216 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			216 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* Complex RDFT2s of rank >= 2, for the case where we are distributed
 | |
|    across the first dimension only, and the output is not transposed. */
 | |
| 
 | |
| #include "mpi-dft.h"
 | |
| #include "mpi-rdft2.h"
 | |
| #include "rdft/rdft.h"
 | |
| 
 | |
| typedef struct {
 | |
|      solver super;
 | |
|      int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
 | |
| } S;
 | |
| 
 | |
| typedef struct {
 | |
|      plan_mpi_rdft2 super;
 | |
| 
 | |
|      plan *cld1, *cld2;
 | |
|      INT vn;
 | |
|      int preserve_input;
 | |
| } P;
 | |
| 
 | |
| static void apply_r2c(const plan *ego_, R *I, R *O)
 | |
| {
 | |
|      const P *ego = (const P *) ego_;
 | |
|      plan_rdft2 *cld1;
 | |
|      plan_rdft *cld2;
 | |
|      
 | |
|      /* RDFT2 local dimensions */
 | |
|      cld1 = (plan_rdft2 *) ego->cld1;
 | |
|      if (ego->preserve_input) {
 | |
| 	  cld1->apply(ego->cld1, I, I+ego->vn, O, O+1);
 | |
| 	  I = O;
 | |
|      }
 | |
|      else
 | |
| 	  cld1->apply(ego->cld1, I, I+ego->vn, I, I+1);
 | |
| 
 | |
|      /* DFT non-local dimension (via dft-rank1-bigvec, usually): */
 | |
|      cld2 = (plan_rdft *) ego->cld2;
 | |
|      cld2->apply(ego->cld2, I, O);
 | |
| }
 | |
| 
 | |
| static void apply_c2r(const plan *ego_, R *I, R *O)
 | |
| {
 | |
|      const P *ego = (const P *) ego_;
 | |
|      plan_rdft2 *cld1;
 | |
|      plan_rdft *cld2;
 | |
|      
 | |
|      /* DFT non-local dimension (via dft-rank1-bigvec, usually): */
 | |
|      cld2 = (plan_rdft *) ego->cld2;
 | |
|      cld2->apply(ego->cld2, I, O);
 | |
| 
 | |
|      /* RDFT2 local dimensions */
 | |
|      cld1 = (plan_rdft2 *) ego->cld1;
 | |
|      cld1->apply(ego->cld1, O, O+ego->vn, O, O+1);
 | |
| 
 | |
| }
 | |
| 
 | |
| static int applicable(const S *ego, const problem *p_,
 | |
| 		      const planner *plnr)
 | |
| {
 | |
|      const problem_mpi_rdft2 *p = (const problem_mpi_rdft2 *) p_;
 | |
|      return (1
 | |
| 	     && p->sz->rnk > 1
 | |
| 	     && p->flags == 0 /* TRANSPOSED/SCRAMBLED_IN/OUT not supported */
 | |
| 	     && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
 | |
| 					  && p->I != p->O
 | |
| 					  && p->kind == R2HC))
 | |
| 	     && XM(is_local_after)(1, p->sz, IB)
 | |
| 	     && XM(is_local_after)(1, p->sz, OB)
 | |
| 	     && (!NO_SLOWP(plnr) /* slow if rdft2-serial is applicable */
 | |
| 		 || !XM(rdft2_serial_applicable)(p))
 | |
| 	  );
 | |
| }
 | |
| 
 | |
| static void awake(plan *ego_, enum wakefulness wakefulness)
 | |
| {
 | |
|      P *ego = (P *) ego_;
 | |
|      X(plan_awake)(ego->cld1, wakefulness);
 | |
|      X(plan_awake)(ego->cld2, wakefulness);
 | |
| }
 | |
| 
 | |
| static void destroy(plan *ego_)
 | |
| {
 | |
|      P *ego = (P *) ego_;
 | |
|      X(plan_destroy_internal)(ego->cld2);
 | |
|      X(plan_destroy_internal)(ego->cld1);
 | |
| }
 | |
| 
 | |
| static void print(const plan *ego_, printer *p)
 | |
| {
 | |
|      const P *ego = (const P *) ego_;
 | |
|      p->print(p, "(mpi-rdft2-rank-geq2%s%(%p%)%(%p%))", 
 | |
| 	      ego->preserve_input==2 ?"/p":"", ego->cld1, ego->cld2);
 | |
| }
 | |
| 
 | |
| static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
 | |
| {
 | |
|      const S *ego = (const S *) ego_;
 | |
|      const problem_mpi_rdft2 *p;
 | |
|      P *pln;
 | |
|      plan *cld1 = 0, *cld2 = 0;
 | |
|      R *r0, *r1, *cr, *ci, *I, *O;
 | |
|      tensor *sz;
 | |
|      dtensor *sz2;
 | |
|      int i, my_pe, n_pes;
 | |
|      INT nrest;
 | |
|      static const plan_adt padt = {
 | |
|           XM(rdft2_solve), awake, print, destroy
 | |
|      };
 | |
| 
 | |
|      UNUSED(ego);
 | |
| 
 | |
|      if (!applicable(ego, p_, plnr))
 | |
|           return (plan *) 0;
 | |
| 
 | |
|      p = (const problem_mpi_rdft2 *) p_;
 | |
| 
 | |
|      I = p->I; O = p->O;
 | |
|      if (p->kind == R2HC) {
 | |
|           r1 = (r0 = p->I) + p->vn;
 | |
| 	  if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) {
 | |
| 	       ci = (cr = p->O) + 1;
 | |
| 	       I = O; 
 | |
| 	  }
 | |
| 	  else 
 | |
| 	       ci = (cr = p->I) + 1;
 | |
|      }
 | |
|      else {
 | |
|           r1 = (r0 = p->O) + p->vn;
 | |
|           ci = (cr = p->O) + 1;
 | |
|      }
 | |
| 
 | |
|      MPI_Comm_rank(p->comm, &my_pe);
 | |
|      MPI_Comm_size(p->comm, &n_pes);
 | |
| 
 | |
|      sz = X(mktensor)(p->sz->rnk - 1); /* tensor of last rnk-1 dimensions */
 | |
|      i = p->sz->rnk - 2; A(i >= 0);
 | |
|      sz->dims[i].is = sz->dims[i].os = 2 * p->vn;
 | |
|      sz->dims[i].n = p->sz->dims[i+1].n / 2 + 1;
 | |
|      for (--i; i >= 0; --i) {
 | |
| 	  sz->dims[i].n = p->sz->dims[i+1].n;
 | |
| 	  sz->dims[i].is = sz->dims[i].os = sz->dims[i+1].n * sz->dims[i+1].is;
 | |
|      }
 | |
|      nrest = X(tensor_sz)(sz);
 | |
|      {
 | |
| 	  INT ivs = 1 + (p->kind == HC2R), ovs = 1 + (p->kind == R2HC);
 | |
|           INT is = sz->dims[0].n * sz->dims[0].is;
 | |
|           INT b = XM(block)(p->sz->dims[0].n, p->sz->dims[0].b[IB], my_pe);
 | |
| 	  sz->dims[p->sz->rnk - 2].n = p->sz->dims[p->sz->rnk - 1].n;
 | |
| 	  cld1 = X(mkplan_d)(plnr,
 | |
|                              X(mkproblem_rdft2_d)(sz,
 | |
| 						  X(mktensor_2d)(b, is, is,
 | |
| 							        p->vn,ivs,ovs),
 | |
| 						  r0, r1, cr, ci, p->kind));
 | |
| 	  if (XM(any_true)(!cld1, p->comm)) goto nada;
 | |
|      }
 | |
| 
 | |
|      sz2 = XM(mkdtensor)(1); /* tensor for first (distributed) dimension */
 | |
|      sz2->dims[0] = p->sz->dims[0];
 | |
|      cld2 = X(mkplan_d)(plnr, XM(mkproblem_dft_d)(sz2, nrest * p->vn,
 | |
| 						  I, O, p->comm, 
 | |
| 						  p->kind == R2HC ?
 | |
| 						  FFT_SIGN : -FFT_SIGN,
 | |
| 						  RANK1_BIGVEC_ONLY));
 | |
|      if (XM(any_true)(!cld2, p->comm)) goto nada;
 | |
| 
 | |
|      pln = MKPLAN_MPI_RDFT2(P, &padt, p->kind == R2HC ? apply_r2c : apply_c2r);
 | |
|      pln->cld1 = cld1;
 | |
|      pln->cld2 = cld2;
 | |
|      pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
 | |
|      pln->vn = p->vn;
 | |
| 
 | |
|      X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
 | |
| 
 | |
|      return &(pln->super.super);
 | |
| 
 | |
|  nada:
 | |
|      X(plan_destroy_internal)(cld2);
 | |
|      X(plan_destroy_internal)(cld1);
 | |
|      return (plan *) 0;
 | |
| }
 | |
| 
 | |
| static solver *mksolver(int preserve_input)
 | |
| {
 | |
|      static const solver_adt sadt = { PROBLEM_MPI_RDFT2, mkplan, 0 };
 | |
|      S *slv = MKSOLVER(S, &sadt);
 | |
|      slv->preserve_input = preserve_input;
 | |
|      return &(slv->super);
 | |
| }
 | |
| 
 | |
| void XM(rdft2_rank_geq2_register)(planner *p)
 | |
| {
 | |
|      int preserve_input;
 | |
|      for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
 | |
| 	  REGISTER_SOLVER(p, mksolver(preserve_input));
 | |
| }
 | 
