273 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			273 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 | 
						|
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
/* This file was automatically generated --- DO NOT EDIT */
 | 
						|
/* Generated on Tue Sep 14 10:45:15 EDT 2021 */
 | 
						|
 | 
						|
#include "dft/codelet-dft.h"
 | 
						|
 | 
						|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | 
						|
 | 
						|
/* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 10 -name n2bv_10 -with-ostride 2 -include dft/simd/n2b.h -store-multiple 2 */
 | 
						|
 | 
						|
/*
 | 
						|
 * This function contains 42 FP additions, 22 FP multiplications,
 | 
						|
 * (or, 24 additions, 4 multiplications, 18 fused multiply/add),
 | 
						|
 * 36 stack variables, 4 constants, and 25 memory accesses
 | 
						|
 */
 | 
						|
#include "dft/simd/n2b.h"
 | 
						|
 | 
						|
static void n2bv_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
 | 
						|
{
 | 
						|
     DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
 | 
						|
     DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
 | 
						|
     DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
 | 
						|
     DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
 | 
						|
     {
 | 
						|
	  INT i;
 | 
						|
	  const R *xi;
 | 
						|
	  R *xo;
 | 
						|
	  xi = ii;
 | 
						|
	  xo = io;
 | 
						|
	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) {
 | 
						|
	       V T3, Tr, Tm, Tn, TD, TC, Tu, Tx, Ty, Ta, Th, Ti, T1, T2;
 | 
						|
	       T1 = LD(&(xi[0]), ivs, &(xi[0]));
 | 
						|
	       T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
 | 
						|
	       T3 = VSUB(T1, T2);
 | 
						|
	       Tr = VADD(T1, T2);
 | 
						|
	       {
 | 
						|
		    V T6, Ts, Tg, Tw, T9, Tt, Td, Tv;
 | 
						|
		    {
 | 
						|
			 V T4, T5, Te, Tf;
 | 
						|
			 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
 | 
						|
			 T5 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
 | 
						|
			 T6 = VSUB(T4, T5);
 | 
						|
			 Ts = VADD(T4, T5);
 | 
						|
			 Te = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
 | 
						|
			 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
 | 
						|
			 Tg = VSUB(Te, Tf);
 | 
						|
			 Tw = VADD(Te, Tf);
 | 
						|
		    }
 | 
						|
		    {
 | 
						|
			 V T7, T8, Tb, Tc;
 | 
						|
			 T7 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
 | 
						|
			 T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
 | 
						|
			 T9 = VSUB(T7, T8);
 | 
						|
			 Tt = VADD(T7, T8);
 | 
						|
			 Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
 | 
						|
			 Tc = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
 | 
						|
			 Td = VSUB(Tb, Tc);
 | 
						|
			 Tv = VADD(Tb, Tc);
 | 
						|
		    }
 | 
						|
		    Tm = VSUB(T6, T9);
 | 
						|
		    Tn = VSUB(Td, Tg);
 | 
						|
		    TD = VSUB(Ts, Tt);
 | 
						|
		    TC = VSUB(Tv, Tw);
 | 
						|
		    Tu = VADD(Ts, Tt);
 | 
						|
		    Tx = VADD(Tv, Tw);
 | 
						|
		    Ty = VADD(Tu, Tx);
 | 
						|
		    Ta = VADD(T6, T9);
 | 
						|
		    Th = VADD(Td, Tg);
 | 
						|
		    Ti = VADD(Ta, Th);
 | 
						|
	       }
 | 
						|
	       {
 | 
						|
		    V TH, TI, TK, TL, TM;
 | 
						|
		    TH = VADD(T3, Ti);
 | 
						|
		    STM2(&(xo[10]), TH, ovs, &(xo[2]));
 | 
						|
		    TI = VADD(Tr, Ty);
 | 
						|
		    STM2(&(xo[0]), TI, ovs, &(xo[0]));
 | 
						|
		    {
 | 
						|
			 V To, Tq, Tl, Tp, Tj, Tk, TJ;
 | 
						|
			 To = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tn, Tm));
 | 
						|
			 Tq = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tm, Tn));
 | 
						|
			 Tj = VFNMS(LDK(KP250000000), Ti, T3);
 | 
						|
			 Tk = VSUB(Ta, Th);
 | 
						|
			 Tl = VFMA(LDK(KP559016994), Tk, Tj);
 | 
						|
			 Tp = VFNMS(LDK(KP559016994), Tk, Tj);
 | 
						|
			 TJ = VFMAI(To, Tl);
 | 
						|
			 STM2(&(xo[2]), TJ, ovs, &(xo[2]));
 | 
						|
			 STN2(&(xo[0]), TI, TJ, ovs);
 | 
						|
			 TK = VFNMSI(Tq, Tp);
 | 
						|
			 STM2(&(xo[14]), TK, ovs, &(xo[2]));
 | 
						|
			 TL = VFNMSI(To, Tl);
 | 
						|
			 STM2(&(xo[18]), TL, ovs, &(xo[2]));
 | 
						|
			 TM = VFMAI(Tq, Tp);
 | 
						|
			 STM2(&(xo[6]), TM, ovs, &(xo[2]));
 | 
						|
		    }
 | 
						|
		    {
 | 
						|
			 V TE, TG, TB, TF, Tz, TA;
 | 
						|
			 TE = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TD, TC));
 | 
						|
			 TG = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TC, TD));
 | 
						|
			 Tz = VFNMS(LDK(KP250000000), Ty, Tr);
 | 
						|
			 TA = VSUB(Tu, Tx);
 | 
						|
			 TB = VFNMS(LDK(KP559016994), TA, Tz);
 | 
						|
			 TF = VFMA(LDK(KP559016994), TA, Tz);
 | 
						|
			 {
 | 
						|
			      V TN, TO, TP, TQ;
 | 
						|
			      TN = VFNMSI(TE, TB);
 | 
						|
			      STM2(&(xo[4]), TN, ovs, &(xo[0]));
 | 
						|
			      STN2(&(xo[4]), TN, TM, ovs);
 | 
						|
			      TO = VFMAI(TG, TF);
 | 
						|
			      STM2(&(xo[12]), TO, ovs, &(xo[0]));
 | 
						|
			      STN2(&(xo[12]), TO, TK, ovs);
 | 
						|
			      TP = VFMAI(TE, TB);
 | 
						|
			      STM2(&(xo[16]), TP, ovs, &(xo[0]));
 | 
						|
			      STN2(&(xo[16]), TP, TL, ovs);
 | 
						|
			      TQ = VFNMSI(TG, TF);
 | 
						|
			      STM2(&(xo[8]), TQ, ovs, &(xo[0]));
 | 
						|
			      STN2(&(xo[8]), TQ, TH, ovs);
 | 
						|
			 }
 | 
						|
		    }
 | 
						|
	       }
 | 
						|
	  }
 | 
						|
     }
 | 
						|
     VLEAVE();
 | 
						|
}
 | 
						|
 | 
						|
static const kdft_desc desc = { 10, XSIMD_STRING("n2bv_10"), { 24, 4, 18, 0 }, &GENUS, 0, 2, 0, 0 };
 | 
						|
 | 
						|
void XSIMD(codelet_n2bv_10) (planner *p) { X(kdft_register) (p, n2bv_10, &desc);
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
/* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 10 -name n2bv_10 -with-ostride 2 -include dft/simd/n2b.h -store-multiple 2 */
 | 
						|
 | 
						|
/*
 | 
						|
 * This function contains 42 FP additions, 12 FP multiplications,
 | 
						|
 * (or, 36 additions, 6 multiplications, 6 fused multiply/add),
 | 
						|
 * 36 stack variables, 4 constants, and 25 memory accesses
 | 
						|
 */
 | 
						|
#include "dft/simd/n2b.h"
 | 
						|
 | 
						|
static void n2bv_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
 | 
						|
{
 | 
						|
     DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
 | 
						|
     DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
 | 
						|
     DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
 | 
						|
     DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
 | 
						|
     {
 | 
						|
	  INT i;
 | 
						|
	  const R *xi;
 | 
						|
	  R *xo;
 | 
						|
	  xi = ii;
 | 
						|
	  xo = io;
 | 
						|
	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) {
 | 
						|
	       V Tl, Ty, T7, Te, Tw, Tt, Tz, TA, TB, Tg, Th, Tm, Tj, Tk;
 | 
						|
	       Tj = LD(&(xi[0]), ivs, &(xi[0]));
 | 
						|
	       Tk = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
 | 
						|
	       Tl = VSUB(Tj, Tk);
 | 
						|
	       Ty = VADD(Tj, Tk);
 | 
						|
	       {
 | 
						|
		    V T3, Tr, Td, Tv, T6, Ts, Ta, Tu;
 | 
						|
		    {
 | 
						|
			 V T1, T2, Tb, Tc;
 | 
						|
			 T1 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
 | 
						|
			 T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
 | 
						|
			 T3 = VSUB(T1, T2);
 | 
						|
			 Tr = VADD(T1, T2);
 | 
						|
			 Tb = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
 | 
						|
			 Tc = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
 | 
						|
			 Td = VSUB(Tb, Tc);
 | 
						|
			 Tv = VADD(Tb, Tc);
 | 
						|
		    }
 | 
						|
		    {
 | 
						|
			 V T4, T5, T8, T9;
 | 
						|
			 T4 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
 | 
						|
			 T5 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
 | 
						|
			 T6 = VSUB(T4, T5);
 | 
						|
			 Ts = VADD(T4, T5);
 | 
						|
			 T8 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
 | 
						|
			 T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
 | 
						|
			 Ta = VSUB(T8, T9);
 | 
						|
			 Tu = VADD(T8, T9);
 | 
						|
		    }
 | 
						|
		    T7 = VSUB(T3, T6);
 | 
						|
		    Te = VSUB(Ta, Td);
 | 
						|
		    Tw = VSUB(Tu, Tv);
 | 
						|
		    Tt = VSUB(Tr, Ts);
 | 
						|
		    Tz = VADD(Tr, Ts);
 | 
						|
		    TA = VADD(Tu, Tv);
 | 
						|
		    TB = VADD(Tz, TA);
 | 
						|
		    Tg = VADD(T3, T6);
 | 
						|
		    Th = VADD(Ta, Td);
 | 
						|
		    Tm = VADD(Tg, Th);
 | 
						|
	       }
 | 
						|
	       {
 | 
						|
		    V TH, TI, TK, TL, TM;
 | 
						|
		    TH = VADD(Tl, Tm);
 | 
						|
		    STM2(&(xo[10]), TH, ovs, &(xo[2]));
 | 
						|
		    TI = VADD(Ty, TB);
 | 
						|
		    STM2(&(xo[0]), TI, ovs, &(xo[0]));
 | 
						|
		    {
 | 
						|
			 V Tf, Tq, To, Tp, Ti, Tn, TJ;
 | 
						|
			 Tf = VBYI(VFMA(LDK(KP951056516), T7, VMUL(LDK(KP587785252), Te)));
 | 
						|
			 Tq = VBYI(VFNMS(LDK(KP951056516), Te, VMUL(LDK(KP587785252), T7)));
 | 
						|
			 Ti = VMUL(LDK(KP559016994), VSUB(Tg, Th));
 | 
						|
			 Tn = VFNMS(LDK(KP250000000), Tm, Tl);
 | 
						|
			 To = VADD(Ti, Tn);
 | 
						|
			 Tp = VSUB(Tn, Ti);
 | 
						|
			 TJ = VADD(Tf, To);
 | 
						|
			 STM2(&(xo[2]), TJ, ovs, &(xo[2]));
 | 
						|
			 STN2(&(xo[0]), TI, TJ, ovs);
 | 
						|
			 TK = VADD(Tq, Tp);
 | 
						|
			 STM2(&(xo[14]), TK, ovs, &(xo[2]));
 | 
						|
			 TL = VSUB(To, Tf);
 | 
						|
			 STM2(&(xo[18]), TL, ovs, &(xo[2]));
 | 
						|
			 TM = VSUB(Tp, Tq);
 | 
						|
			 STM2(&(xo[6]), TM, ovs, &(xo[2]));
 | 
						|
		    }
 | 
						|
		    {
 | 
						|
			 V Tx, TG, TE, TF, TC, TD;
 | 
						|
			 Tx = VBYI(VFNMS(LDK(KP951056516), Tw, VMUL(LDK(KP587785252), Tt)));
 | 
						|
			 TG = VBYI(VFMA(LDK(KP951056516), Tt, VMUL(LDK(KP587785252), Tw)));
 | 
						|
			 TC = VFNMS(LDK(KP250000000), TB, Ty);
 | 
						|
			 TD = VMUL(LDK(KP559016994), VSUB(Tz, TA));
 | 
						|
			 TE = VSUB(TC, TD);
 | 
						|
			 TF = VADD(TD, TC);
 | 
						|
			 {
 | 
						|
			      V TN, TO, TP, TQ;
 | 
						|
			      TN = VADD(Tx, TE);
 | 
						|
			      STM2(&(xo[4]), TN, ovs, &(xo[0]));
 | 
						|
			      STN2(&(xo[4]), TN, TM, ovs);
 | 
						|
			      TO = VADD(TG, TF);
 | 
						|
			      STM2(&(xo[12]), TO, ovs, &(xo[0]));
 | 
						|
			      STN2(&(xo[12]), TO, TK, ovs);
 | 
						|
			      TP = VSUB(TE, Tx);
 | 
						|
			      STM2(&(xo[16]), TP, ovs, &(xo[0]));
 | 
						|
			      STN2(&(xo[16]), TP, TL, ovs);
 | 
						|
			      TQ = VSUB(TF, TG);
 | 
						|
			      STM2(&(xo[8]), TQ, ovs, &(xo[0]));
 | 
						|
			      STN2(&(xo[8]), TQ, TH, ovs);
 | 
						|
			 }
 | 
						|
		    }
 | 
						|
	       }
 | 
						|
	  }
 | 
						|
     }
 | 
						|
     VLEAVE();
 | 
						|
}
 | 
						|
 | 
						|
static const kdft_desc desc = { 10, XSIMD_STRING("n2bv_10"), { 36, 6, 6, 0 }, &GENUS, 0, 2, 0, 0 };
 | 
						|
 | 
						|
void XSIMD(codelet_n2bv_10) (planner *p) { X(kdft_register) (p, n2bv_10, &desc);
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |