221 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			221 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* This file was automatically generated --- DO NOT EDIT */
 | |
| /* Generated on Tue Sep 14 10:45:28 EDT 2021 */
 | |
| 
 | |
| #include "dft/codelet-dft.h"
 | |
| 
 | |
| #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1fv_8 -include dft/simd/t1f.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 33 FP additions, 24 FP multiplications,
 | |
|  * (or, 23 additions, 14 multiplications, 10 fused multiply/add),
 | |
|  * 24 stack variables, 1 constants, and 16 memory accesses
 | |
|  */
 | |
| #include "dft/simd/t1f.h"
 | |
| 
 | |
| static void t1fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  R *x;
 | |
| 	  x = ri;
 | |
| 	  for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(8, rs)) {
 | |
| 	       V T4, Tq, Tl, Tr, T9, Tt, Te, Tu, T1, T3, T2;
 | |
| 	       T1 = LD(&(x[0]), ms, &(x[0]));
 | |
| 	       T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
 | |
| 	       T3 = BYTWJ(&(W[TWVL * 6]), T2);
 | |
| 	       T4 = VSUB(T1, T3);
 | |
| 	       Tq = VADD(T1, T3);
 | |
| 	       {
 | |
| 		    V Ti, Tk, Th, Tj;
 | |
| 		    Th = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
 | |
| 		    Ti = BYTWJ(&(W[TWVL * 2]), Th);
 | |
| 		    Tj = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
 | |
| 		    Tk = BYTWJ(&(W[TWVL * 10]), Tj);
 | |
| 		    Tl = VSUB(Ti, Tk);
 | |
| 		    Tr = VADD(Ti, Tk);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    V T6, T8, T5, T7;
 | |
| 		    T5 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
 | |
| 		    T6 = BYTWJ(&(W[0]), T5);
 | |
| 		    T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
 | |
| 		    T8 = BYTWJ(&(W[TWVL * 8]), T7);
 | |
| 		    T9 = VSUB(T6, T8);
 | |
| 		    Tt = VADD(T6, T8);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    V Tb, Td, Ta, Tc;
 | |
| 		    Ta = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
 | |
| 		    Tb = BYTWJ(&(W[TWVL * 12]), Ta);
 | |
| 		    Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
 | |
| 		    Td = BYTWJ(&(W[TWVL * 4]), Tc);
 | |
| 		    Te = VSUB(Tb, Td);
 | |
| 		    Tu = VADD(Tb, Td);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    V Ts, Tv, Tw, Tx;
 | |
| 		    Ts = VADD(Tq, Tr);
 | |
| 		    Tv = VADD(Tt, Tu);
 | |
| 		    ST(&(x[WS(rs, 4)]), VSUB(Ts, Tv), ms, &(x[0]));
 | |
| 		    ST(&(x[0]), VADD(Ts, Tv), ms, &(x[0]));
 | |
| 		    Tw = VSUB(Tq, Tr);
 | |
| 		    Tx = VSUB(Tu, Tt);
 | |
| 		    ST(&(x[WS(rs, 6)]), VFNMSI(Tx, Tw), ms, &(x[0]));
 | |
| 		    ST(&(x[WS(rs, 2)]), VFMAI(Tx, Tw), ms, &(x[0]));
 | |
| 		    {
 | |
| 			 V Tg, To, Tn, Tp, Tf, Tm;
 | |
| 			 Tf = VADD(T9, Te);
 | |
| 			 Tg = VFMA(LDK(KP707106781), Tf, T4);
 | |
| 			 To = VFNMS(LDK(KP707106781), Tf, T4);
 | |
| 			 Tm = VSUB(Te, T9);
 | |
| 			 Tn = VFNMS(LDK(KP707106781), Tm, Tl);
 | |
| 			 Tp = VFMA(LDK(KP707106781), Tm, Tl);
 | |
| 			 ST(&(x[WS(rs, 1)]), VFNMSI(Tn, Tg), ms, &(x[WS(rs, 1)]));
 | |
| 			 ST(&(x[WS(rs, 3)]), VFMAI(Tp, To), ms, &(x[WS(rs, 1)]));
 | |
| 			 ST(&(x[WS(rs, 7)]), VFMAI(Tn, Tg), ms, &(x[WS(rs, 1)]));
 | |
| 			 ST(&(x[WS(rs, 5)]), VFNMSI(Tp, To), ms, &(x[WS(rs, 1)]));
 | |
| 		    }
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
|      VLEAVE();
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      VTW(0, 1),
 | |
|      VTW(0, 2),
 | |
|      VTW(0, 3),
 | |
|      VTW(0, 4),
 | |
|      VTW(0, 5),
 | |
|      VTW(0, 6),
 | |
|      VTW(0, 7),
 | |
|      { TW_NEXT, VL, 0 }
 | |
| };
 | |
| 
 | |
| static const ct_desc desc = { 8, XSIMD_STRING("t1fv_8"), twinstr, &GENUS, { 23, 14, 10, 0 }, 0, 0, 0 };
 | |
| 
 | |
| void XSIMD(codelet_t1fv_8) (planner *p) {
 | |
|      X(kdft_dit_register) (p, t1fv_8, &desc);
 | |
| }
 | |
| #else
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1fv_8 -include dft/simd/t1f.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 33 FP additions, 16 FP multiplications,
 | |
|  * (or, 33 additions, 16 multiplications, 0 fused multiply/add),
 | |
|  * 24 stack variables, 1 constants, and 16 memory accesses
 | |
|  */
 | |
| #include "dft/simd/t1f.h"
 | |
| 
 | |
| static void t1fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  R *x;
 | |
| 	  x = ri;
 | |
| 	  for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(8, rs)) {
 | |
| 	       V T4, Tq, Tm, Tr, T9, Tt, Te, Tu, T1, T3, T2;
 | |
| 	       T1 = LD(&(x[0]), ms, &(x[0]));
 | |
| 	       T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
 | |
| 	       T3 = BYTWJ(&(W[TWVL * 6]), T2);
 | |
| 	       T4 = VSUB(T1, T3);
 | |
| 	       Tq = VADD(T1, T3);
 | |
| 	       {
 | |
| 		    V Tj, Tl, Ti, Tk;
 | |
| 		    Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
 | |
| 		    Tj = BYTWJ(&(W[TWVL * 2]), Ti);
 | |
| 		    Tk = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
 | |
| 		    Tl = BYTWJ(&(W[TWVL * 10]), Tk);
 | |
| 		    Tm = VSUB(Tj, Tl);
 | |
| 		    Tr = VADD(Tj, Tl);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    V T6, T8, T5, T7;
 | |
| 		    T5 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
 | |
| 		    T6 = BYTWJ(&(W[0]), T5);
 | |
| 		    T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
 | |
| 		    T8 = BYTWJ(&(W[TWVL * 8]), T7);
 | |
| 		    T9 = VSUB(T6, T8);
 | |
| 		    Tt = VADD(T6, T8);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    V Tb, Td, Ta, Tc;
 | |
| 		    Ta = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
 | |
| 		    Tb = BYTWJ(&(W[TWVL * 12]), Ta);
 | |
| 		    Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
 | |
| 		    Td = BYTWJ(&(W[TWVL * 4]), Tc);
 | |
| 		    Te = VSUB(Tb, Td);
 | |
| 		    Tu = VADD(Tb, Td);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    V Ts, Tv, Tw, Tx;
 | |
| 		    Ts = VADD(Tq, Tr);
 | |
| 		    Tv = VADD(Tt, Tu);
 | |
| 		    ST(&(x[WS(rs, 4)]), VSUB(Ts, Tv), ms, &(x[0]));
 | |
| 		    ST(&(x[0]), VADD(Ts, Tv), ms, &(x[0]));
 | |
| 		    Tw = VSUB(Tq, Tr);
 | |
| 		    Tx = VBYI(VSUB(Tu, Tt));
 | |
| 		    ST(&(x[WS(rs, 6)]), VSUB(Tw, Tx), ms, &(x[0]));
 | |
| 		    ST(&(x[WS(rs, 2)]), VADD(Tw, Tx), ms, &(x[0]));
 | |
| 		    {
 | |
| 			 V Tg, To, Tn, Tp, Tf, Th;
 | |
| 			 Tf = VMUL(LDK(KP707106781), VADD(T9, Te));
 | |
| 			 Tg = VADD(T4, Tf);
 | |
| 			 To = VSUB(T4, Tf);
 | |
| 			 Th = VMUL(LDK(KP707106781), VSUB(Te, T9));
 | |
| 			 Tn = VBYI(VSUB(Th, Tm));
 | |
| 			 Tp = VBYI(VADD(Tm, Th));
 | |
| 			 ST(&(x[WS(rs, 7)]), VSUB(Tg, Tn), ms, &(x[WS(rs, 1)]));
 | |
| 			 ST(&(x[WS(rs, 3)]), VADD(To, Tp), ms, &(x[WS(rs, 1)]));
 | |
| 			 ST(&(x[WS(rs, 1)]), VADD(Tg, Tn), ms, &(x[WS(rs, 1)]));
 | |
| 			 ST(&(x[WS(rs, 5)]), VSUB(To, Tp), ms, &(x[WS(rs, 1)]));
 | |
| 		    }
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
|      VLEAVE();
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      VTW(0, 1),
 | |
|      VTW(0, 2),
 | |
|      VTW(0, 3),
 | |
|      VTW(0, 4),
 | |
|      VTW(0, 5),
 | |
|      VTW(0, 6),
 | |
|      VTW(0, 7),
 | |
|      { TW_NEXT, VL, 0 }
 | |
| };
 | |
| 
 | |
| static const ct_desc desc = { 8, XSIMD_STRING("t1fv_8"), twinstr, &GENUS, { 33, 16, 0, 0 }, 0, 0, 0 };
 | |
| 
 | |
| void XSIMD(codelet_t1fv_8) (planner *p) {
 | |
|      X(kdft_dit_register) (p, t1fv_8, &desc);
 | |
| }
 | |
| #endif
 | 
