195 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			195 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 | 
						|
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
/* Compute the complex DFT by combining R2HC RDFTs on the real
 | 
						|
   and imaginary parts.   This could be useful for people just wanting
 | 
						|
   to link to the real codelets and not the complex ones.  It could
 | 
						|
   also even be faster than the complex algorithms for split (as opposed
 | 
						|
   to interleaved) real/imag complex data. */
 | 
						|
 | 
						|
#include "rdft/rdft.h"
 | 
						|
#include "dft/dft.h"
 | 
						|
 | 
						|
typedef struct {
 | 
						|
     solver super;
 | 
						|
} S;
 | 
						|
 | 
						|
typedef struct {
 | 
						|
     plan_dft super;
 | 
						|
     plan *cld;
 | 
						|
     INT ishift, oshift;
 | 
						|
     INT os;
 | 
						|
     INT n;
 | 
						|
} P;
 | 
						|
 | 
						|
static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
 | 
						|
{
 | 
						|
     const P *ego = (const P *) ego_;
 | 
						|
     INT n;
 | 
						|
 | 
						|
     UNUSED(ii);
 | 
						|
 | 
						|
     { /* transform vector of real & imag parts: */
 | 
						|
	  plan_rdft *cld = (plan_rdft *) ego->cld;
 | 
						|
	  cld->apply((plan *) cld, ri + ego->ishift, ro + ego->oshift);
 | 
						|
     }
 | 
						|
 | 
						|
     n = ego->n;
 | 
						|
     if (n > 1) {
 | 
						|
	  INT i, os = ego->os;
 | 
						|
	  for (i = 1; i < (n + 1)/2; ++i) {
 | 
						|
	       E rop, iop, iom, rom;
 | 
						|
	       rop = ro[os * i];
 | 
						|
	       iop = io[os * i];
 | 
						|
	       rom = ro[os * (n - i)];
 | 
						|
	       iom = io[os * (n - i)];
 | 
						|
	       ro[os * i] = rop - iom;
 | 
						|
	       io[os * i] = iop + rom;
 | 
						|
	       ro[os * (n - i)] = rop + iom;
 | 
						|
	       io[os * (n - i)] = iop - rom;
 | 
						|
	  }
 | 
						|
     }
 | 
						|
}
 | 
						|
 | 
						|
static void awake(plan *ego_, enum wakefulness wakefulness)
 | 
						|
{
 | 
						|
     P *ego = (P *) ego_;
 | 
						|
     X(plan_awake)(ego->cld, wakefulness);
 | 
						|
}
 | 
						|
 | 
						|
static void destroy(plan *ego_)
 | 
						|
{
 | 
						|
     P *ego = (P *) ego_;
 | 
						|
     X(plan_destroy_internal)(ego->cld);
 | 
						|
}
 | 
						|
 | 
						|
static void print(const plan *ego_, printer *p)
 | 
						|
{
 | 
						|
     const P *ego = (const P *) ego_;
 | 
						|
     p->print(p, "(dft-r2hc-%D%(%p%))", ego->n, ego->cld);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int applicable0(const problem *p_)
 | 
						|
{
 | 
						|
     const problem_dft *p = (const problem_dft *) p_;
 | 
						|
     return ((p->sz->rnk == 1 && p->vecsz->rnk == 0)
 | 
						|
	     || (p->sz->rnk == 0 && FINITE_RNK(p->vecsz->rnk))
 | 
						|
	  );
 | 
						|
}
 | 
						|
 | 
						|
static int splitp(R *r, R *i, INT n, INT s)
 | 
						|
{
 | 
						|
     return ((r > i ? (r - i) : (i - r)) >= n * (s > 0 ? s : 0-s));
 | 
						|
}
 | 
						|
 | 
						|
static int applicable(const problem *p_, const planner *plnr)
 | 
						|
{
 | 
						|
     if (!applicable0(p_)) return 0;
 | 
						|
 | 
						|
     {
 | 
						|
	  const problem_dft *p = (const problem_dft *) p_;
 | 
						|
 | 
						|
	  /* rank-0 problems are always OK */
 | 
						|
	  if (p->sz->rnk == 0) return 1;
 | 
						|
 | 
						|
	  /* this solver is ok for split arrays */
 | 
						|
	  if (p->sz->rnk == 1 &&
 | 
						|
	      splitp(p->ri, p->ii, p->sz->dims[0].n, p->sz->dims[0].is) &&
 | 
						|
	      splitp(p->ro, p->io, p->sz->dims[0].n, p->sz->dims[0].os))
 | 
						|
	       return 1;
 | 
						|
 | 
						|
	  return !(NO_DFT_R2HCP(plnr));
 | 
						|
     }
 | 
						|
}
 | 
						|
 | 
						|
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
 | 
						|
{
 | 
						|
     P *pln;
 | 
						|
     const problem_dft *p;
 | 
						|
     plan *cld;
 | 
						|
     INT ishift = 0, oshift = 0;
 | 
						|
 | 
						|
     static const plan_adt padt = {
 | 
						|
	  X(dft_solve), awake, print, destroy
 | 
						|
     };
 | 
						|
 | 
						|
     UNUSED(ego_);
 | 
						|
     if (!applicable(p_, plnr))
 | 
						|
          return (plan *)0;
 | 
						|
 | 
						|
     p = (const problem_dft *) p_;
 | 
						|
 | 
						|
     {
 | 
						|
	  tensor *ri_vec = X(mktensor_1d)(2, p->ii - p->ri, p->io - p->ro);
 | 
						|
	  tensor *cld_vec = X(tensor_append)(ri_vec, p->vecsz);
 | 
						|
	  int i;
 | 
						|
	  for (i = 0; i < cld_vec->rnk; ++i) { /* make all istrides > 0 */
 | 
						|
	       if (cld_vec->dims[i].is < 0) {
 | 
						|
		    INT nm1 = cld_vec->dims[i].n - 1;
 | 
						|
		    ishift -= nm1 * (cld_vec->dims[i].is *= -1);
 | 
						|
		    oshift -= nm1 * (cld_vec->dims[i].os *= -1);
 | 
						|
	       }
 | 
						|
	  }
 | 
						|
	  cld = X(mkplan_d)(plnr, 
 | 
						|
			    X(mkproblem_rdft_1)(p->sz, cld_vec, 
 | 
						|
						p->ri + ishift, 
 | 
						|
						p->ro + oshift, R2HC));
 | 
						|
	  X(tensor_destroy2)(ri_vec, cld_vec);
 | 
						|
     }
 | 
						|
     if (!cld) return (plan *)0;
 | 
						|
 | 
						|
     pln = MKPLAN_DFT(P, &padt, apply);
 | 
						|
 | 
						|
     if (p->sz->rnk == 0) {
 | 
						|
	  pln->n = 1;
 | 
						|
	  pln->os = 0;
 | 
						|
     }
 | 
						|
     else {
 | 
						|
	  pln->n = p->sz->dims[0].n;
 | 
						|
	  pln->os = p->sz->dims[0].os;
 | 
						|
     }
 | 
						|
     pln->ishift = ishift;
 | 
						|
     pln->oshift = oshift;
 | 
						|
 | 
						|
     pln->cld = cld;
 | 
						|
     
 | 
						|
     pln->super.super.ops = cld->ops;
 | 
						|
     pln->super.super.ops.other += 8 * ((pln->n - 1)/2);
 | 
						|
     pln->super.super.ops.add += 4 * ((pln->n - 1)/2);
 | 
						|
     pln->super.super.ops.other += 1; /* estimator hack for nop plans */
 | 
						|
 | 
						|
     return &(pln->super.super);
 | 
						|
}
 | 
						|
 | 
						|
/* constructor */
 | 
						|
static solver *mksolver(void)
 | 
						|
{
 | 
						|
     static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
 | 
						|
     S *slv = MKSOLVER(S, &sadt);
 | 
						|
     return &(slv->super);
 | 
						|
}
 | 
						|
 | 
						|
void X(dft_r2hc_register)(planner *p)
 | 
						|
{
 | 
						|
     REGISTER_SOLVER(p, mksolver());
 | 
						|
}
 |