303 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			303 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* This file was automatically generated --- DO NOT EDIT */
 | |
| /* Generated on Tue Sep 14 10:45:12 EDT 2021 */
 | |
| 
 | |
| #include "dft/codelet-dft.h"
 | |
| 
 | |
| #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n2fv_12 -with-ostride 2 -include dft/simd/n2f.h -store-multiple 2 */
 | |
| 
 | |
| /*
 | |
|  * This function contains 48 FP additions, 20 FP multiplications,
 | |
|  * (or, 30 additions, 2 multiplications, 18 fused multiply/add),
 | |
|  * 33 stack variables, 2 constants, and 30 memory accesses
 | |
|  */
 | |
| #include "dft/simd/n2f.h"
 | |
| 
 | |
| static void n2fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
 | |
| {
 | |
|      DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
 | |
|      DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
 | |
|      {
 | |
| 	  INT i;
 | |
| 	  const R *xi;
 | |
| 	  R *xo;
 | |
| 	  xi = ri;
 | |
| 	  xo = ro;
 | |
| 	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
 | |
| 	       V T5, Ta, TG, TF, TB, Tt, Ti, Tm, TJ, TI, TA, Tp;
 | |
| 	       {
 | |
| 		    V T1, T6, T4, Tr, T9, Ts;
 | |
| 		    T1 = LD(&(xi[0]), ivs, &(xi[0]));
 | |
| 		    T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
 | |
| 		    {
 | |
| 			 V T2, T3, T7, T8;
 | |
| 			 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
 | |
| 			 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
 | |
| 			 T4 = VADD(T2, T3);
 | |
| 			 Tr = VSUB(T3, T2);
 | |
| 			 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
 | |
| 			 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
 | |
| 			 T9 = VADD(T7, T8);
 | |
| 			 Ts = VSUB(T8, T7);
 | |
| 		    }
 | |
| 		    T5 = VFNMS(LDK(KP500000000), T4, T1);
 | |
| 		    Ta = VFNMS(LDK(KP500000000), T9, T6);
 | |
| 		    TG = VADD(T6, T9);
 | |
| 		    TF = VADD(T1, T4);
 | |
| 		    TB = VADD(Tr, Ts);
 | |
| 		    Tt = VSUB(Tr, Ts);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    V Tk, Tn, Te, Tl, Th, To;
 | |
| 		    Tk = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
 | |
| 		    Tn = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
 | |
| 		    {
 | |
| 			 V Tc, Td, Tf, Tg;
 | |
| 			 Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
 | |
| 			 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
 | |
| 			 Te = VSUB(Tc, Td);
 | |
| 			 Tl = VADD(Td, Tc);
 | |
| 			 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
 | |
| 			 Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
 | |
| 			 Th = VSUB(Tf, Tg);
 | |
| 			 To = VADD(Tf, Tg);
 | |
| 		    }
 | |
| 		    Ti = VADD(Te, Th);
 | |
| 		    Tm = VFNMS(LDK(KP500000000), Tl, Tk);
 | |
| 		    TJ = VADD(Tn, To);
 | |
| 		    TI = VADD(Tk, Tl);
 | |
| 		    TA = VSUB(Te, Th);
 | |
| 		    Tp = VFNMS(LDK(KP500000000), To, Tn);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    V TN, TO, TP, TQ, TT, TU;
 | |
| 		    {
 | |
| 			 V TH, TK, TL, TM;
 | |
| 			 TH = VSUB(TF, TG);
 | |
| 			 TK = VSUB(TI, TJ);
 | |
| 			 TN = VFNMSI(TK, TH);
 | |
| 			 STM2(&(xo[18]), TN, ovs, &(xo[2]));
 | |
| 			 TO = VFMAI(TK, TH);
 | |
| 			 STM2(&(xo[6]), TO, ovs, &(xo[2]));
 | |
| 			 TL = VADD(TF, TG);
 | |
| 			 TM = VADD(TI, TJ);
 | |
| 			 TP = VSUB(TL, TM);
 | |
| 			 STM2(&(xo[12]), TP, ovs, &(xo[0]));
 | |
| 			 TQ = VADD(TL, TM);
 | |
| 			 STM2(&(xo[0]), TQ, ovs, &(xo[0]));
 | |
| 		    }
 | |
| 		    {
 | |
| 			 V Tj, Tv, Tu, Tw, Tb, Tq, TR, TS;
 | |
| 			 Tb = VSUB(T5, Ta);
 | |
| 			 Tj = VFMA(LDK(KP866025403), Ti, Tb);
 | |
| 			 Tv = VFNMS(LDK(KP866025403), Ti, Tb);
 | |
| 			 Tq = VSUB(Tm, Tp);
 | |
| 			 Tu = VFNMS(LDK(KP866025403), Tt, Tq);
 | |
| 			 Tw = VFMA(LDK(KP866025403), Tt, Tq);
 | |
| 			 TR = VFNMSI(Tu, Tj);
 | |
| 			 STM2(&(xo[2]), TR, ovs, &(xo[2]));
 | |
| 			 STN2(&(xo[0]), TQ, TR, ovs);
 | |
| 			 TS = VFMAI(Tw, Tv);
 | |
| 			 STM2(&(xo[14]), TS, ovs, &(xo[2]));
 | |
| 			 STN2(&(xo[12]), TP, TS, ovs);
 | |
| 			 TT = VFMAI(Tu, Tj);
 | |
| 			 STM2(&(xo[22]), TT, ovs, &(xo[2]));
 | |
| 			 TU = VFNMSI(Tw, Tv);
 | |
| 			 STM2(&(xo[10]), TU, ovs, &(xo[2]));
 | |
| 		    }
 | |
| 		    {
 | |
| 			 V TC, TE, Tz, TD, Tx, Ty;
 | |
| 			 TC = VMUL(LDK(KP866025403), VSUB(TA, TB));
 | |
| 			 TE = VMUL(LDK(KP866025403), VADD(TB, TA));
 | |
| 			 Tx = VADD(T5, Ta);
 | |
| 			 Ty = VADD(Tm, Tp);
 | |
| 			 Tz = VSUB(Tx, Ty);
 | |
| 			 TD = VADD(Tx, Ty);
 | |
| 			 {
 | |
| 			      V TV, TW, TX, TY;
 | |
| 			      TV = VFMAI(TC, Tz);
 | |
| 			      STM2(&(xo[4]), TV, ovs, &(xo[0]));
 | |
| 			      STN2(&(xo[4]), TV, TO, ovs);
 | |
| 			      TW = VFNMSI(TE, TD);
 | |
| 			      STM2(&(xo[16]), TW, ovs, &(xo[0]));
 | |
| 			      STN2(&(xo[16]), TW, TN, ovs);
 | |
| 			      TX = VFNMSI(TC, Tz);
 | |
| 			      STM2(&(xo[20]), TX, ovs, &(xo[0]));
 | |
| 			      STN2(&(xo[20]), TX, TT, ovs);
 | |
| 			      TY = VFMAI(TE, TD);
 | |
| 			      STM2(&(xo[8]), TY, ovs, &(xo[0]));
 | |
| 			      STN2(&(xo[8]), TY, TU, ovs);
 | |
| 			 }
 | |
| 		    }
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
|      VLEAVE();
 | |
| }
 | |
| 
 | |
| static const kdft_desc desc = { 12, XSIMD_STRING("n2fv_12"), { 30, 2, 18, 0 }, &GENUS, 0, 2, 0, 0 };
 | |
| 
 | |
| void XSIMD(codelet_n2fv_12) (planner *p) { X(kdft_register) (p, n2fv_12, &desc);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n2fv_12 -with-ostride 2 -include dft/simd/n2f.h -store-multiple 2 */
 | |
| 
 | |
| /*
 | |
|  * This function contains 48 FP additions, 8 FP multiplications,
 | |
|  * (or, 44 additions, 4 multiplications, 4 fused multiply/add),
 | |
|  * 33 stack variables, 2 constants, and 30 memory accesses
 | |
|  */
 | |
| #include "dft/simd/n2f.h"
 | |
| 
 | |
| static void n2fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
 | |
| {
 | |
|      DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
 | |
|      DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
 | |
|      {
 | |
| 	  INT i;
 | |
| 	  const R *xi;
 | |
| 	  R *xo;
 | |
| 	  xi = ri;
 | |
| 	  xo = ro;
 | |
| 	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
 | |
| 	       V T5, Ta, TJ, Ty, Tq, Tp, Tg, Tl, TI, TA, Tz, Tu;
 | |
| 	       {
 | |
| 		    V T1, T6, T4, Tw, T9, Tx;
 | |
| 		    T1 = LD(&(xi[0]), ivs, &(xi[0]));
 | |
| 		    T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
 | |
| 		    {
 | |
| 			 V T2, T3, T7, T8;
 | |
| 			 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
 | |
| 			 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
 | |
| 			 T4 = VADD(T2, T3);
 | |
| 			 Tw = VSUB(T3, T2);
 | |
| 			 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
 | |
| 			 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
 | |
| 			 T9 = VADD(T7, T8);
 | |
| 			 Tx = VSUB(T8, T7);
 | |
| 		    }
 | |
| 		    T5 = VADD(T1, T4);
 | |
| 		    Ta = VADD(T6, T9);
 | |
| 		    TJ = VADD(Tw, Tx);
 | |
| 		    Ty = VMUL(LDK(KP866025403), VSUB(Tw, Tx));
 | |
| 		    Tq = VFNMS(LDK(KP500000000), T9, T6);
 | |
| 		    Tp = VFNMS(LDK(KP500000000), T4, T1);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    V Tc, Th, Tf, Ts, Tk, Tt;
 | |
| 		    Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
 | |
| 		    Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
 | |
| 		    {
 | |
| 			 V Td, Te, Ti, Tj;
 | |
| 			 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
 | |
| 			 Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
 | |
| 			 Tf = VADD(Td, Te);
 | |
| 			 Ts = VSUB(Te, Td);
 | |
| 			 Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
 | |
| 			 Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
 | |
| 			 Tk = VADD(Ti, Tj);
 | |
| 			 Tt = VSUB(Tj, Ti);
 | |
| 		    }
 | |
| 		    Tg = VADD(Tc, Tf);
 | |
| 		    Tl = VADD(Th, Tk);
 | |
| 		    TI = VADD(Ts, Tt);
 | |
| 		    TA = VFNMS(LDK(KP500000000), Tk, Th);
 | |
| 		    Tz = VFNMS(LDK(KP500000000), Tf, Tc);
 | |
| 		    Tu = VMUL(LDK(KP866025403), VSUB(Ts, Tt));
 | |
| 	       }
 | |
| 	       {
 | |
| 		    V TN, TO, TP, TQ, TR, TS;
 | |
| 		    {
 | |
| 			 V Tb, Tm, Tn, To;
 | |
| 			 Tb = VSUB(T5, Ta);
 | |
| 			 Tm = VBYI(VSUB(Tg, Tl));
 | |
| 			 TN = VSUB(Tb, Tm);
 | |
| 			 STM2(&(xo[18]), TN, ovs, &(xo[2]));
 | |
| 			 TO = VADD(Tb, Tm);
 | |
| 			 STM2(&(xo[6]), TO, ovs, &(xo[2]));
 | |
| 			 Tn = VADD(T5, Ta);
 | |
| 			 To = VADD(Tg, Tl);
 | |
| 			 TP = VSUB(Tn, To);
 | |
| 			 STM2(&(xo[12]), TP, ovs, &(xo[0]));
 | |
| 			 TQ = VADD(Tn, To);
 | |
| 			 STM2(&(xo[0]), TQ, ovs, &(xo[0]));
 | |
| 		    }
 | |
| 		    {
 | |
| 			 V Tv, TE, TC, TD, Tr, TB, TT, TU;
 | |
| 			 Tr = VSUB(Tp, Tq);
 | |
| 			 Tv = VSUB(Tr, Tu);
 | |
| 			 TE = VADD(Tr, Tu);
 | |
| 			 TB = VSUB(Tz, TA);
 | |
| 			 TC = VBYI(VADD(Ty, TB));
 | |
| 			 TD = VBYI(VSUB(Ty, TB));
 | |
| 			 TR = VSUB(Tv, TC);
 | |
| 			 STM2(&(xo[10]), TR, ovs, &(xo[2]));
 | |
| 			 TS = VSUB(TE, TD);
 | |
| 			 STM2(&(xo[22]), TS, ovs, &(xo[2]));
 | |
| 			 TT = VADD(TC, Tv);
 | |
| 			 STM2(&(xo[14]), TT, ovs, &(xo[2]));
 | |
| 			 STN2(&(xo[12]), TP, TT, ovs);
 | |
| 			 TU = VADD(TD, TE);
 | |
| 			 STM2(&(xo[2]), TU, ovs, &(xo[2]));
 | |
| 			 STN2(&(xo[0]), TQ, TU, ovs);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 V TK, TM, TH, TL, TF, TG;
 | |
| 			 TK = VBYI(VMUL(LDK(KP866025403), VSUB(TI, TJ)));
 | |
| 			 TM = VBYI(VMUL(LDK(KP866025403), VADD(TJ, TI)));
 | |
| 			 TF = VADD(Tp, Tq);
 | |
| 			 TG = VADD(Tz, TA);
 | |
| 			 TH = VSUB(TF, TG);
 | |
| 			 TL = VADD(TF, TG);
 | |
| 			 {
 | |
| 			      V TV, TW, TX, TY;
 | |
| 			      TV = VSUB(TH, TK);
 | |
| 			      STM2(&(xo[20]), TV, ovs, &(xo[0]));
 | |
| 			      STN2(&(xo[20]), TV, TS, ovs);
 | |
| 			      TW = VADD(TL, TM);
 | |
| 			      STM2(&(xo[8]), TW, ovs, &(xo[0]));
 | |
| 			      STN2(&(xo[8]), TW, TR, ovs);
 | |
| 			      TX = VADD(TH, TK);
 | |
| 			      STM2(&(xo[4]), TX, ovs, &(xo[0]));
 | |
| 			      STN2(&(xo[4]), TX, TO, ovs);
 | |
| 			      TY = VSUB(TL, TM);
 | |
| 			      STM2(&(xo[16]), TY, ovs, &(xo[0]));
 | |
| 			      STN2(&(xo[16]), TY, TN, ovs);
 | |
| 			 }
 | |
| 		    }
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
|      VLEAVE();
 | |
| }
 | |
| 
 | |
| static const kdft_desc desc = { 12, XSIMD_STRING("n2fv_12"), { 44, 4, 4, 0 }, &GENUS, 0, 2, 0, 0 };
 | |
| 
 | |
| void XSIMD(codelet_n2fv_12) (planner *p) { X(kdft_register) (p, n2fv_12, &desc);
 | |
| }
 | |
| 
 | |
| #endif
 | 
