1050 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1050 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* crc32.c -- compute the CRC-32 of a data stream
 | |
|  * Copyright (C) 1995-2022 Mark Adler
 | |
|  * For conditions of distribution and use, see copyright notice in zlib.h
 | |
|  *
 | |
|  * This interleaved implementation of a CRC makes use of pipelined multiple
 | |
|  * arithmetic-logic units, commonly found in modern CPU cores. It is due to
 | |
|  * Kadatch and Jenkins (2010). See doc/crc-doc.1.0.pdf in this distribution.
 | |
|  */
 | |
| 
 | |
| /* @(#) $Id$ */
 | |
| 
 | |
| /*
 | |
|   Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
 | |
|   protection on the static variables used to control the first-use generation
 | |
|   of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
 | |
|   first call get_crc_table() to initialize the tables before allowing more than
 | |
|   one thread to use crc32().
 | |
| 
 | |
|   MAKECRCH can be #defined to write out crc32.h. A main() routine is also
 | |
|   produced, so that this one source file can be compiled to an executable.
 | |
|  */
 | |
| 
 | |
| #ifdef MAKECRCH
 | |
| #  include <stdio.h>
 | |
| #  ifndef DYNAMIC_CRC_TABLE
 | |
| #    define DYNAMIC_CRC_TABLE
 | |
| #  endif /* !DYNAMIC_CRC_TABLE */
 | |
| #endif /* MAKECRCH */
 | |
| 
 | |
| #include "zutil.h"      /* for Z_U4, Z_U8, z_crc_t, and FAR definitions */
 | |
| 
 | |
|  /*
 | |
|   A CRC of a message is computed on N braids of words in the message, where
 | |
|   each word consists of W bytes (4 or 8). If N is 3, for example, then three
 | |
|   running sparse CRCs are calculated respectively on each braid, at these
 | |
|   indices in the array of words: 0, 3, 6, ..., 1, 4, 7, ..., and 2, 5, 8, ...
 | |
|   This is done starting at a word boundary, and continues until as many blocks
 | |
|   of N * W bytes as are available have been processed. The results are combined
 | |
|   into a single CRC at the end. For this code, N must be in the range 1..6 and
 | |
|   W must be 4 or 8. The upper limit on N can be increased if desired by adding
 | |
|   more #if blocks, extending the patterns apparent in the code. In addition,
 | |
|   crc32.h would need to be regenerated, if the maximum N value is increased.
 | |
| 
 | |
|   N and W are chosen empirically by benchmarking the execution time on a given
 | |
|   processor. The choices for N and W below were based on testing on Intel Kaby
 | |
|   Lake i7, AMD Ryzen 7, ARM Cortex-A57, Sparc64-VII, PowerPC POWER9, and MIPS64
 | |
|   Octeon II processors. The Intel, AMD, and ARM processors were all fastest
 | |
|   with N=5, W=8. The Sparc, PowerPC, and MIPS64 were all fastest at N=5, W=4.
 | |
|   They were all tested with either gcc or clang, all using the -O3 optimization
 | |
|   level. Your mileage may vary.
 | |
|  */
 | |
| 
 | |
| /* Define N */
 | |
| #ifdef Z_TESTN
 | |
| #  define N Z_TESTN
 | |
| #else
 | |
| #  define N 5
 | |
| #endif
 | |
| #if N < 1 || N > 6
 | |
| #  error N must be in 1..6
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|   z_crc_t must be at least 32 bits. z_word_t must be at least as long as
 | |
|   z_crc_t. It is assumed here that z_word_t is either 32 bits or 64 bits, and
 | |
|   that bytes are eight bits.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|   Define W and the associated z_word_t type. If W is not defined, then a
 | |
|   braided calculation is not used, and the associated tables and code are not
 | |
|   compiled.
 | |
|  */
 | |
| #ifdef Z_TESTW
 | |
| #  if Z_TESTW-1 != -1
 | |
| #    define W Z_TESTW
 | |
| #  endif
 | |
| #else
 | |
| #  ifdef MAKECRCH
 | |
| #    define W 8         /* required for MAKECRCH */
 | |
| #  else
 | |
| #    if defined(__x86_64__) || defined(__aarch64__)
 | |
| #      define W 8
 | |
| #    else
 | |
| #      define W 4
 | |
| #    endif
 | |
| #  endif
 | |
| #endif
 | |
| #ifdef W
 | |
| #  if W == 8 && defined(Z_U8)
 | |
|      typedef Z_U8 z_word_t;
 | |
| #  elif defined(Z_U4)
 | |
| #    undef W
 | |
| #    define W 4
 | |
|      typedef Z_U4 z_word_t;
 | |
| #  else
 | |
| #    undef W
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| /* If available, use the ARM processor CRC32 instruction. */
 | |
| #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) && W == 8
 | |
| #  define ARMCRC32
 | |
| #endif
 | |
| 
 | |
| #if defined(W) && (!defined(ARMCRC32) || defined(DYNAMIC_CRC_TABLE))
 | |
| /*
 | |
|   Swap the bytes in a z_word_t to convert between little and big endian. Any
 | |
|   self-respecting compiler will optimize this to a single machine byte-swap
 | |
|   instruction, if one is available. This assumes that word_t is either 32 bits
 | |
|   or 64 bits.
 | |
|  */
 | |
| local z_word_t byte_swap(z_word_t word) {
 | |
| #  if W == 8
 | |
|     return
 | |
|         (word & 0xff00000000000000) >> 56 |
 | |
|         (word & 0xff000000000000) >> 40 |
 | |
|         (word & 0xff0000000000) >> 24 |
 | |
|         (word & 0xff00000000) >> 8 |
 | |
|         (word & 0xff000000) << 8 |
 | |
|         (word & 0xff0000) << 24 |
 | |
|         (word & 0xff00) << 40 |
 | |
|         (word & 0xff) << 56;
 | |
| #  else   /* W == 4 */
 | |
|     return
 | |
|         (word & 0xff000000) >> 24 |
 | |
|         (word & 0xff0000) >> 8 |
 | |
|         (word & 0xff00) << 8 |
 | |
|         (word & 0xff) << 24;
 | |
| #  endif
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef DYNAMIC_CRC_TABLE
 | |
| /* =========================================================================
 | |
|  * Table of powers of x for combining CRC-32s, filled in by make_crc_table()
 | |
|  * below.
 | |
|  */
 | |
|    local z_crc_t FAR x2n_table[32];
 | |
| #else
 | |
| /* =========================================================================
 | |
|  * Tables for byte-wise and braided CRC-32 calculations, and a table of powers
 | |
|  * of x for combining CRC-32s, all made by make_crc_table().
 | |
|  */
 | |
| #  include "crc32.h"
 | |
| #endif
 | |
| 
 | |
| /* CRC polynomial. */
 | |
| #define POLY 0xedb88320         /* p(x) reflected, with x^32 implied */
 | |
| 
 | |
| /*
 | |
|   Return a(x) multiplied by b(x) modulo p(x), where p(x) is the CRC polynomial,
 | |
|   reflected. For speed, this requires that a not be zero.
 | |
|  */
 | |
| local z_crc_t multmodp(z_crc_t a, z_crc_t b) {
 | |
|     z_crc_t m, p;
 | |
| 
 | |
|     m = (z_crc_t)1 << 31;
 | |
|     p = 0;
 | |
|     for (;;) {
 | |
|         if (a & m) {
 | |
|             p ^= b;
 | |
|             if ((a & (m - 1)) == 0)
 | |
|                 break;
 | |
|         }
 | |
|         m >>= 1;
 | |
|         b = b & 1 ? (b >> 1) ^ POLY : b >> 1;
 | |
|     }
 | |
|     return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
|   Return x^(n * 2^k) modulo p(x). Requires that x2n_table[] has been
 | |
|   initialized.
 | |
|  */
 | |
| local z_crc_t x2nmodp(z_off64_t n, unsigned k) {
 | |
|     z_crc_t p;
 | |
| 
 | |
|     p = (z_crc_t)1 << 31;           /* x^0 == 1 */
 | |
|     while (n) {
 | |
|         if (n & 1)
 | |
|             p = multmodp(x2n_table[k & 31], p);
 | |
|         n >>= 1;
 | |
|         k++;
 | |
|     }
 | |
|     return p;
 | |
| }
 | |
| 
 | |
| #ifdef DYNAMIC_CRC_TABLE
 | |
| /* =========================================================================
 | |
|  * Build the tables for byte-wise and braided CRC-32 calculations, and a table
 | |
|  * of powers of x for combining CRC-32s.
 | |
|  */
 | |
| local z_crc_t FAR crc_table[256];
 | |
| #ifdef W
 | |
|    local z_word_t FAR crc_big_table[256];
 | |
|    local z_crc_t FAR crc_braid_table[W][256];
 | |
|    local z_word_t FAR crc_braid_big_table[W][256];
 | |
|    local void braid(z_crc_t [][256], z_word_t [][256], int, int);
 | |
| #endif
 | |
| #ifdef MAKECRCH
 | |
|    local void write_table(FILE *, const z_crc_t FAR *, int);
 | |
|    local void write_table32hi(FILE *, const z_word_t FAR *, int);
 | |
|    local void write_table64(FILE *, const z_word_t FAR *, int);
 | |
| #endif /* MAKECRCH */
 | |
| 
 | |
| /*
 | |
|   Define a once() function depending on the availability of atomics. If this is
 | |
|   compiled with DYNAMIC_CRC_TABLE defined, and if CRCs will be computed in
 | |
|   multiple threads, and if atomics are not available, then get_crc_table() must
 | |
|   be called to initialize the tables and must return before any threads are
 | |
|   allowed to compute or combine CRCs.
 | |
|  */
 | |
| 
 | |
| /* Definition of once functionality. */
 | |
| typedef struct once_s once_t;
 | |
| 
 | |
| /* Check for the availability of atomics. */
 | |
| #if defined(__STDC__) && __STDC_VERSION__ >= 201112L && \
 | |
|     !defined(__STDC_NO_ATOMICS__)
 | |
| 
 | |
| #include <stdatomic.h>
 | |
| 
 | |
| /* Structure for once(), which must be initialized with ONCE_INIT. */
 | |
| struct once_s {
 | |
|     atomic_flag begun;
 | |
|     atomic_int done;
 | |
| };
 | |
| #define ONCE_INIT {ATOMIC_FLAG_INIT, 0}
 | |
| 
 | |
| /*
 | |
|   Run the provided init() function exactly once, even if multiple threads
 | |
|   invoke once() at the same time. The state must be a once_t initialized with
 | |
|   ONCE_INIT.
 | |
|  */
 | |
| local void once(once_t *state, void (*init)(void)) {
 | |
|     if (!atomic_load(&state->done)) {
 | |
|         if (atomic_flag_test_and_set(&state->begun))
 | |
|             while (!atomic_load(&state->done))
 | |
|                 ;
 | |
|         else {
 | |
|             init();
 | |
|             atomic_store(&state->done, 1);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #else   /* no atomics */
 | |
| 
 | |
| /* Structure for once(), which must be initialized with ONCE_INIT. */
 | |
| struct once_s {
 | |
|     volatile int begun;
 | |
|     volatile int done;
 | |
| };
 | |
| #define ONCE_INIT {0, 0}
 | |
| 
 | |
| /* Test and set. Alas, not atomic, but tries to minimize the period of
 | |
|    vulnerability. */
 | |
| local int test_and_set(int volatile *flag) {
 | |
|     int was;
 | |
| 
 | |
|     was = *flag;
 | |
|     *flag = 1;
 | |
|     return was;
 | |
| }
 | |
| 
 | |
| /* Run the provided init() function once. This is not thread-safe. */
 | |
| local void once(once_t *state, void (*init)(void)) {
 | |
|     if (!state->done) {
 | |
|         if (test_and_set(&state->begun))
 | |
|             while (!state->done)
 | |
|                 ;
 | |
|         else {
 | |
|             init();
 | |
|             state->done = 1;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* State for once(). */
 | |
| local once_t made = ONCE_INIT;
 | |
| 
 | |
| /*
 | |
|   Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
 | |
|   x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
 | |
| 
 | |
|   Polynomials over GF(2) are represented in binary, one bit per coefficient,
 | |
|   with the lowest powers in the most significant bit. Then adding polynomials
 | |
|   is just exclusive-or, and multiplying a polynomial by x is a right shift by
 | |
|   one. If we call the above polynomial p, and represent a byte as the
 | |
|   polynomial q, also with the lowest power in the most significant bit (so the
 | |
|   byte 0xb1 is the polynomial x^7+x^3+x^2+1), then the CRC is (q*x^32) mod p,
 | |
|   where a mod b means the remainder after dividing a by b.
 | |
| 
 | |
|   This calculation is done using the shift-register method of multiplying and
 | |
|   taking the remainder. The register is initialized to zero, and for each
 | |
|   incoming bit, x^32 is added mod p to the register if the bit is a one (where
 | |
|   x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x
 | |
|   (which is shifting right by one and adding x^32 mod p if the bit shifted out
 | |
|   is a one). We start with the highest power (least significant bit) of q and
 | |
|   repeat for all eight bits of q.
 | |
| 
 | |
|   The table is simply the CRC of all possible eight bit values. This is all the
 | |
|   information needed to generate CRCs on data a byte at a time for all
 | |
|   combinations of CRC register values and incoming bytes.
 | |
|  */
 | |
| 
 | |
| local void make_crc_table(void) {
 | |
|     unsigned i, j, n;
 | |
|     z_crc_t p;
 | |
| 
 | |
|     /* initialize the CRC of bytes tables */
 | |
|     for (i = 0; i < 256; i++) {
 | |
|         p = i;
 | |
|         for (j = 0; j < 8; j++)
 | |
|             p = p & 1 ? (p >> 1) ^ POLY : p >> 1;
 | |
|         crc_table[i] = p;
 | |
| #ifdef W
 | |
|         crc_big_table[i] = byte_swap(p);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     /* initialize the x^2^n mod p(x) table */
 | |
|     p = (z_crc_t)1 << 30;         /* x^1 */
 | |
|     x2n_table[0] = p;
 | |
|     for (n = 1; n < 32; n++)
 | |
|         x2n_table[n] = p = multmodp(p, p);
 | |
| 
 | |
| #ifdef W
 | |
|     /* initialize the braiding tables -- needs x2n_table[] */
 | |
|     braid(crc_braid_table, crc_braid_big_table, N, W);
 | |
| #endif
 | |
| 
 | |
| #ifdef MAKECRCH
 | |
|     {
 | |
|         /*
 | |
|           The crc32.h header file contains tables for both 32-bit and 64-bit
 | |
|           z_word_t's, and so requires a 64-bit type be available. In that case,
 | |
|           z_word_t must be defined to be 64-bits. This code then also generates
 | |
|           and writes out the tables for the case that z_word_t is 32 bits.
 | |
|          */
 | |
| #if !defined(W) || W != 8
 | |
| #  error Need a 64-bit integer type in order to generate crc32.h.
 | |
| #endif
 | |
|         FILE *out;
 | |
|         int k, n;
 | |
|         z_crc_t ltl[8][256];
 | |
|         z_word_t big[8][256];
 | |
| 
 | |
|         out = fopen("crc32.h", "w");
 | |
|         if (out == NULL) return;
 | |
| 
 | |
|         /* write out little-endian CRC table to crc32.h */
 | |
|         fprintf(out,
 | |
|             "/* crc32.h -- tables for rapid CRC calculation\n"
 | |
|             " * Generated automatically by crc32.c\n */\n"
 | |
|             "\n"
 | |
|             "local const z_crc_t FAR crc_table[] = {\n"
 | |
|             "    ");
 | |
|         write_table(out, crc_table, 256);
 | |
|         fprintf(out,
 | |
|             "};\n");
 | |
| 
 | |
|         /* write out big-endian CRC table for 64-bit z_word_t to crc32.h */
 | |
|         fprintf(out,
 | |
|             "\n"
 | |
|             "#ifdef W\n"
 | |
|             "\n"
 | |
|             "#if W == 8\n"
 | |
|             "\n"
 | |
|             "local const z_word_t FAR crc_big_table[] = {\n"
 | |
|             "    ");
 | |
|         write_table64(out, crc_big_table, 256);
 | |
|         fprintf(out,
 | |
|             "};\n");
 | |
| 
 | |
|         /* write out big-endian CRC table for 32-bit z_word_t to crc32.h */
 | |
|         fprintf(out,
 | |
|             "\n"
 | |
|             "#else /* W == 4 */\n"
 | |
|             "\n"
 | |
|             "local const z_word_t FAR crc_big_table[] = {\n"
 | |
|             "    ");
 | |
|         write_table32hi(out, crc_big_table, 256);
 | |
|         fprintf(out,
 | |
|             "};\n"
 | |
|             "\n"
 | |
|             "#endif\n");
 | |
| 
 | |
|         /* write out braid tables for each value of N */
 | |
|         for (n = 1; n <= 6; n++) {
 | |
|             fprintf(out,
 | |
|             "\n"
 | |
|             "#if N == %d\n", n);
 | |
| 
 | |
|             /* compute braid tables for this N and 64-bit word_t */
 | |
|             braid(ltl, big, n, 8);
 | |
| 
 | |
|             /* write out braid tables for 64-bit z_word_t to crc32.h */
 | |
|             fprintf(out,
 | |
|             "\n"
 | |
|             "#if W == 8\n"
 | |
|             "\n"
 | |
|             "local const z_crc_t FAR crc_braid_table[][256] = {\n");
 | |
|             for (k = 0; k < 8; k++) {
 | |
|                 fprintf(out, "   {");
 | |
|                 write_table(out, ltl[k], 256);
 | |
|                 fprintf(out, "}%s", k < 7 ? ",\n" : "");
 | |
|             }
 | |
|             fprintf(out,
 | |
|             "};\n"
 | |
|             "\n"
 | |
|             "local const z_word_t FAR crc_braid_big_table[][256] = {\n");
 | |
|             for (k = 0; k < 8; k++) {
 | |
|                 fprintf(out, "   {");
 | |
|                 write_table64(out, big[k], 256);
 | |
|                 fprintf(out, "}%s", k < 7 ? ",\n" : "");
 | |
|             }
 | |
|             fprintf(out,
 | |
|             "};\n");
 | |
| 
 | |
|             /* compute braid tables for this N and 32-bit word_t */
 | |
|             braid(ltl, big, n, 4);
 | |
| 
 | |
|             /* write out braid tables for 32-bit z_word_t to crc32.h */
 | |
|             fprintf(out,
 | |
|             "\n"
 | |
|             "#else /* W == 4 */\n"
 | |
|             "\n"
 | |
|             "local const z_crc_t FAR crc_braid_table[][256] = {\n");
 | |
|             for (k = 0; k < 4; k++) {
 | |
|                 fprintf(out, "   {");
 | |
|                 write_table(out, ltl[k], 256);
 | |
|                 fprintf(out, "}%s", k < 3 ? ",\n" : "");
 | |
|             }
 | |
|             fprintf(out,
 | |
|             "};\n"
 | |
|             "\n"
 | |
|             "local const z_word_t FAR crc_braid_big_table[][256] = {\n");
 | |
|             for (k = 0; k < 4; k++) {
 | |
|                 fprintf(out, "   {");
 | |
|                 write_table32hi(out, big[k], 256);
 | |
|                 fprintf(out, "}%s", k < 3 ? ",\n" : "");
 | |
|             }
 | |
|             fprintf(out,
 | |
|             "};\n"
 | |
|             "\n"
 | |
|             "#endif\n"
 | |
|             "\n"
 | |
|             "#endif\n");
 | |
|         }
 | |
|         fprintf(out,
 | |
|             "\n"
 | |
|             "#endif\n");
 | |
| 
 | |
|         /* write out zeros operator table to crc32.h */
 | |
|         fprintf(out,
 | |
|             "\n"
 | |
|             "local const z_crc_t FAR x2n_table[] = {\n"
 | |
|             "    ");
 | |
|         write_table(out, x2n_table, 32);
 | |
|         fprintf(out,
 | |
|             "};\n");
 | |
|         fclose(out);
 | |
|     }
 | |
| #endif /* MAKECRCH */
 | |
| }
 | |
| 
 | |
| #ifdef MAKECRCH
 | |
| 
 | |
| /*
 | |
|    Write the 32-bit values in table[0..k-1] to out, five per line in
 | |
|    hexadecimal separated by commas.
 | |
|  */
 | |
| local void write_table(FILE *out, const z_crc_t FAR *table, int k) {
 | |
|     int n;
 | |
| 
 | |
|     for (n = 0; n < k; n++)
 | |
|         fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : "    ",
 | |
|                 (unsigned long)(table[n]),
 | |
|                 n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", "));
 | |
| }
 | |
| 
 | |
| /*
 | |
|    Write the high 32-bits of each value in table[0..k-1] to out, five per line
 | |
|    in hexadecimal separated by commas.
 | |
|  */
 | |
| local void write_table32hi(FILE *out, const z_word_t FAR *table, int k) {
 | |
|     int n;
 | |
| 
 | |
|     for (n = 0; n < k; n++)
 | |
|         fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : "    ",
 | |
|                 (unsigned long)(table[n] >> 32),
 | |
|                 n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", "));
 | |
| }
 | |
| 
 | |
| /*
 | |
|   Write the 64-bit values in table[0..k-1] to out, three per line in
 | |
|   hexadecimal separated by commas. This assumes that if there is a 64-bit
 | |
|   type, then there is also a long long integer type, and it is at least 64
 | |
|   bits. If not, then the type cast and format string can be adjusted
 | |
|   accordingly.
 | |
|  */
 | |
| local void write_table64(FILE *out, const z_word_t FAR *table, int k) {
 | |
|     int n;
 | |
| 
 | |
|     for (n = 0; n < k; n++)
 | |
|         fprintf(out, "%s0x%016llx%s", n == 0 || n % 3 ? "" : "    ",
 | |
|                 (unsigned long long)(table[n]),
 | |
|                 n == k - 1 ? "" : (n % 3 == 2 ? ",\n" : ", "));
 | |
| }
 | |
| 
 | |
| /* Actually do the deed. */
 | |
| int main(void) {
 | |
|     make_crc_table();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #endif /* MAKECRCH */
 | |
| 
 | |
| #ifdef W
 | |
| /*
 | |
|   Generate the little and big-endian braid tables for the given n and z_word_t
 | |
|   size w. Each array must have room for w blocks of 256 elements.
 | |
|  */
 | |
| local void braid(z_crc_t ltl[][256], z_word_t big[][256], int n, int w) {
 | |
|     int k;
 | |
|     z_crc_t i, p, q;
 | |
|     for (k = 0; k < w; k++) {
 | |
|         p = x2nmodp((n * w + 3 - k) << 3, 0);
 | |
|         ltl[k][0] = 0;
 | |
|         big[w - 1 - k][0] = 0;
 | |
|         for (i = 1; i < 256; i++) {
 | |
|             ltl[k][i] = q = multmodp(i << 24, p);
 | |
|             big[w - 1 - k][i] = byte_swap(q);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #endif /* DYNAMIC_CRC_TABLE */
 | |
| 
 | |
| /* =========================================================================
 | |
|  * This function can be used by asm versions of crc32(), and to force the
 | |
|  * generation of the CRC tables in a threaded application.
 | |
|  */
 | |
| const z_crc_t FAR * ZEXPORT get_crc_table(void) {
 | |
| #ifdef DYNAMIC_CRC_TABLE
 | |
|     once(&made, make_crc_table);
 | |
| #endif /* DYNAMIC_CRC_TABLE */
 | |
|     return (const z_crc_t FAR *)crc_table;
 | |
| }
 | |
| 
 | |
| /* =========================================================================
 | |
|  * Use ARM machine instructions if available. This will compute the CRC about
 | |
|  * ten times faster than the braided calculation. This code does not check for
 | |
|  * the presence of the CRC instruction at run time. __ARM_FEATURE_CRC32 will
 | |
|  * only be defined if the compilation specifies an ARM processor architecture
 | |
|  * that has the instructions. For example, compiling with -march=armv8.1-a or
 | |
|  * -march=armv8-a+crc, or -march=native if the compile machine has the crc32
 | |
|  * instructions.
 | |
|  */
 | |
| #ifdef ARMCRC32
 | |
| 
 | |
| /*
 | |
|    Constants empirically determined to maximize speed. These values are from
 | |
|    measurements on a Cortex-A57. Your mileage may vary.
 | |
|  */
 | |
| #define Z_BATCH 3990                /* number of words in a batch */
 | |
| #define Z_BATCH_ZEROS 0xa10d3d0c    /* computed from Z_BATCH = 3990 */
 | |
| #define Z_BATCH_MIN 800             /* fewest words in a final batch */
 | |
| 
 | |
| unsigned long ZEXPORT crc32_z(unsigned long crc, const unsigned char FAR *buf,
 | |
|                               z_size_t len) {
 | |
|     z_crc_t val;
 | |
|     z_word_t crc1, crc2;
 | |
|     const z_word_t *word;
 | |
|     z_word_t val0, val1, val2;
 | |
|     z_size_t last, last2, i;
 | |
|     z_size_t num;
 | |
| 
 | |
|     /* Return initial CRC, if requested. */
 | |
|     if (buf == Z_NULL) return 0;
 | |
| 
 | |
| #ifdef DYNAMIC_CRC_TABLE
 | |
|     once(&made, make_crc_table);
 | |
| #endif /* DYNAMIC_CRC_TABLE */
 | |
| 
 | |
|     /* Pre-condition the CRC */
 | |
|     crc = (~crc) & 0xffffffff;
 | |
| 
 | |
|     /* Compute the CRC up to a word boundary. */
 | |
|     while (len && ((z_size_t)buf & 7) != 0) {
 | |
|         len--;
 | |
|         val = *buf++;
 | |
|         __asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val));
 | |
|     }
 | |
| 
 | |
|     /* Prepare to compute the CRC on full 64-bit words word[0..num-1]. */
 | |
|     word = (z_word_t const *)buf;
 | |
|     num = len >> 3;
 | |
|     len &= 7;
 | |
| 
 | |
|     /* Do three interleaved CRCs to realize the throughput of one crc32x
 | |
|        instruction per cycle. Each CRC is calculated on Z_BATCH words. The
 | |
|        three CRCs are combined into a single CRC after each set of batches. */
 | |
|     while (num >= 3 * Z_BATCH) {
 | |
|         crc1 = 0;
 | |
|         crc2 = 0;
 | |
|         for (i = 0; i < Z_BATCH; i++) {
 | |
|             val0 = word[i];
 | |
|             val1 = word[i + Z_BATCH];
 | |
|             val2 = word[i + 2 * Z_BATCH];
 | |
|             __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0));
 | |
|             __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1));
 | |
|             __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2));
 | |
|         }
 | |
|         word += 3 * Z_BATCH;
 | |
|         num -= 3 * Z_BATCH;
 | |
|         crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc1;
 | |
|         crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc2;
 | |
|     }
 | |
| 
 | |
|     /* Do one last smaller batch with the remaining words, if there are enough
 | |
|        to pay for the combination of CRCs. */
 | |
|     last = num / 3;
 | |
|     if (last >= Z_BATCH_MIN) {
 | |
|         last2 = last << 1;
 | |
|         crc1 = 0;
 | |
|         crc2 = 0;
 | |
|         for (i = 0; i < last; i++) {
 | |
|             val0 = word[i];
 | |
|             val1 = word[i + last];
 | |
|             val2 = word[i + last2];
 | |
|             __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0));
 | |
|             __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1));
 | |
|             __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2));
 | |
|         }
 | |
|         word += 3 * last;
 | |
|         num -= 3 * last;
 | |
|         val = x2nmodp(last, 6);
 | |
|         crc = multmodp(val, crc) ^ crc1;
 | |
|         crc = multmodp(val, crc) ^ crc2;
 | |
|     }
 | |
| 
 | |
|     /* Compute the CRC on any remaining words. */
 | |
|     for (i = 0; i < num; i++) {
 | |
|         val0 = word[i];
 | |
|         __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0));
 | |
|     }
 | |
|     word += num;
 | |
| 
 | |
|     /* Complete the CRC on any remaining bytes. */
 | |
|     buf = (const unsigned char FAR *)word;
 | |
|     while (len) {
 | |
|         len--;
 | |
|         val = *buf++;
 | |
|         __asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val));
 | |
|     }
 | |
| 
 | |
|     /* Return the CRC, post-conditioned. */
 | |
|     return crc ^ 0xffffffff;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| #ifdef W
 | |
| 
 | |
| /*
 | |
|   Return the CRC of the W bytes in the word_t data, taking the
 | |
|   least-significant byte of the word as the first byte of data, without any pre
 | |
|   or post conditioning. This is used to combine the CRCs of each braid.
 | |
|  */
 | |
| local z_crc_t crc_word(z_word_t data) {
 | |
|     int k;
 | |
|     for (k = 0; k < W; k++)
 | |
|         data = (data >> 8) ^ crc_table[data & 0xff];
 | |
|     return (z_crc_t)data;
 | |
| }
 | |
| 
 | |
| local z_word_t crc_word_big(z_word_t data) {
 | |
|     int k;
 | |
|     for (k = 0; k < W; k++)
 | |
|         data = (data << 8) ^
 | |
|             crc_big_table[(data >> ((W - 1) << 3)) & 0xff];
 | |
|     return data;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* ========================================================================= */
 | |
| unsigned long ZEXPORT crc32_z(unsigned long crc, const unsigned char FAR *buf,
 | |
|                               z_size_t len) {
 | |
|     /* Return initial CRC, if requested. */
 | |
|     if (buf == Z_NULL) return 0;
 | |
| 
 | |
| #ifdef DYNAMIC_CRC_TABLE
 | |
|     once(&made, make_crc_table);
 | |
| #endif /* DYNAMIC_CRC_TABLE */
 | |
| 
 | |
|     /* Pre-condition the CRC */
 | |
|     crc = (~crc) & 0xffffffff;
 | |
| 
 | |
| #ifdef W
 | |
| 
 | |
|     /* If provided enough bytes, do a braided CRC calculation. */
 | |
|     if (len >= N * W + W - 1) {
 | |
|         z_size_t blks;
 | |
|         z_word_t const *words;
 | |
|         unsigned endian;
 | |
|         int k;
 | |
| 
 | |
|         /* Compute the CRC up to a z_word_t boundary. */
 | |
|         while (len && ((z_size_t)buf & (W - 1)) != 0) {
 | |
|             len--;
 | |
|             crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
 | |
|         }
 | |
| 
 | |
|         /* Compute the CRC on as many N z_word_t blocks as are available. */
 | |
|         blks = len / (N * W);
 | |
|         len -= blks * N * W;
 | |
|         words = (z_word_t const *)buf;
 | |
| 
 | |
|         /* Do endian check at execution time instead of compile time, since ARM
 | |
|            processors can change the endianness at execution time. If the
 | |
|            compiler knows what the endianness will be, it can optimize out the
 | |
|            check and the unused branch. */
 | |
|         endian = 1;
 | |
|         if (*(unsigned char *)&endian) {
 | |
|             /* Little endian. */
 | |
| 
 | |
|             z_crc_t crc0;
 | |
|             z_word_t word0;
 | |
| #if N > 1
 | |
|             z_crc_t crc1;
 | |
|             z_word_t word1;
 | |
| #if N > 2
 | |
|             z_crc_t crc2;
 | |
|             z_word_t word2;
 | |
| #if N > 3
 | |
|             z_crc_t crc3;
 | |
|             z_word_t word3;
 | |
| #if N > 4
 | |
|             z_crc_t crc4;
 | |
|             z_word_t word4;
 | |
| #if N > 5
 | |
|             z_crc_t crc5;
 | |
|             z_word_t word5;
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
|             /* Initialize the CRC for each braid. */
 | |
|             crc0 = crc;
 | |
| #if N > 1
 | |
|             crc1 = 0;
 | |
| #if N > 2
 | |
|             crc2 = 0;
 | |
| #if N > 3
 | |
|             crc3 = 0;
 | |
| #if N > 4
 | |
|             crc4 = 0;
 | |
| #if N > 5
 | |
|             crc5 = 0;
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
|             /*
 | |
|               Process the first blks-1 blocks, computing the CRCs on each braid
 | |
|               independently.
 | |
|              */
 | |
|             while (--blks) {
 | |
|                 /* Load the word for each braid into registers. */
 | |
|                 word0 = crc0 ^ words[0];
 | |
| #if N > 1
 | |
|                 word1 = crc1 ^ words[1];
 | |
| #if N > 2
 | |
|                 word2 = crc2 ^ words[2];
 | |
| #if N > 3
 | |
|                 word3 = crc3 ^ words[3];
 | |
| #if N > 4
 | |
|                 word4 = crc4 ^ words[4];
 | |
| #if N > 5
 | |
|                 word5 = crc5 ^ words[5];
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
|                 words += N;
 | |
| 
 | |
|                 /* Compute and update the CRC for each word. The loop should
 | |
|                    get unrolled. */
 | |
|                 crc0 = crc_braid_table[0][word0 & 0xff];
 | |
| #if N > 1
 | |
|                 crc1 = crc_braid_table[0][word1 & 0xff];
 | |
| #if N > 2
 | |
|                 crc2 = crc_braid_table[0][word2 & 0xff];
 | |
| #if N > 3
 | |
|                 crc3 = crc_braid_table[0][word3 & 0xff];
 | |
| #if N > 4
 | |
|                 crc4 = crc_braid_table[0][word4 & 0xff];
 | |
| #if N > 5
 | |
|                 crc5 = crc_braid_table[0][word5 & 0xff];
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
|                 for (k = 1; k < W; k++) {
 | |
|                     crc0 ^= crc_braid_table[k][(word0 >> (k << 3)) & 0xff];
 | |
| #if N > 1
 | |
|                     crc1 ^= crc_braid_table[k][(word1 >> (k << 3)) & 0xff];
 | |
| #if N > 2
 | |
|                     crc2 ^= crc_braid_table[k][(word2 >> (k << 3)) & 0xff];
 | |
| #if N > 3
 | |
|                     crc3 ^= crc_braid_table[k][(word3 >> (k << 3)) & 0xff];
 | |
| #if N > 4
 | |
|                     crc4 ^= crc_braid_table[k][(word4 >> (k << 3)) & 0xff];
 | |
| #if N > 5
 | |
|                     crc5 ^= crc_braid_table[k][(word5 >> (k << 3)) & 0xff];
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             /*
 | |
|               Process the last block, combining the CRCs of the N braids at the
 | |
|               same time.
 | |
|              */
 | |
|             crc = crc_word(crc0 ^ words[0]);
 | |
| #if N > 1
 | |
|             crc = crc_word(crc1 ^ words[1] ^ crc);
 | |
| #if N > 2
 | |
|             crc = crc_word(crc2 ^ words[2] ^ crc);
 | |
| #if N > 3
 | |
|             crc = crc_word(crc3 ^ words[3] ^ crc);
 | |
| #if N > 4
 | |
|             crc = crc_word(crc4 ^ words[4] ^ crc);
 | |
| #if N > 5
 | |
|             crc = crc_word(crc5 ^ words[5] ^ crc);
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
|             words += N;
 | |
|         }
 | |
|         else {
 | |
|             /* Big endian. */
 | |
| 
 | |
|             z_word_t crc0, word0, comb;
 | |
| #if N > 1
 | |
|             z_word_t crc1, word1;
 | |
| #if N > 2
 | |
|             z_word_t crc2, word2;
 | |
| #if N > 3
 | |
|             z_word_t crc3, word3;
 | |
| #if N > 4
 | |
|             z_word_t crc4, word4;
 | |
| #if N > 5
 | |
|             z_word_t crc5, word5;
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
|             /* Initialize the CRC for each braid. */
 | |
|             crc0 = byte_swap(crc);
 | |
| #if N > 1
 | |
|             crc1 = 0;
 | |
| #if N > 2
 | |
|             crc2 = 0;
 | |
| #if N > 3
 | |
|             crc3 = 0;
 | |
| #if N > 4
 | |
|             crc4 = 0;
 | |
| #if N > 5
 | |
|             crc5 = 0;
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
|             /*
 | |
|               Process the first blks-1 blocks, computing the CRCs on each braid
 | |
|               independently.
 | |
|              */
 | |
|             while (--blks) {
 | |
|                 /* Load the word for each braid into registers. */
 | |
|                 word0 = crc0 ^ words[0];
 | |
| #if N > 1
 | |
|                 word1 = crc1 ^ words[1];
 | |
| #if N > 2
 | |
|                 word2 = crc2 ^ words[2];
 | |
| #if N > 3
 | |
|                 word3 = crc3 ^ words[3];
 | |
| #if N > 4
 | |
|                 word4 = crc4 ^ words[4];
 | |
| #if N > 5
 | |
|                 word5 = crc5 ^ words[5];
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
|                 words += N;
 | |
| 
 | |
|                 /* Compute and update the CRC for each word. The loop should
 | |
|                    get unrolled. */
 | |
|                 crc0 = crc_braid_big_table[0][word0 & 0xff];
 | |
| #if N > 1
 | |
|                 crc1 = crc_braid_big_table[0][word1 & 0xff];
 | |
| #if N > 2
 | |
|                 crc2 = crc_braid_big_table[0][word2 & 0xff];
 | |
| #if N > 3
 | |
|                 crc3 = crc_braid_big_table[0][word3 & 0xff];
 | |
| #if N > 4
 | |
|                 crc4 = crc_braid_big_table[0][word4 & 0xff];
 | |
| #if N > 5
 | |
|                 crc5 = crc_braid_big_table[0][word5 & 0xff];
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
|                 for (k = 1; k < W; k++) {
 | |
|                     crc0 ^= crc_braid_big_table[k][(word0 >> (k << 3)) & 0xff];
 | |
| #if N > 1
 | |
|                     crc1 ^= crc_braid_big_table[k][(word1 >> (k << 3)) & 0xff];
 | |
| #if N > 2
 | |
|                     crc2 ^= crc_braid_big_table[k][(word2 >> (k << 3)) & 0xff];
 | |
| #if N > 3
 | |
|                     crc3 ^= crc_braid_big_table[k][(word3 >> (k << 3)) & 0xff];
 | |
| #if N > 4
 | |
|                     crc4 ^= crc_braid_big_table[k][(word4 >> (k << 3)) & 0xff];
 | |
| #if N > 5
 | |
|                     crc5 ^= crc_braid_big_table[k][(word5 >> (k << 3)) & 0xff];
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             /*
 | |
|               Process the last block, combining the CRCs of the N braids at the
 | |
|               same time.
 | |
|              */
 | |
|             comb = crc_word_big(crc0 ^ words[0]);
 | |
| #if N > 1
 | |
|             comb = crc_word_big(crc1 ^ words[1] ^ comb);
 | |
| #if N > 2
 | |
|             comb = crc_word_big(crc2 ^ words[2] ^ comb);
 | |
| #if N > 3
 | |
|             comb = crc_word_big(crc3 ^ words[3] ^ comb);
 | |
| #if N > 4
 | |
|             comb = crc_word_big(crc4 ^ words[4] ^ comb);
 | |
| #if N > 5
 | |
|             comb = crc_word_big(crc5 ^ words[5] ^ comb);
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
|             words += N;
 | |
|             crc = byte_swap(comb);
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|           Update the pointer to the remaining bytes to process.
 | |
|          */
 | |
|         buf = (unsigned char const *)words;
 | |
|     }
 | |
| 
 | |
| #endif /* W */
 | |
| 
 | |
|     /* Complete the computation of the CRC on any remaining bytes. */
 | |
|     while (len >= 8) {
 | |
|         len -= 8;
 | |
|         crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
 | |
|         crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
 | |
|         crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
 | |
|         crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
 | |
|         crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
 | |
|         crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
 | |
|         crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
 | |
|         crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
 | |
|     }
 | |
|     while (len) {
 | |
|         len--;
 | |
|         crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
 | |
|     }
 | |
| 
 | |
|     /* Return the CRC, post-conditioned. */
 | |
|     return crc ^ 0xffffffff;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* ========================================================================= */
 | |
| unsigned long ZEXPORT crc32(unsigned long crc, const unsigned char FAR *buf,
 | |
|                             uInt len) {
 | |
|     return crc32_z(crc, buf, len);
 | |
| }
 | |
| 
 | |
| /* ========================================================================= */
 | |
| uLong ZEXPORT crc32_combine64(uLong crc1, uLong crc2, z_off64_t len2) {
 | |
| #ifdef DYNAMIC_CRC_TABLE
 | |
|     once(&made, make_crc_table);
 | |
| #endif /* DYNAMIC_CRC_TABLE */
 | |
|     return multmodp(x2nmodp(len2, 3), crc1) ^ (crc2 & 0xffffffff);
 | |
| }
 | |
| 
 | |
| /* ========================================================================= */
 | |
| uLong ZEXPORT crc32_combine(uLong crc1, uLong crc2, z_off_t len2) {
 | |
|     return crc32_combine64(crc1, crc2, (z_off64_t)len2);
 | |
| }
 | |
| 
 | |
| /* ========================================================================= */
 | |
| uLong ZEXPORT crc32_combine_gen64(z_off64_t len2) {
 | |
| #ifdef DYNAMIC_CRC_TABLE
 | |
|     once(&made, make_crc_table);
 | |
| #endif /* DYNAMIC_CRC_TABLE */
 | |
|     return x2nmodp(len2, 3);
 | |
| }
 | |
| 
 | |
| /* ========================================================================= */
 | |
| uLong ZEXPORT crc32_combine_gen(z_off_t len2) {
 | |
|     return crc32_combine_gen64((z_off64_t)len2);
 | |
| }
 | |
| 
 | |
| /* ========================================================================= */
 | |
| uLong ZEXPORT crc32_combine_op(uLong crc1, uLong crc2, uLong op) {
 | |
|     return multmodp(op, crc1) ^ (crc2 & 0xffffffff);
 | |
| }
 | 
