293 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			293 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* This file was automatically generated --- DO NOT EDIT */
 | |
| /* Generated on Tue Sep 14 10:46:50 EDT 2021 */
 | |
| 
 | |
| #include "rdft/codelet-rdft.h"
 | |
| 
 | |
| #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hb_6 -include rdft/scalar/hb.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 46 FP additions, 32 FP multiplications,
 | |
|  * (or, 24 additions, 10 multiplications, 22 fused multiply/add),
 | |
|  * 31 stack variables, 2 constants, and 24 memory accesses
 | |
|  */
 | |
| #include "rdft/scalar/hb.h"
 | |
| 
 | |
| static void hb_6(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      DK(KP866025403, +0.866025403784438646763723170752936183471402627);
 | |
|      DK(KP500000000, +0.500000000000000000000000000000000000000000000);
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 10, MAKE_VOLATILE_STRIDE(12, rs)) {
 | |
| 	       E Td, Tn, TO, TJ, TN, Tk, Tr, T3, TC, Ts, TQ, Ta, Tm, TF, TG;
 | |
| 	       {
 | |
| 		    E Tb, Tc, Tg, TH, Tj, TI;
 | |
| 		    Tb = ci[WS(rs, 5)];
 | |
| 		    Tc = cr[WS(rs, 3)];
 | |
| 		    Td = Tb - Tc;
 | |
| 		    {
 | |
| 			 E Te, Tf, Th, Ti;
 | |
| 			 Te = ci[WS(rs, 3)];
 | |
| 			 Tf = cr[WS(rs, 5)];
 | |
| 			 Tg = Te - Tf;
 | |
| 			 TH = Te + Tf;
 | |
| 			 Th = ci[WS(rs, 4)];
 | |
| 			 Ti = cr[WS(rs, 4)];
 | |
| 			 Tj = Th - Ti;
 | |
| 			 TI = Th + Ti;
 | |
| 		    }
 | |
| 		    Tn = Tj - Tg;
 | |
| 		    TO = TH - TI;
 | |
| 		    TJ = TH + TI;
 | |
| 		    TN = Tb + Tc;
 | |
| 		    Tk = Tg + Tj;
 | |
| 		    Tr = FNMS(KP500000000, Tk, Td);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T6, TD, T9, TE, T1, T2;
 | |
| 		    T1 = cr[0];
 | |
| 		    T2 = ci[WS(rs, 2)];
 | |
| 		    T3 = T1 + T2;
 | |
| 		    TC = T1 - T2;
 | |
| 		    {
 | |
| 			 E T4, T5, T7, T8;
 | |
| 			 T4 = cr[WS(rs, 2)];
 | |
| 			 T5 = ci[0];
 | |
| 			 T6 = T4 + T5;
 | |
| 			 TD = T4 - T5;
 | |
| 			 T7 = ci[WS(rs, 1)];
 | |
| 			 T8 = cr[WS(rs, 1)];
 | |
| 			 T9 = T7 + T8;
 | |
| 			 TE = T7 - T8;
 | |
| 		    }
 | |
| 		    Ts = T6 - T9;
 | |
| 		    TQ = TD - TE;
 | |
| 		    Ta = T6 + T9;
 | |
| 		    Tm = FNMS(KP500000000, Ta, T3);
 | |
| 		    TF = TD + TE;
 | |
| 		    TG = FNMS(KP500000000, TF, TC);
 | |
| 	       }
 | |
| 	       cr[0] = T3 + Ta;
 | |
| 	       ci[0] = Td + Tk;
 | |
| 	       {
 | |
| 		    E To, Tt, Tp, Tu, Tl, Tq;
 | |
| 		    To = FNMS(KP866025403, Tn, Tm);
 | |
| 		    Tt = FNMS(KP866025403, Ts, Tr);
 | |
| 		    Tl = W[2];
 | |
| 		    Tp = Tl * To;
 | |
| 		    Tu = Tl * Tt;
 | |
| 		    Tq = W[3];
 | |
| 		    cr[WS(rs, 2)] = FNMS(Tq, Tt, Tp);
 | |
| 		    ci[WS(rs, 2)] = FMA(Tq, To, Tu);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T13, TZ, T11, T12, T14, T10;
 | |
| 		    T13 = TN + TO;
 | |
| 		    T10 = TC + TF;
 | |
| 		    TZ = W[4];
 | |
| 		    T11 = TZ * T10;
 | |
| 		    T12 = W[5];
 | |
| 		    T14 = T12 * T10;
 | |
| 		    cr[WS(rs, 3)] = FNMS(T12, T13, T11);
 | |
| 		    ci[WS(rs, 3)] = FMA(TZ, T13, T14);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tw, Tz, Tx, TA, Tv, Ty;
 | |
| 		    Tw = FMA(KP866025403, Tn, Tm);
 | |
| 		    Tz = FMA(KP866025403, Ts, Tr);
 | |
| 		    Tv = W[6];
 | |
| 		    Tx = Tv * Tw;
 | |
| 		    TA = Tv * Tz;
 | |
| 		    Ty = W[7];
 | |
| 		    cr[WS(rs, 4)] = FNMS(Ty, Tz, Tx);
 | |
| 		    ci[WS(rs, 4)] = FMA(Ty, Tw, TA);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TR, TX, TT, TV, TW, TY, TB, TL, TM, TS, TP, TU, TK;
 | |
| 		    TP = FNMS(KP500000000, TO, TN);
 | |
| 		    TR = FMA(KP866025403, TQ, TP);
 | |
| 		    TX = FNMS(KP866025403, TQ, TP);
 | |
| 		    TU = FMA(KP866025403, TJ, TG);
 | |
| 		    TT = W[8];
 | |
| 		    TV = TT * TU;
 | |
| 		    TW = W[9];
 | |
| 		    TY = TW * TU;
 | |
| 		    TK = FNMS(KP866025403, TJ, TG);
 | |
| 		    TB = W[0];
 | |
| 		    TL = TB * TK;
 | |
| 		    TM = W[1];
 | |
| 		    TS = TM * TK;
 | |
| 		    cr[WS(rs, 1)] = FNMS(TM, TR, TL);
 | |
| 		    ci[WS(rs, 1)] = FMA(TB, TR, TS);
 | |
| 		    cr[WS(rs, 5)] = FNMS(TW, TX, TV);
 | |
| 		    ci[WS(rs, 5)] = FMA(TT, TX, TY);
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      { TW_FULL, 1, 6 },
 | |
|      { TW_NEXT, 1, 0 }
 | |
| };
 | |
| 
 | |
| static const hc2hc_desc desc = { 6, "hb_6", twinstr, &GENUS, { 24, 10, 22, 0 } };
 | |
| 
 | |
| void X(codelet_hb_6) (planner *p) {
 | |
|      X(khc2hc_register) (p, hb_6, &desc);
 | |
| }
 | |
| #else
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hb_6 -include rdft/scalar/hb.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 46 FP additions, 28 FP multiplications,
 | |
|  * (or, 32 additions, 14 multiplications, 14 fused multiply/add),
 | |
|  * 27 stack variables, 2 constants, and 24 memory accesses
 | |
|  */
 | |
| #include "rdft/scalar/hb.h"
 | |
| 
 | |
| static void hb_6(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      DK(KP500000000, +0.500000000000000000000000000000000000000000000);
 | |
|      DK(KP866025403, +0.866025403784438646763723170752936183471402627);
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 10, MAKE_VOLATILE_STRIDE(12, rs)) {
 | |
| 	       E T3, Ty, Ta, TO, Tr, TB, Td, TE, Tk, TL, Tn, TH;
 | |
| 	       {
 | |
| 		    E T1, T2, Tb, Tc;
 | |
| 		    T1 = cr[0];
 | |
| 		    T2 = ci[WS(rs, 2)];
 | |
| 		    T3 = T1 + T2;
 | |
| 		    Ty = T1 - T2;
 | |
| 		    {
 | |
| 			 E T6, Tz, T9, TA;
 | |
| 			 {
 | |
| 			      E T4, T5, T7, T8;
 | |
| 			      T4 = cr[WS(rs, 2)];
 | |
| 			      T5 = ci[0];
 | |
| 			      T6 = T4 + T5;
 | |
| 			      Tz = T4 - T5;
 | |
| 			      T7 = ci[WS(rs, 1)];
 | |
| 			      T8 = cr[WS(rs, 1)];
 | |
| 			      T9 = T7 + T8;
 | |
| 			      TA = T7 - T8;
 | |
| 			 }
 | |
| 			 Ta = T6 + T9;
 | |
| 			 TO = KP866025403 * (Tz - TA);
 | |
| 			 Tr = KP866025403 * (T6 - T9);
 | |
| 			 TB = Tz + TA;
 | |
| 		    }
 | |
| 		    Tb = ci[WS(rs, 5)];
 | |
| 		    Tc = cr[WS(rs, 3)];
 | |
| 		    Td = Tb - Tc;
 | |
| 		    TE = Tb + Tc;
 | |
| 		    {
 | |
| 			 E Tg, TG, Tj, TF;
 | |
| 			 {
 | |
| 			      E Te, Tf, Th, Ti;
 | |
| 			      Te = ci[WS(rs, 3)];
 | |
| 			      Tf = cr[WS(rs, 5)];
 | |
| 			      Tg = Te - Tf;
 | |
| 			      TG = Te + Tf;
 | |
| 			      Th = ci[WS(rs, 4)];
 | |
| 			      Ti = cr[WS(rs, 4)];
 | |
| 			      Tj = Th - Ti;
 | |
| 			      TF = Th + Ti;
 | |
| 			 }
 | |
| 			 Tk = Tg + Tj;
 | |
| 			 TL = KP866025403 * (TG + TF);
 | |
| 			 Tn = KP866025403 * (Tj - Tg);
 | |
| 			 TH = TF - TG;
 | |
| 		    }
 | |
| 	       }
 | |
| 	       cr[0] = T3 + Ta;
 | |
| 	       ci[0] = Td + Tk;
 | |
| 	       {
 | |
| 		    E TC, TI, Tx, TD;
 | |
| 		    TC = Ty + TB;
 | |
| 		    TI = TE - TH;
 | |
| 		    Tx = W[4];
 | |
| 		    TD = W[5];
 | |
| 		    cr[WS(rs, 3)] = FNMS(TD, TI, Tx * TC);
 | |
| 		    ci[WS(rs, 3)] = FMA(TD, TC, Tx * TI);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E To, Tu, Ts, Tw, Tm, Tq;
 | |
| 		    Tm = FNMS(KP500000000, Ta, T3);
 | |
| 		    To = Tm - Tn;
 | |
| 		    Tu = Tm + Tn;
 | |
| 		    Tq = FNMS(KP500000000, Tk, Td);
 | |
| 		    Ts = Tq - Tr;
 | |
| 		    Tw = Tr + Tq;
 | |
| 		    {
 | |
| 			 E Tl, Tp, Tt, Tv;
 | |
| 			 Tl = W[2];
 | |
| 			 Tp = W[3];
 | |
| 			 cr[WS(rs, 2)] = FNMS(Tp, Ts, Tl * To);
 | |
| 			 ci[WS(rs, 2)] = FMA(Tl, Ts, Tp * To);
 | |
| 			 Tt = W[6];
 | |
| 			 Tv = W[7];
 | |
| 			 cr[WS(rs, 4)] = FNMS(Tv, Tw, Tt * Tu);
 | |
| 			 ci[WS(rs, 4)] = FMA(Tt, Tw, Tv * Tu);
 | |
| 		    }
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TM, TS, TQ, TU, TK, TP;
 | |
| 		    TK = FNMS(KP500000000, TB, Ty);
 | |
| 		    TM = TK - TL;
 | |
| 		    TS = TK + TL;
 | |
| 		    TP = FMA(KP500000000, TH, TE);
 | |
| 		    TQ = TO + TP;
 | |
| 		    TU = TP - TO;
 | |
| 		    {
 | |
| 			 E TJ, TN, TR, TT;
 | |
| 			 TJ = W[0];
 | |
| 			 TN = W[1];
 | |
| 			 cr[WS(rs, 1)] = FNMS(TN, TQ, TJ * TM);
 | |
| 			 ci[WS(rs, 1)] = FMA(TN, TM, TJ * TQ);
 | |
| 			 TR = W[8];
 | |
| 			 TT = W[9];
 | |
| 			 cr[WS(rs, 5)] = FNMS(TT, TU, TR * TS);
 | |
| 			 ci[WS(rs, 5)] = FMA(TT, TS, TR * TU);
 | |
| 		    }
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      { TW_FULL, 1, 6 },
 | |
|      { TW_NEXT, 1, 0 }
 | |
| };
 | |
| 
 | |
| static const hc2hc_desc desc = { 6, "hb_6", twinstr, &GENUS, { 32, 14, 14, 0 } };
 | |
| 
 | |
| void X(codelet_hb_6) (planner *p) {
 | |
|      X(khc2hc_register) (p, hb_6, &desc);
 | |
| }
 | |
| #endif
 | 
