222 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			222 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* This file was automatically generated --- DO NOT EDIT */
 | |
| /* Generated on Tue Sep 14 10:46:38 EDT 2021 */
 | |
| 
 | |
| #include "rdft/codelet-rdft.h"
 | |
| 
 | |
| #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 4 -dit -name hc2cfdft2_4 -include rdft/scalar/hc2cf.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 32 FP additions, 24 FP multiplications,
 | |
|  * (or, 24 additions, 16 multiplications, 8 fused multiply/add),
 | |
|  * 37 stack variables, 1 constants, and 16 memory accesses
 | |
|  */
 | |
| #include "rdft/scalar/hc2cf.h"
 | |
| 
 | |
| static void hc2cfdft2_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      DK(KP500000000, +0.500000000000000000000000000000000000000000000);
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 4, MAKE_VOLATILE_STRIDE(16, rs)) {
 | |
| 	       E T1, T5, T2, T4, T6, Tc, T3, Tb;
 | |
| 	       T1 = W[0];
 | |
| 	       T5 = W[3];
 | |
| 	       T2 = W[2];
 | |
| 	       T3 = T1 * T2;
 | |
| 	       Tb = T1 * T5;
 | |
| 	       T4 = W[1];
 | |
| 	       T6 = FMA(T4, T5, T3);
 | |
| 	       Tc = FNMS(T4, T2, Tb);
 | |
| 	       {
 | |
| 		    E Tj, Tp, To, TE, Tw, T9, Tt, Ta, TC, Tf, Tr, Ts, Tx;
 | |
| 		    {
 | |
| 			 E Th, Ti, Tl, Tm, Tn;
 | |
| 			 Th = Ip[0];
 | |
| 			 Ti = Im[0];
 | |
| 			 Tj = Th - Ti;
 | |
| 			 Tp = Th + Ti;
 | |
| 			 Tl = Rm[0];
 | |
| 			 Tm = Rp[0];
 | |
| 			 Tn = Tl - Tm;
 | |
| 			 To = T1 * Tn;
 | |
| 			 TE = T4 * Tn;
 | |
| 			 Tw = Tm + Tl;
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E T7, T8, Td, Te;
 | |
| 			 T7 = Ip[WS(rs, 1)];
 | |
| 			 T8 = Im[WS(rs, 1)];
 | |
| 			 T9 = T7 - T8;
 | |
| 			 Tt = T7 + T8;
 | |
| 			 Ta = T6 * T9;
 | |
| 			 TC = T2 * Tt;
 | |
| 			 Td = Rp[WS(rs, 1)];
 | |
| 			 Te = Rm[WS(rs, 1)];
 | |
| 			 Tf = Td + Te;
 | |
| 			 Tr = Td - Te;
 | |
| 			 Ts = T2 * Tr;
 | |
| 			 Tx = T6 * Tf;
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E Tk, TB, Tz, TH, Tv, TA, TG, TI, Tg, Ty;
 | |
| 			 Tg = FNMS(Tc, Tf, Ta);
 | |
| 			 Tk = Tg + Tj;
 | |
| 			 TB = Tj - Tg;
 | |
| 			 Ty = FMA(Tc, T9, Tx);
 | |
| 			 Tz = Tw - Ty;
 | |
| 			 TH = Tw + Ty;
 | |
| 			 {
 | |
| 			      E Tq, Tu, TD, TF;
 | |
| 			      Tq = FNMS(T4, Tp, To);
 | |
| 			      Tu = FMA(T5, Tt, Ts);
 | |
| 			      Tv = Tq - Tu;
 | |
| 			      TA = Tu + Tq;
 | |
| 			      TD = FNMS(T5, Tr, TC);
 | |
| 			      TF = FMA(T1, Tp, TE);
 | |
| 			      TG = TD - TF;
 | |
| 			      TI = TD + TF;
 | |
| 			 }
 | |
| 			 Ip[0] = KP500000000 * (Tk + Tv);
 | |
| 			 Rp[0] = KP500000000 * (TH + TI);
 | |
| 			 Im[WS(rs, 1)] = KP500000000 * (Tv - Tk);
 | |
| 			 Rm[WS(rs, 1)] = KP500000000 * (TH - TI);
 | |
| 			 Rm[0] = KP500000000 * (Tz - TA);
 | |
| 			 Im[0] = KP500000000 * (TG - TB);
 | |
| 			 Rp[WS(rs, 1)] = KP500000000 * (Tz + TA);
 | |
| 			 Ip[WS(rs, 1)] = KP500000000 * (TB + TG);
 | |
| 		    }
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      { TW_CEXP, 1, 1 },
 | |
|      { TW_CEXP, 1, 3 },
 | |
|      { TW_NEXT, 1, 0 }
 | |
| };
 | |
| 
 | |
| static const hc2c_desc desc = { 4, "hc2cfdft2_4", twinstr, &GENUS, { 24, 16, 8, 0 } };
 | |
| 
 | |
| void X(codelet_hc2cfdft2_4) (planner *p) {
 | |
|      X(khc2c_register) (p, hc2cfdft2_4, &desc, HC2C_VIA_DFT);
 | |
| }
 | |
| #else
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 4 -dit -name hc2cfdft2_4 -include rdft/scalar/hc2cf.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 32 FP additions, 24 FP multiplications,
 | |
|  * (or, 24 additions, 16 multiplications, 8 fused multiply/add),
 | |
|  * 24 stack variables, 1 constants, and 16 memory accesses
 | |
|  */
 | |
| #include "rdft/scalar/hc2cf.h"
 | |
| 
 | |
| static void hc2cfdft2_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      DK(KP500000000, +0.500000000000000000000000000000000000000000000);
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 4, MAKE_VOLATILE_STRIDE(16, rs)) {
 | |
| 	       E T1, T3, T2, T4, T5, T9;
 | |
| 	       T1 = W[0];
 | |
| 	       T3 = W[1];
 | |
| 	       T2 = W[2];
 | |
| 	       T4 = W[3];
 | |
| 	       T5 = FMA(T1, T2, T3 * T4);
 | |
| 	       T9 = FNMS(T3, T2, T1 * T4);
 | |
| 	       {
 | |
| 		    E Tg, Tr, Tm, Tx, Td, Tw, Tp, Ts;
 | |
| 		    {
 | |
| 			 E Te, Tf, Tl, Ti, Tj, Tk;
 | |
| 			 Te = Ip[0];
 | |
| 			 Tf = Im[0];
 | |
| 			 Tl = Te + Tf;
 | |
| 			 Ti = Rm[0];
 | |
| 			 Tj = Rp[0];
 | |
| 			 Tk = Ti - Tj;
 | |
| 			 Tg = Te - Tf;
 | |
| 			 Tr = Tj + Ti;
 | |
| 			 Tm = FNMS(T3, Tl, T1 * Tk);
 | |
| 			 Tx = FMA(T3, Tk, T1 * Tl);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E T8, To, Tc, Tn;
 | |
| 			 {
 | |
| 			      E T6, T7, Ta, Tb;
 | |
| 			      T6 = Ip[WS(rs, 1)];
 | |
| 			      T7 = Im[WS(rs, 1)];
 | |
| 			      T8 = T6 - T7;
 | |
| 			      To = T6 + T7;
 | |
| 			      Ta = Rp[WS(rs, 1)];
 | |
| 			      Tb = Rm[WS(rs, 1)];
 | |
| 			      Tc = Ta + Tb;
 | |
| 			      Tn = Ta - Tb;
 | |
| 			 }
 | |
| 			 Td = FNMS(T9, Tc, T5 * T8);
 | |
| 			 Tw = FNMS(T4, Tn, T2 * To);
 | |
| 			 Tp = FMA(T2, Tn, T4 * To);
 | |
| 			 Ts = FMA(T5, Tc, T9 * T8);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E Th, Tq, Tz, TA;
 | |
| 			 Th = Td + Tg;
 | |
| 			 Tq = Tm - Tp;
 | |
| 			 Ip[0] = KP500000000 * (Th + Tq);
 | |
| 			 Im[WS(rs, 1)] = KP500000000 * (Tq - Th);
 | |
| 			 Tz = Tr + Ts;
 | |
| 			 TA = Tw + Tx;
 | |
| 			 Rm[WS(rs, 1)] = KP500000000 * (Tz - TA);
 | |
| 			 Rp[0] = KP500000000 * (Tz + TA);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E Tt, Tu, Tv, Ty;
 | |
| 			 Tt = Tr - Ts;
 | |
| 			 Tu = Tp + Tm;
 | |
| 			 Rm[0] = KP500000000 * (Tt - Tu);
 | |
| 			 Rp[WS(rs, 1)] = KP500000000 * (Tt + Tu);
 | |
| 			 Tv = Tg - Td;
 | |
| 			 Ty = Tw - Tx;
 | |
| 			 Ip[WS(rs, 1)] = KP500000000 * (Tv + Ty);
 | |
| 			 Im[0] = KP500000000 * (Ty - Tv);
 | |
| 		    }
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      { TW_CEXP, 1, 1 },
 | |
|      { TW_CEXP, 1, 3 },
 | |
|      { TW_NEXT, 1, 0 }
 | |
| };
 | |
| 
 | |
| static const hc2c_desc desc = { 4, "hc2cfdft2_4", twinstr, &GENUS, { 24, 16, 8, 0 } };
 | |
| 
 | |
| void X(codelet_hc2cfdft2_4) (planner *p) {
 | |
|      X(khc2c_register) (p, hc2cfdft2_4, &desc, HC2C_VIA_DFT);
 | |
| }
 | |
| #endif
 | 
