525 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			525 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* This file was automatically generated --- DO NOT EDIT */
 | |
| /* Generated on Tue Sep 14 10:44:41 EDT 2021 */
 | |
| 
 | |
| #include "dft/codelet-dft.h"
 | |
| 
 | |
| #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 4 -name q1_4 -include dft/scalar/q.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 88 FP additions, 48 FP multiplications,
 | |
|  * (or, 64 additions, 24 multiplications, 24 fused multiply/add),
 | |
|  * 51 stack variables, 0 constants, and 64 memory accesses
 | |
|  */
 | |
| #include "dft/scalar/q.h"
 | |
| 
 | |
| static void q1_4(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  for (m = mb, W = W + (mb * 6); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 6, MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(0, vs)) {
 | |
| 	       E T3, Tv, Tw, T6, Tc, Tf, Tx, Ts, Tm, Ti, T1H, T29, T2a, T1K, T1Q;
 | |
| 	       E T1T, T2b, T26, T20, T1W, TB, T13, T14, TE, TK, TN, T15, T10, TU, TQ;
 | |
| 	       E T19, T1B, T1C, T1c, T1i, T1l, T1D, T1y, T1s, T1o;
 | |
| 	       {
 | |
| 		    E T1, T2, Tb, Tg, Th, T8;
 | |
| 		    {
 | |
| 			 E T9, Ta, T4, T5;
 | |
| 			 T1 = rio[0];
 | |
| 			 T2 = rio[WS(rs, 2)];
 | |
| 			 T3 = T1 + T2;
 | |
| 			 T9 = iio[0];
 | |
| 			 Ta = iio[WS(rs, 2)];
 | |
| 			 Tb = T9 - Ta;
 | |
| 			 Tv = T9 + Ta;
 | |
| 			 Tg = iio[WS(rs, 1)];
 | |
| 			 Th = iio[WS(rs, 3)];
 | |
| 			 Tw = Tg + Th;
 | |
| 			 T4 = rio[WS(rs, 1)];
 | |
| 			 T5 = rio[WS(rs, 3)];
 | |
| 			 T6 = T4 + T5;
 | |
| 			 T8 = T4 - T5;
 | |
| 		    }
 | |
| 		    Tc = T8 + Tb;
 | |
| 		    Tf = T1 - T2;
 | |
| 		    Tx = Tv - Tw;
 | |
| 		    Ts = T3 - T6;
 | |
| 		    Tm = Tb - T8;
 | |
| 		    Ti = Tg - Th;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T1F, T1G, T1P, T1U, T1V, T1M;
 | |
| 		    {
 | |
| 			 E T1N, T1O, T1I, T1J;
 | |
| 			 T1F = rio[WS(vs, 3)];
 | |
| 			 T1G = rio[WS(vs, 3) + WS(rs, 2)];
 | |
| 			 T1H = T1F + T1G;
 | |
| 			 T1N = iio[WS(vs, 3)];
 | |
| 			 T1O = iio[WS(vs, 3) + WS(rs, 2)];
 | |
| 			 T1P = T1N - T1O;
 | |
| 			 T29 = T1N + T1O;
 | |
| 			 T1U = iio[WS(vs, 3) + WS(rs, 1)];
 | |
| 			 T1V = iio[WS(vs, 3) + WS(rs, 3)];
 | |
| 			 T2a = T1U + T1V;
 | |
| 			 T1I = rio[WS(vs, 3) + WS(rs, 1)];
 | |
| 			 T1J = rio[WS(vs, 3) + WS(rs, 3)];
 | |
| 			 T1K = T1I + T1J;
 | |
| 			 T1M = T1I - T1J;
 | |
| 		    }
 | |
| 		    T1Q = T1M + T1P;
 | |
| 		    T1T = T1F - T1G;
 | |
| 		    T2b = T29 - T2a;
 | |
| 		    T26 = T1H - T1K;
 | |
| 		    T20 = T1P - T1M;
 | |
| 		    T1W = T1U - T1V;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tz, TA, TJ, TO, TP, TG;
 | |
| 		    {
 | |
| 			 E TH, TI, TC, TD;
 | |
| 			 Tz = rio[WS(vs, 1)];
 | |
| 			 TA = rio[WS(vs, 1) + WS(rs, 2)];
 | |
| 			 TB = Tz + TA;
 | |
| 			 TH = iio[WS(vs, 1)];
 | |
| 			 TI = iio[WS(vs, 1) + WS(rs, 2)];
 | |
| 			 TJ = TH - TI;
 | |
| 			 T13 = TH + TI;
 | |
| 			 TO = iio[WS(vs, 1) + WS(rs, 1)];
 | |
| 			 TP = iio[WS(vs, 1) + WS(rs, 3)];
 | |
| 			 T14 = TO + TP;
 | |
| 			 TC = rio[WS(vs, 1) + WS(rs, 1)];
 | |
| 			 TD = rio[WS(vs, 1) + WS(rs, 3)];
 | |
| 			 TE = TC + TD;
 | |
| 			 TG = TC - TD;
 | |
| 		    }
 | |
| 		    TK = TG + TJ;
 | |
| 		    TN = Tz - TA;
 | |
| 		    T15 = T13 - T14;
 | |
| 		    T10 = TB - TE;
 | |
| 		    TU = TJ - TG;
 | |
| 		    TQ = TO - TP;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T17, T18, T1h, T1m, T1n, T1e;
 | |
| 		    {
 | |
| 			 E T1f, T1g, T1a, T1b;
 | |
| 			 T17 = rio[WS(vs, 2)];
 | |
| 			 T18 = rio[WS(vs, 2) + WS(rs, 2)];
 | |
| 			 T19 = T17 + T18;
 | |
| 			 T1f = iio[WS(vs, 2)];
 | |
| 			 T1g = iio[WS(vs, 2) + WS(rs, 2)];
 | |
| 			 T1h = T1f - T1g;
 | |
| 			 T1B = T1f + T1g;
 | |
| 			 T1m = iio[WS(vs, 2) + WS(rs, 1)];
 | |
| 			 T1n = iio[WS(vs, 2) + WS(rs, 3)];
 | |
| 			 T1C = T1m + T1n;
 | |
| 			 T1a = rio[WS(vs, 2) + WS(rs, 1)];
 | |
| 			 T1b = rio[WS(vs, 2) + WS(rs, 3)];
 | |
| 			 T1c = T1a + T1b;
 | |
| 			 T1e = T1a - T1b;
 | |
| 		    }
 | |
| 		    T1i = T1e + T1h;
 | |
| 		    T1l = T17 - T18;
 | |
| 		    T1D = T1B - T1C;
 | |
| 		    T1y = T19 - T1c;
 | |
| 		    T1s = T1h - T1e;
 | |
| 		    T1o = T1m - T1n;
 | |
| 	       }
 | |
| 	       rio[0] = T3 + T6;
 | |
| 	       iio[0] = Tv + Tw;
 | |
| 	       rio[WS(rs, 1)] = TB + TE;
 | |
| 	       iio[WS(rs, 1)] = T13 + T14;
 | |
| 	       rio[WS(rs, 2)] = T19 + T1c;
 | |
| 	       iio[WS(rs, 2)] = T1B + T1C;
 | |
| 	       iio[WS(rs, 3)] = T29 + T2a;
 | |
| 	       rio[WS(rs, 3)] = T1H + T1K;
 | |
| 	       {
 | |
| 		    E Tt, Ty, Tr, Tu;
 | |
| 		    Tr = W[2];
 | |
| 		    Tt = Tr * Ts;
 | |
| 		    Ty = Tr * Tx;
 | |
| 		    Tu = W[3];
 | |
| 		    rio[WS(vs, 2)] = FMA(Tu, Tx, Tt);
 | |
| 		    iio[WS(vs, 2)] = FNMS(Tu, Ts, Ty);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T27, T2c, T25, T28;
 | |
| 		    T25 = W[2];
 | |
| 		    T27 = T25 * T26;
 | |
| 		    T2c = T25 * T2b;
 | |
| 		    T28 = W[3];
 | |
| 		    rio[WS(vs, 2) + WS(rs, 3)] = FMA(T28, T2b, T27);
 | |
| 		    iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T28, T26, T2c);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T11, T16, TZ, T12;
 | |
| 		    TZ = W[2];
 | |
| 		    T11 = TZ * T10;
 | |
| 		    T16 = TZ * T15;
 | |
| 		    T12 = W[3];
 | |
| 		    rio[WS(vs, 2) + WS(rs, 1)] = FMA(T12, T15, T11);
 | |
| 		    iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T12, T10, T16);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T1z, T1E, T1x, T1A;
 | |
| 		    T1x = W[2];
 | |
| 		    T1z = T1x * T1y;
 | |
| 		    T1E = T1x * T1D;
 | |
| 		    T1A = W[3];
 | |
| 		    rio[WS(vs, 2) + WS(rs, 2)] = FMA(T1A, T1D, T1z);
 | |
| 		    iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T1A, T1y, T1E);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tj, Te, Tk, T7, Td;
 | |
| 		    Tj = Tf - Ti;
 | |
| 		    Te = W[5];
 | |
| 		    Tk = Te * Tc;
 | |
| 		    T7 = W[4];
 | |
| 		    Td = T7 * Tc;
 | |
| 		    iio[WS(vs, 3)] = FNMS(Te, Tj, Td);
 | |
| 		    rio[WS(vs, 3)] = FMA(T7, Tj, Tk);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T1p, T1k, T1q, T1d, T1j;
 | |
| 		    T1p = T1l - T1o;
 | |
| 		    T1k = W[5];
 | |
| 		    T1q = T1k * T1i;
 | |
| 		    T1d = W[4];
 | |
| 		    T1j = T1d * T1i;
 | |
| 		    iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T1k, T1p, T1j);
 | |
| 		    rio[WS(vs, 3) + WS(rs, 2)] = FMA(T1d, T1p, T1q);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T23, T22, T24, T1Z, T21;
 | |
| 		    T23 = T1T + T1W;
 | |
| 		    T22 = W[1];
 | |
| 		    T24 = T22 * T20;
 | |
| 		    T1Z = W[0];
 | |
| 		    T21 = T1Z * T20;
 | |
| 		    iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T22, T23, T21);
 | |
| 		    rio[WS(vs, 1) + WS(rs, 3)] = FMA(T1Z, T23, T24);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TX, TW, TY, TT, TV;
 | |
| 		    TX = TN + TQ;
 | |
| 		    TW = W[1];
 | |
| 		    TY = TW * TU;
 | |
| 		    TT = W[0];
 | |
| 		    TV = TT * TU;
 | |
| 		    iio[WS(vs, 1) + WS(rs, 1)] = FNMS(TW, TX, TV);
 | |
| 		    rio[WS(vs, 1) + WS(rs, 1)] = FMA(TT, TX, TY);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TR, TM, TS, TF, TL;
 | |
| 		    TR = TN - TQ;
 | |
| 		    TM = W[5];
 | |
| 		    TS = TM * TK;
 | |
| 		    TF = W[4];
 | |
| 		    TL = TF * TK;
 | |
| 		    iio[WS(vs, 3) + WS(rs, 1)] = FNMS(TM, TR, TL);
 | |
| 		    rio[WS(vs, 3) + WS(rs, 1)] = FMA(TF, TR, TS);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tp, To, Tq, Tl, Tn;
 | |
| 		    Tp = Tf + Ti;
 | |
| 		    To = W[1];
 | |
| 		    Tq = To * Tm;
 | |
| 		    Tl = W[0];
 | |
| 		    Tn = Tl * Tm;
 | |
| 		    iio[WS(vs, 1)] = FNMS(To, Tp, Tn);
 | |
| 		    rio[WS(vs, 1)] = FMA(Tl, Tp, Tq);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T1v, T1u, T1w, T1r, T1t;
 | |
| 		    T1v = T1l + T1o;
 | |
| 		    T1u = W[1];
 | |
| 		    T1w = T1u * T1s;
 | |
| 		    T1r = W[0];
 | |
| 		    T1t = T1r * T1s;
 | |
| 		    iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T1u, T1v, T1t);
 | |
| 		    rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1r, T1v, T1w);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T1X, T1S, T1Y, T1L, T1R;
 | |
| 		    T1X = T1T - T1W;
 | |
| 		    T1S = W[5];
 | |
| 		    T1Y = T1S * T1Q;
 | |
| 		    T1L = W[4];
 | |
| 		    T1R = T1L * T1Q;
 | |
| 		    iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T1S, T1X, T1R);
 | |
| 		    rio[WS(vs, 3) + WS(rs, 3)] = FMA(T1L, T1X, T1Y);
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      { TW_FULL, 0, 4 },
 | |
|      { TW_NEXT, 1, 0 }
 | |
| };
 | |
| 
 | |
| static const ct_desc desc = { 4, "q1_4", twinstr, &GENUS, { 64, 24, 24, 0 }, 0, 0, 0 };
 | |
| 
 | |
| void X(codelet_q1_4) (planner *p) {
 | |
|      X(kdft_difsq_register) (p, q1_4, &desc);
 | |
| }
 | |
| #else
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 4 -name q1_4 -include dft/scalar/q.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 88 FP additions, 48 FP multiplications,
 | |
|  * (or, 64 additions, 24 multiplications, 24 fused multiply/add),
 | |
|  * 37 stack variables, 0 constants, and 64 memory accesses
 | |
|  */
 | |
| #include "dft/scalar/q.h"
 | |
| 
 | |
| static void q1_4(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  for (m = mb, W = W + (mb * 6); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 6, MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(0, vs)) {
 | |
| 	       E T3, Te, Tb, Tq, T6, T8, Th, Tr, Tv, TG, TD, TS, Ty, TA, TJ;
 | |
| 	       E TT, TX, T18, T15, T1k, T10, T12, T1b, T1l, T1p, T1A, T1x, T1M, T1s, T1u;
 | |
| 	       E T1D, T1N;
 | |
| 	       {
 | |
| 		    E T1, T2, T9, Ta;
 | |
| 		    T1 = rio[0];
 | |
| 		    T2 = rio[WS(rs, 2)];
 | |
| 		    T3 = T1 + T2;
 | |
| 		    Te = T1 - T2;
 | |
| 		    T9 = iio[0];
 | |
| 		    Ta = iio[WS(rs, 2)];
 | |
| 		    Tb = T9 - Ta;
 | |
| 		    Tq = T9 + Ta;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T4, T5, Tf, Tg;
 | |
| 		    T4 = rio[WS(rs, 1)];
 | |
| 		    T5 = rio[WS(rs, 3)];
 | |
| 		    T6 = T4 + T5;
 | |
| 		    T8 = T4 - T5;
 | |
| 		    Tf = iio[WS(rs, 1)];
 | |
| 		    Tg = iio[WS(rs, 3)];
 | |
| 		    Th = Tf - Tg;
 | |
| 		    Tr = Tf + Tg;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tt, Tu, TB, TC;
 | |
| 		    Tt = rio[WS(vs, 1)];
 | |
| 		    Tu = rio[WS(vs, 1) + WS(rs, 2)];
 | |
| 		    Tv = Tt + Tu;
 | |
| 		    TG = Tt - Tu;
 | |
| 		    TB = iio[WS(vs, 1)];
 | |
| 		    TC = iio[WS(vs, 1) + WS(rs, 2)];
 | |
| 		    TD = TB - TC;
 | |
| 		    TS = TB + TC;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tw, Tx, TH, TI;
 | |
| 		    Tw = rio[WS(vs, 1) + WS(rs, 1)];
 | |
| 		    Tx = rio[WS(vs, 1) + WS(rs, 3)];
 | |
| 		    Ty = Tw + Tx;
 | |
| 		    TA = Tw - Tx;
 | |
| 		    TH = iio[WS(vs, 1) + WS(rs, 1)];
 | |
| 		    TI = iio[WS(vs, 1) + WS(rs, 3)];
 | |
| 		    TJ = TH - TI;
 | |
| 		    TT = TH + TI;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TV, TW, T13, T14;
 | |
| 		    TV = rio[WS(vs, 2)];
 | |
| 		    TW = rio[WS(vs, 2) + WS(rs, 2)];
 | |
| 		    TX = TV + TW;
 | |
| 		    T18 = TV - TW;
 | |
| 		    T13 = iio[WS(vs, 2)];
 | |
| 		    T14 = iio[WS(vs, 2) + WS(rs, 2)];
 | |
| 		    T15 = T13 - T14;
 | |
| 		    T1k = T13 + T14;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TY, TZ, T19, T1a;
 | |
| 		    TY = rio[WS(vs, 2) + WS(rs, 1)];
 | |
| 		    TZ = rio[WS(vs, 2) + WS(rs, 3)];
 | |
| 		    T10 = TY + TZ;
 | |
| 		    T12 = TY - TZ;
 | |
| 		    T19 = iio[WS(vs, 2) + WS(rs, 1)];
 | |
| 		    T1a = iio[WS(vs, 2) + WS(rs, 3)];
 | |
| 		    T1b = T19 - T1a;
 | |
| 		    T1l = T19 + T1a;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T1n, T1o, T1v, T1w;
 | |
| 		    T1n = rio[WS(vs, 3)];
 | |
| 		    T1o = rio[WS(vs, 3) + WS(rs, 2)];
 | |
| 		    T1p = T1n + T1o;
 | |
| 		    T1A = T1n - T1o;
 | |
| 		    T1v = iio[WS(vs, 3)];
 | |
| 		    T1w = iio[WS(vs, 3) + WS(rs, 2)];
 | |
| 		    T1x = T1v - T1w;
 | |
| 		    T1M = T1v + T1w;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T1q, T1r, T1B, T1C;
 | |
| 		    T1q = rio[WS(vs, 3) + WS(rs, 1)];
 | |
| 		    T1r = rio[WS(vs, 3) + WS(rs, 3)];
 | |
| 		    T1s = T1q + T1r;
 | |
| 		    T1u = T1q - T1r;
 | |
| 		    T1B = iio[WS(vs, 3) + WS(rs, 1)];
 | |
| 		    T1C = iio[WS(vs, 3) + WS(rs, 3)];
 | |
| 		    T1D = T1B - T1C;
 | |
| 		    T1N = T1B + T1C;
 | |
| 	       }
 | |
| 	       rio[0] = T3 + T6;
 | |
| 	       iio[0] = Tq + Tr;
 | |
| 	       rio[WS(rs, 1)] = Tv + Ty;
 | |
| 	       iio[WS(rs, 1)] = TS + TT;
 | |
| 	       rio[WS(rs, 2)] = TX + T10;
 | |
| 	       iio[WS(rs, 2)] = T1k + T1l;
 | |
| 	       iio[WS(rs, 3)] = T1M + T1N;
 | |
| 	       rio[WS(rs, 3)] = T1p + T1s;
 | |
| 	       {
 | |
| 		    E Tc, Ti, T7, Td;
 | |
| 		    Tc = T8 + Tb;
 | |
| 		    Ti = Te - Th;
 | |
| 		    T7 = W[4];
 | |
| 		    Td = W[5];
 | |
| 		    iio[WS(vs, 3)] = FNMS(Td, Ti, T7 * Tc);
 | |
| 		    rio[WS(vs, 3)] = FMA(Td, Tc, T7 * Ti);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T1K, T1O, T1J, T1L;
 | |
| 		    T1K = T1p - T1s;
 | |
| 		    T1O = T1M - T1N;
 | |
| 		    T1J = W[2];
 | |
| 		    T1L = W[3];
 | |
| 		    rio[WS(vs, 2) + WS(rs, 3)] = FMA(T1J, T1K, T1L * T1O);
 | |
| 		    iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T1L, T1K, T1J * T1O);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tk, Tm, Tj, Tl;
 | |
| 		    Tk = Tb - T8;
 | |
| 		    Tm = Te + Th;
 | |
| 		    Tj = W[0];
 | |
| 		    Tl = W[1];
 | |
| 		    iio[WS(vs, 1)] = FNMS(Tl, Tm, Tj * Tk);
 | |
| 		    rio[WS(vs, 1)] = FMA(Tl, Tk, Tj * Tm);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E To, Ts, Tn, Tp;
 | |
| 		    To = T3 - T6;
 | |
| 		    Ts = Tq - Tr;
 | |
| 		    Tn = W[2];
 | |
| 		    Tp = W[3];
 | |
| 		    rio[WS(vs, 2)] = FMA(Tn, To, Tp * Ts);
 | |
| 		    iio[WS(vs, 2)] = FNMS(Tp, To, Tn * Ts);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T16, T1c, T11, T17;
 | |
| 		    T16 = T12 + T15;
 | |
| 		    T1c = T18 - T1b;
 | |
| 		    T11 = W[4];
 | |
| 		    T17 = W[5];
 | |
| 		    iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T17, T1c, T11 * T16);
 | |
| 		    rio[WS(vs, 3) + WS(rs, 2)] = FMA(T17, T16, T11 * T1c);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T1G, T1I, T1F, T1H;
 | |
| 		    T1G = T1x - T1u;
 | |
| 		    T1I = T1A + T1D;
 | |
| 		    T1F = W[0];
 | |
| 		    T1H = W[1];
 | |
| 		    iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T1H, T1I, T1F * T1G);
 | |
| 		    rio[WS(vs, 1) + WS(rs, 3)] = FMA(T1H, T1G, T1F * T1I);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TQ, TU, TP, TR;
 | |
| 		    TQ = Tv - Ty;
 | |
| 		    TU = TS - TT;
 | |
| 		    TP = W[2];
 | |
| 		    TR = W[3];
 | |
| 		    rio[WS(vs, 2) + WS(rs, 1)] = FMA(TP, TQ, TR * TU);
 | |
| 		    iio[WS(vs, 2) + WS(rs, 1)] = FNMS(TR, TQ, TP * TU);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T1e, T1g, T1d, T1f;
 | |
| 		    T1e = T15 - T12;
 | |
| 		    T1g = T18 + T1b;
 | |
| 		    T1d = W[0];
 | |
| 		    T1f = W[1];
 | |
| 		    iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T1f, T1g, T1d * T1e);
 | |
| 		    rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1f, T1e, T1d * T1g);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T1i, T1m, T1h, T1j;
 | |
| 		    T1i = TX - T10;
 | |
| 		    T1m = T1k - T1l;
 | |
| 		    T1h = W[2];
 | |
| 		    T1j = W[3];
 | |
| 		    rio[WS(vs, 2) + WS(rs, 2)] = FMA(T1h, T1i, T1j * T1m);
 | |
| 		    iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T1j, T1i, T1h * T1m);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T1y, T1E, T1t, T1z;
 | |
| 		    T1y = T1u + T1x;
 | |
| 		    T1E = T1A - T1D;
 | |
| 		    T1t = W[4];
 | |
| 		    T1z = W[5];
 | |
| 		    iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T1z, T1E, T1t * T1y);
 | |
| 		    rio[WS(vs, 3) + WS(rs, 3)] = FMA(T1z, T1y, T1t * T1E);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TM, TO, TL, TN;
 | |
| 		    TM = TD - TA;
 | |
| 		    TO = TG + TJ;
 | |
| 		    TL = W[0];
 | |
| 		    TN = W[1];
 | |
| 		    iio[WS(vs, 1) + WS(rs, 1)] = FNMS(TN, TO, TL * TM);
 | |
| 		    rio[WS(vs, 1) + WS(rs, 1)] = FMA(TN, TM, TL * TO);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TE, TK, Tz, TF;
 | |
| 		    TE = TA + TD;
 | |
| 		    TK = TG - TJ;
 | |
| 		    Tz = W[4];
 | |
| 		    TF = W[5];
 | |
| 		    iio[WS(vs, 3) + WS(rs, 1)] = FNMS(TF, TK, Tz * TE);
 | |
| 		    rio[WS(vs, 3) + WS(rs, 1)] = FMA(TF, TE, Tz * TK);
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      { TW_FULL, 0, 4 },
 | |
|      { TW_NEXT, 1, 0 }
 | |
| };
 | |
| 
 | |
| static const ct_desc desc = { 4, "q1_4", twinstr, &GENUS, { 64, 24, 24, 0 }, 0, 0, 0 };
 | |
| 
 | |
| void X(codelet_q1_4) (planner *p) {
 | |
|      X(kdft_difsq_register) (p, q1_4, &desc);
 | |
| }
 | |
| #endif
 | 
