Ho, "Direct methods for computing discrete
 | |
|      sinusoidal transforms," IEE Proceedings F 137 (6), 433--442 (1990).
 | |
| 
 | |
|    to re-express as an REDFT01 (DCT-III) problem.
 | |
| 
 | |
|    NOTE: We no longer use this algorithm, because it turns out to suffer
 | |
|    a catastrophic loss of accuracy for certain inputs, apparently because
 | |
|    its post-processing multiplies the output by a cosine.  Near the zero
 | |
|    of the cosine, the REDFT01 must produce a near-singular output.
 | |
| */
 | |
| 
 | |
| #include "reodft/reodft.h"
 | |
| 
 | |
| typedef struct {
 | |
|      solver super;
 | |
| } S;
 | |
| 
 | |
| typedef struct {
 | |
|      plan_rdft super;
 | |
|      plan *cld;
 | |
|      twid *td, *td2;
 | |
|      INT is, os;
 | |
|      INT n;
 | |
|      INT vl;
 | |
|      INT ivs, ovs;
 | |
|      rdft_kind kind;
 | |
| } P;
 | |
| 
 | |
| static void apply_re11(const plan *ego_, R *I, R *O)
 | |
| {
 | |
|      const P *ego = (const P *) ego_;
 | |
|      INT is = ego->is, os = ego->os;
 | |
|      INT i, n = ego->n;
 | |
|      INT iv, vl = ego->vl;
 | |
|      INT ivs = ego->ivs, ovs = ego->ovs;
 | |
|      R *W;
 | |
|      R *buf;
 | |
|      E cur;
 | |
| 
 | |
|      buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
 | |
| 
 | |
|      for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
 | |
| 	  /* I wish that this didn't require an extra pass. */
 | |
| 	  /* FIXME: use recursive/cascade summation for better stability? */
 | |
| 	  buf[n - 1] = cur = K(2.0) * I[is * (n - 1)];
 | |
| 	  for (i = n - 1; i > 0; --i) {
 | |
| 	       E curnew;
 | |
| 	       buf[(i - 1)] = curnew = K(2.0) * I[is * (i - 1)] - cur;
 | |
| 	       cur = curnew;
 | |
| 	  }
 | |
| 	  
 | |
| 	  W = ego->td->W;
 | |
| 	  for (i = 1; i < n - i; ++i) {
 | |
| 	       E a, b, apb, amb, wa, wb;
 | |
| 	       a = buf[i];
 | |
| 	       b = buf[n - i];
 | |
| 	       apb = a + b;
 | |
| 	       amb = a - b;
 | |
| 	       wa = W[2*i];
 | |
| 	       wb = W[2*i + 1];
 | |
| 	       buf[i] = wa * amb + wb * apb; 
 | |
| 	       buf[n - i] = wa * apb - wb * amb; 
 | |
| 	  }
 | |
| 	  if (i == n - i) {
 | |
| 	       buf[i] = K(2.0) * buf[i] * W[2*i];
 | |
| 	  }
 | |
| 	  
 | |
| 	  {
 | |
| 	       plan_rdft *cld = (plan_rdft *) ego->cld;
 | |
| 	       cld->apply((plan *) cld, buf, buf);
 | |
| 	  }
 | |
| 	  
 | |
| 	  W = ego->td2->W;
 | |
| 	  O[0] = W[0] * buf[0];
 | |
| 	  for (i = 1; i < n - i; ++i) {
 | |
| 	       E a, b;
 | |
| 	       INT k;
 | |
| 	       a = buf[i];
 | |
| 	       b = buf[n - i];
 | |
| 	       k = i + i;
 | |
| 	       O[os * (k - 1)] = W[k - 1] * (a - b);
 | |
| 	       O[os * k] = W[k] * (a + b);
 | |
| 	  }
 | |
| 	  if (i == n - i) {
 | |
| 	       O[os * (n - 1)] = W[n - 1] * buf[i];
 | |
| 	  }
 | |
|      }
 | |
| 
 | |
|      X(ifree)(buf);
 | |
| }
 | |
| 
 | |
| /* like for rodft01, rodft11 is obtained from redft11 by
 | |
|    reversing the input and flipping the sign of every other output. */
 | |
| static void apply_ro11(const plan *ego_, R *I, R *O)
 | |
| {
 | |
|      const P *ego = (const P *) ego_;
 | |
|      INT is = ego->is, os = ego->os;
 | |
|      INT i, n = ego->n;
 | |
|      INT iv, vl = ego->vl;
 | |
|      INT ivs = ego->ivs, ovs = ego->ovs;
 | |
|      R *W;
 | |
|      R *buf;
 | |
|      E cur;
 | |
| 
 | |
|      buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
 | |
| 
 | |
|      for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
 | |
| 	  /* I wish that this didn't require an extra pass. */
 | |
| 	  /* FIXME: use recursive/cascade summation for better stability? */
 | |
| 	  buf[n - 1] = cur = K(2.0) * I[0];
 | |
| 	  for (i = n - 1; i > 0; --i) {
 | |
| 	       E curnew;
 | |
| 	       buf[(i - 1)] = curnew = K(2.0) * I[is * (n - i)] - cur;
 | |
| 	       cur = curnew;
 | |
| 	  }
 | |
| 	  
 | |
| 	  W = ego->td->W;
 | |
| 	  for (i = 1; i < n - i; ++i) {
 | |
| 	       E a, b, apb, amb, wa, wb;
 | |
| 	       a = buf[i];
 | |
| 	       b = buf[n - i];
 | |
| 	       apb = a + b;
 | |
| 	       amb = a - b;
 | |
| 	       wa = W[2*i];
 | |
| 	       wb = W[2*i + 1];
 | |
| 	       buf[i] = wa * amb + wb * apb; 
 | |
| 	       buf[n - i] = wa * apb - wb * amb; 
 | |
| 	  }
 | |
| 	  if (i == n - i) {
 | |
| 	       buf[i] = K(2.0) * buf[i] * W[2*i];
 | |
| 	  }
 | |
| 	  
 | |
| 	  {
 | |
| 	       plan_rdft *cld = (plan_rdft *) ego->cld;
 | |
| 	       cld->apply((plan *) cld, buf, buf);
 | |
| 	  }
 | |
| 	  
 | |
| 	  W = ego->td2->W;
 | |
| 	  O[0] = W[0] * buf[0];
 | |
| 	  for (i = 1; i < n - i; ++i) {
 | |
| 	       E a, b;
 | |
| 	       INT k;
 | |
| 	       a = buf[i];
 | |
| 	       b = buf[n - i];
 | |
| 	       k = i + i;
 | |
| 	       O[os * (k - 1)] = W[k - 1] * (b - a);
 | |
| 	       O[os * k] = W[k] * (a + b);
 | |
| 	  }
 | |
| 	  if (i == n - i) {
 | |
| 	       O[os * (n - 1)] = -W[n - 1] * buf[i];
 | |
| 	  }
 | |
|      }
 | |
| 
 | |
|      X(ifree)(buf);
 | |
| }
 | |
| 
 | |
| static void awake(plan *ego_, enum wakefulness wakefulness)
 | |
| {
 | |
|      P *ego = (P *) ego_;
 | |
|      static const tw_instr reodft010e_tw[] = {
 | |
|           { TW_COS, 0, 1 },
 | |
|           { TW_SIN, 0, 1 },
 | |
|           { TW_NEXT, 1, 0 }
 | |
|      };
 | |
|      static const tw_instr reodft11e_tw[] = {
 | |
|           { TW_COS, 1, 1 },
 | |
|           { TW_NEXT, 2, 0 }
 | |
|      };
 | |
| 
 | |
|      X(plan_awake)(ego->cld, wakefulness);
 | |
| 
 | |
|      X(twiddle_awake)(wakefulness,
 | |
| 		      &ego->td, reodft010e_tw, 4*ego->n, 1, ego->n/2+1);
 | |
|      X(twiddle_awake)(wakefulness,
 | |
| 		      &ego->td2, reodft11e_tw, 8*ego->n, 1, ego->n * 2);
 | |
| }
 | |
| 
 | |
| static void destroy(plan *ego_)
 | |
| {
 | |
|      P *ego = (P *) ego_;
 | |
|      X(plan_destroy_internal)(ego->cld);
 | |
| }
 | |
| 
 | |
| static void print(const plan *ego_, printer *p)
 | |
| {
 | |
|      const P *ego = (const P *) ego_;
 | |
|      p->print(p, "(%se-r2hc-%D%v%(%p%))",
 | |
| 	      X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
 | |
| }
 | |
| 
 | |
| static int applicable0(const solver *ego_, const problem *p_)
 | |
| {
 | |
|      const problem_rdft *p = (const problem_rdft *) p_;
 | |
| 
 | |
|      UNUSED(ego_);
 | |
| 
 | |
|      return (1
 | |
| 	     && p->sz->rnk == 1
 | |
| 	     && p->vecsz->rnk <= 1
 | |
| 	     && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11)
 | |
| 	  );
 | |
| }
 | |
| 
 | |
| static int applicable(const solver *ego, const problem *p, const planner *plnr)
 | |
| {
 | |
|      return (!NO_SLOWP(plnr) && applicable0(ego, p));
 | |
| }
 | |
| 
 | |
| static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
 | |
| {
 | |
|      P *pln;
 | |
|      const problem_rdft *p;
 | |
|      plan *cld;
 | |
|      R *buf;
 | |
|      INT n;
 | |
|      opcnt ops;
 | |
| 
 | |
|      static const plan_adt padt = {
 | |
| 	  X(rdft_solve), awake, print, destroy
 | |
|      };
 | |
| 
 | |
|      if (!applicable(ego_, p_, plnr))
 | |
|           return (plan *)0;
 | |
| 
 | |
|      p = (const problem_rdft *) p_;
 | |
| 
 | |
|      n = p->sz->dims[0].n;
 | |
|      buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
 | |
| 
 | |
|      cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1),
 | |
|                                                    X(mktensor_0d)(),
 | |
|                                                    buf, buf, R2HC));
 | |
|      X(ifree)(buf);
 | |
|      if (!cld)
 | |
|           return (plan *)0;
 | |
| 
 | |
|      pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11);
 | |
|      pln->n = n;
 | |
|      pln->is = p->sz->dims[0].is;
 | |
|      pln->os = p->sz->dims[0].os;
 | |
|      pln->cld = cld;
 | |
|      pln->td = pln->td2 = 0;
 | |
|      pln->kind = p->kind[0];
 | |
|      
 | |
|      X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
 | |
|      
 | |
|      X(ops_zero)(&ops);
 | |
|      ops.other = 5 + (n-1) * 2 + (n-1)/2 * 12 + (1 - n % 2) * 6;
 | |
|      ops.add = (n - 1) * 1 + (n-1)/2 * 6;
 | |
|      ops.mul = 2 + (n-1) * 1 + (n-1)/2 * 6 + (1 - n % 2) * 3;
 | |
| 
 | |
|      X(ops_zero)(&pln->super.super.ops);
 | |
|      X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
 | |
|      X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
 | |
| 
 | |
|      return &(pln->super.super);
 | |
| }
 | |
| 
 | |
| /* constructor */
 | |
| static solver *mksolver(void)
 | |
| {
 | |
|      static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
 | |
|      S *slv = MKSOLVER(S, &sadt);
 | |
|      return &(slv->super);
 | |
| }
 | |
| 
 | |
| void X(reodft11e_r2hc_register)(planner *p)
 | |
| {
 | |
|      REGISTER_SOLVER(p, mksolver());
 | |
| }
 | 
