251 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			251 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 | 
						|
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#include "dft/dft.h"
 | 
						|
 | 
						|
typedef struct {
 | 
						|
     solver super;
 | 
						|
} S;
 | 
						|
 | 
						|
typedef struct {
 | 
						|
     plan_dft super;
 | 
						|
     INT n;     /* problem size */
 | 
						|
     INT nb;    /* size of convolution */
 | 
						|
     R *w;      /* lambda k . exp(2*pi*i*k^2/(2*n)) */
 | 
						|
     R *W;      /* DFT(w) */
 | 
						|
     plan *cldf;
 | 
						|
     INT is, os;
 | 
						|
} P;
 | 
						|
 | 
						|
static void bluestein_sequence(enum wakefulness wakefulness, INT n, R *w)
 | 
						|
{
 | 
						|
     INT k, ksq, n2 = 2 * n;
 | 
						|
     triggen *t = X(mktriggen)(wakefulness, n2);
 | 
						|
 | 
						|
     ksq = 0;
 | 
						|
     for (k = 0; k < n; ++k) {
 | 
						|
	  t->cexp(t, ksq, w+2*k);
 | 
						|
          /* careful with overflow */
 | 
						|
          ksq += 2*k + 1; while (ksq > n2) ksq -= n2;
 | 
						|
     }
 | 
						|
 | 
						|
     X(triggen_destroy)(t);
 | 
						|
}
 | 
						|
 | 
						|
static void mktwiddle(enum wakefulness wakefulness, P *p)
 | 
						|
{
 | 
						|
     INT i;
 | 
						|
     INT n = p->n, nb = p->nb;
 | 
						|
     R *w, *W;
 | 
						|
     E nbf = (E)nb;
 | 
						|
 | 
						|
     p->w = w = (R *) MALLOC(2 * n * sizeof(R), TWIDDLES);
 | 
						|
     p->W = W = (R *) MALLOC(2 * nb * sizeof(R), TWIDDLES);
 | 
						|
 | 
						|
     bluestein_sequence(wakefulness, n, w);
 | 
						|
 | 
						|
     for (i = 0; i < nb; ++i)
 | 
						|
          W[2*i] = W[2*i+1] = K(0.0);
 | 
						|
 | 
						|
     W[0] = w[0] / nbf;
 | 
						|
     W[1] = w[1] / nbf;
 | 
						|
 | 
						|
     for (i = 1; i < n; ++i) {
 | 
						|
          W[2*i] = W[2*(nb-i)] = w[2*i] / nbf;
 | 
						|
          W[2*i+1] = W[2*(nb-i)+1] = w[2*i+1] / nbf;
 | 
						|
     }
 | 
						|
 | 
						|
     {
 | 
						|
          plan_dft *cldf = (plan_dft *)p->cldf;
 | 
						|
	  /* cldf must be awake */
 | 
						|
          cldf->apply(p->cldf, W, W+1, W, W+1);
 | 
						|
     }
 | 
						|
}
 | 
						|
 | 
						|
static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
 | 
						|
{
 | 
						|
     const P *ego = (const P *) ego_;
 | 
						|
     INT i, n = ego->n, nb = ego->nb, is = ego->is, os = ego->os;
 | 
						|
     R *w = ego->w, *W = ego->W;
 | 
						|
     R *b = (R *) MALLOC(2 * nb * sizeof(R), BUFFERS);
 | 
						|
 | 
						|
     /* multiply input by conjugate bluestein sequence */
 | 
						|
     for (i = 0; i < n; ++i) {
 | 
						|
	  E xr = ri[i*is], xi = ii[i*is];
 | 
						|
          E wr = w[2*i], wi = w[2*i+1];
 | 
						|
          b[2*i] = xr * wr + xi * wi;
 | 
						|
          b[2*i+1] = xi * wr - xr * wi;
 | 
						|
     }
 | 
						|
 | 
						|
     for (; i < nb; ++i) b[2*i] = b[2*i+1] = K(0.0);
 | 
						|
 | 
						|
     /* convolution: FFT */
 | 
						|
     {
 | 
						|
          plan_dft *cldf = (plan_dft *)ego->cldf;
 | 
						|
          cldf->apply(ego->cldf, b, b+1, b, b+1);
 | 
						|
     }
 | 
						|
 | 
						|
     /* convolution: pointwise multiplication */
 | 
						|
     for (i = 0; i < nb; ++i) {
 | 
						|
	  E xr = b[2*i], xi = b[2*i+1];
 | 
						|
          E wr = W[2*i], wi = W[2*i+1];
 | 
						|
          b[2*i] = xi * wr + xr * wi;
 | 
						|
          b[2*i+1] = xr * wr - xi * wi;
 | 
						|
     }
 | 
						|
 | 
						|
     /* convolution: IFFT by FFT with real/imag input/output swapped */
 | 
						|
     {
 | 
						|
          plan_dft *cldf = (plan_dft *)ego->cldf;
 | 
						|
          cldf->apply(ego->cldf, b, b+1, b, b+1);
 | 
						|
     }
 | 
						|
 | 
						|
     /* multiply output by conjugate bluestein sequence */
 | 
						|
     for (i = 0; i < n; ++i) {
 | 
						|
	  E xi = b[2*i], xr = b[2*i+1];
 | 
						|
          E wr = w[2*i], wi = w[2*i+1];
 | 
						|
          ro[i*os] = xr * wr + xi * wi;
 | 
						|
          io[i*os] = xi * wr - xr * wi;
 | 
						|
     }
 | 
						|
 | 
						|
     X(ifree)(b);	  
 | 
						|
}
 | 
						|
 | 
						|
static void awake(plan *ego_, enum wakefulness wakefulness)
 | 
						|
{
 | 
						|
     P *ego = (P *) ego_;
 | 
						|
 | 
						|
     X(plan_awake)(ego->cldf, wakefulness);
 | 
						|
 | 
						|
     switch (wakefulness) {
 | 
						|
	 case SLEEPY:
 | 
						|
	      X(ifree0)(ego->w); ego->w = 0;
 | 
						|
	      X(ifree0)(ego->W); ego->W = 0;
 | 
						|
	      break;
 | 
						|
	 default:
 | 
						|
	      A(!ego->w);
 | 
						|
	      mktwiddle(wakefulness, ego);
 | 
						|
	      break;
 | 
						|
     }
 | 
						|
}
 | 
						|
 | 
						|
static int applicable(const solver *ego, const problem *p_, 
 | 
						|
		      const planner *plnr)
 | 
						|
{
 | 
						|
     const problem_dft *p = (const problem_dft *) p_;
 | 
						|
     UNUSED(ego);
 | 
						|
     return (1
 | 
						|
	     && p->sz->rnk == 1
 | 
						|
	     && p->vecsz->rnk == 0
 | 
						|
	     /* FIXME: allow other sizes */
 | 
						|
	     && X(is_prime)(p->sz->dims[0].n)
 | 
						|
 | 
						|
	     /* FIXME: avoid infinite recursion of bluestein with itself.
 | 
						|
		This works because all factors in child problems are 2, 3, 5 */
 | 
						|
	     && p->sz->dims[0].n > 16
 | 
						|
 | 
						|
	     && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > BLUESTEIN_MAX_SLOW)
 | 
						|
	  );
 | 
						|
}
 | 
						|
 | 
						|
static void destroy(plan *ego_)
 | 
						|
{
 | 
						|
     P *ego = (P *) ego_;
 | 
						|
     X(plan_destroy_internal)(ego->cldf);
 | 
						|
}
 | 
						|
 | 
						|
static void print(const plan *ego_, printer *p)
 | 
						|
{
 | 
						|
     const P *ego = (const P *)ego_;
 | 
						|
     p->print(p, "(dft-bluestein-%D/%D%(%p%))",
 | 
						|
              ego->n, ego->nb, ego->cldf);
 | 
						|
}
 | 
						|
 | 
						|
static INT choose_transform_size(INT minsz)
 | 
						|
{
 | 
						|
     while (!X(factors_into_small_primes)(minsz))
 | 
						|
	  ++minsz;
 | 
						|
     return minsz;
 | 
						|
}
 | 
						|
 | 
						|
static plan *mkplan(const solver *ego, const problem *p_, planner *plnr)
 | 
						|
{
 | 
						|
     const problem_dft *p = (const problem_dft *) p_;
 | 
						|
     P *pln;
 | 
						|
     INT n, nb;
 | 
						|
     plan *cldf = 0;
 | 
						|
     R *buf = (R *) 0;
 | 
						|
 | 
						|
     static const plan_adt padt = {
 | 
						|
	  X(dft_solve), awake, print, destroy
 | 
						|
     };
 | 
						|
 | 
						|
     if (!applicable(ego, p_, plnr))
 | 
						|
	  return (plan *) 0;
 | 
						|
 | 
						|
     n = p->sz->dims[0].n;
 | 
						|
     nb = choose_transform_size(2 * n - 1);
 | 
						|
     buf = (R *) MALLOC(2 * nb * sizeof(R), BUFFERS);
 | 
						|
 | 
						|
     cldf = X(mkplan_f_d)(plnr, 
 | 
						|
			  X(mkproblem_dft_d)(X(mktensor_1d)(nb, 2, 2),
 | 
						|
					     X(mktensor_1d)(1, 0, 0),
 | 
						|
					     buf, buf+1, 
 | 
						|
					     buf, buf+1),
 | 
						|
			  NO_SLOW, 0, 0);
 | 
						|
     if (!cldf) goto nada;
 | 
						|
 | 
						|
     X(ifree)(buf);
 | 
						|
 | 
						|
     pln = MKPLAN_DFT(P, &padt, apply);
 | 
						|
 | 
						|
     pln->n = n;
 | 
						|
     pln->nb = nb;
 | 
						|
     pln->w = 0;
 | 
						|
     pln->W = 0;
 | 
						|
     pln->cldf = cldf;
 | 
						|
     pln->is = p->sz->dims[0].is;
 | 
						|
     pln->os = p->sz->dims[0].os;
 | 
						|
 | 
						|
     X(ops_add)(&cldf->ops, &cldf->ops, &pln->super.super.ops);
 | 
						|
     pln->super.super.ops.add += 4 * n + 2 * nb;
 | 
						|
     pln->super.super.ops.mul += 8 * n + 4 * nb;
 | 
						|
     pln->super.super.ops.other += 6 * (n + nb);
 | 
						|
 | 
						|
     return &(pln->super.super);
 | 
						|
 | 
						|
 nada:
 | 
						|
     X(ifree0)(buf);
 | 
						|
     X(plan_destroy_internal)(cldf);
 | 
						|
     return (plan *)0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static solver *mksolver(void)
 | 
						|
{
 | 
						|
     static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
 | 
						|
     S *slv = MKSOLVER(S, &sadt);
 | 
						|
     return &(slv->super);
 | 
						|
}
 | 
						|
 | 
						|
void X(dft_bluestein_register)(planner *p)
 | 
						|
{
 | 
						|
     REGISTER_SOLVER(p, mksolver());
 | 
						|
}
 |