411 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			411 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 | 
						|
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
/* Do an R{E,O}DFT{01,10} problem via an R2HC problem, with some
 | 
						|
   pre/post-processing ala FFTPACK. */
 | 
						|
 | 
						|
#include "reodft/reodft.h"
 | 
						|
 | 
						|
typedef struct {
 | 
						|
     solver super;
 | 
						|
} S;
 | 
						|
 | 
						|
typedef struct {
 | 
						|
     plan_rdft super;
 | 
						|
     plan *cld;
 | 
						|
     twid *td;
 | 
						|
     INT is, os;
 | 
						|
     INT n;
 | 
						|
     INT vl;
 | 
						|
     INT ivs, ovs;
 | 
						|
     rdft_kind kind;
 | 
						|
} P;
 | 
						|
 | 
						|
/* A real-even-01 DFT operates logically on a size-4N array:
 | 
						|
                   I 0 -r(I*) -I 0 r(I*),
 | 
						|
   where r denotes reversal and * denotes deletion of the 0th element.
 | 
						|
   To compute the transform of this, we imagine performing a radix-4
 | 
						|
   (real-input) DIF step, which turns the size-4N DFT into 4 size-N
 | 
						|
   (contiguous) DFTs, two of which are zero and two of which are
 | 
						|
   conjugates.  The non-redundant size-N DFT has halfcomplex input, so
 | 
						|
   we can do it with a size-N hc2r transform.  (In order to share
 | 
						|
   plans with the re10 (inverse) transform, however, we use the DHT
 | 
						|
   trick to re-express the hc2r problem as r2hc.  This has little cost
 | 
						|
   since we are already pre- and post-processing the data in {i,n-i}
 | 
						|
   order.)  Finally, we have to write out the data in the correct
 | 
						|
   order...the two size-N redundant (conjugate) hc2r DFTs correspond
 | 
						|
   to the even and odd outputs in O (i.e. the usual interleaved output
 | 
						|
   of DIF transforms); since this data has even symmetry, we only
 | 
						|
   write the first half of it.
 | 
						|
 | 
						|
   The real-even-10 DFT is just the reverse of these steps, i.e. a
 | 
						|
   radix-4 DIT transform.  There, however, we just use the r2hc
 | 
						|
   transform naturally without resorting to the DHT trick.
 | 
						|
 | 
						|
   A real-odd-01 DFT is very similar, except that the input is
 | 
						|
   0 I (rI)* 0 -I -(rI)*.  This format, however, can be transformed
 | 
						|
   into precisely the real-even-01 format above by sending I -> rI
 | 
						|
   and shifting the array by N.  The former swap is just another
 | 
						|
   transformation on the input during preprocessing; the latter
 | 
						|
   multiplies the even/odd outputs by i/-i, which combines with
 | 
						|
   the factor of -i (to take the imaginary part) to simply flip
 | 
						|
   the sign of the odd outputs.  Vice-versa for real-odd-10.
 | 
						|
 | 
						|
   The FFTPACK source code was very helpful in working this out.
 | 
						|
   (They do unnecessary passes over the array, though.)  The same
 | 
						|
   algorithm is also described in:
 | 
						|
 | 
						|
      John Makhoul, "A fast cosine transform in one and two dimensions,"
 | 
						|
      IEEE Trans. on Acoust. Speech and Sig. Proc., ASSP-28 (1), 27--34 (1980).
 | 
						|
 | 
						|
   Note that Numerical Recipes suggests a different algorithm that
 | 
						|
   requires more operations and uses trig. functions for both the pre-
 | 
						|
   and post-processing passes.
 | 
						|
*/
 | 
						|
 | 
						|
static void apply_re01(const plan *ego_, R *I, R *O)
 | 
						|
{
 | 
						|
     const P *ego = (const P *) ego_;
 | 
						|
     INT is = ego->is, os = ego->os;
 | 
						|
     INT i, n = ego->n;
 | 
						|
     INT iv, vl = ego->vl;
 | 
						|
     INT ivs = ego->ivs, ovs = ego->ovs;
 | 
						|
     R *W = ego->td->W;
 | 
						|
     R *buf;
 | 
						|
 | 
						|
     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
 | 
						|
 | 
						|
     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
 | 
						|
	  buf[0] = I[0];
 | 
						|
	  for (i = 1; i < n - i; ++i) {
 | 
						|
	       E a, b, apb, amb, wa, wb;
 | 
						|
	       a = I[is * i];
 | 
						|
	       b = I[is * (n - i)];
 | 
						|
	       apb = a + b;
 | 
						|
	       amb = a - b;
 | 
						|
	       wa = W[2*i];
 | 
						|
	       wb = W[2*i + 1];
 | 
						|
	       buf[i] = wa * amb + wb * apb; 
 | 
						|
	       buf[n - i] = wa * apb - wb * amb; 
 | 
						|
	  }
 | 
						|
	  if (i == n - i) {
 | 
						|
	       buf[i] = K(2.0) * I[is * i] * W[2*i];
 | 
						|
	  }
 | 
						|
	  
 | 
						|
	  {
 | 
						|
	       plan_rdft *cld = (plan_rdft *) ego->cld;
 | 
						|
	       cld->apply((plan *) cld, buf, buf);
 | 
						|
	  }
 | 
						|
	  
 | 
						|
	  O[0] = buf[0];
 | 
						|
	  for (i = 1; i < n - i; ++i) {
 | 
						|
	       E a, b;
 | 
						|
	       INT k;
 | 
						|
	       a = buf[i];
 | 
						|
	       b = buf[n - i];
 | 
						|
	       k = i + i;
 | 
						|
	       O[os * (k - 1)] = a - b;
 | 
						|
	       O[os * k] = a + b;
 | 
						|
	  }
 | 
						|
	  if (i == n - i) {
 | 
						|
	       O[os * (n - 1)] = buf[i];
 | 
						|
	  }
 | 
						|
     }
 | 
						|
 | 
						|
     X(ifree)(buf);
 | 
						|
}
 | 
						|
 | 
						|
/* ro01 is same as re01, but with i <-> n - 1 - i in the input and
 | 
						|
   the sign of the odd output elements flipped. */
 | 
						|
static void apply_ro01(const plan *ego_, R *I, R *O)
 | 
						|
{
 | 
						|
     const P *ego = (const P *) ego_;
 | 
						|
     INT is = ego->is, os = ego->os;
 | 
						|
     INT i, n = ego->n;
 | 
						|
     INT iv, vl = ego->vl;
 | 
						|
     INT ivs = ego->ivs, ovs = ego->ovs;
 | 
						|
     R *W = ego->td->W;
 | 
						|
     R *buf;
 | 
						|
 | 
						|
     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
 | 
						|
 | 
						|
     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
 | 
						|
	  buf[0] = I[is * (n - 1)];
 | 
						|
	  for (i = 1; i < n - i; ++i) {
 | 
						|
	       E a, b, apb, amb, wa, wb;
 | 
						|
	       a = I[is * (n - 1 - i)];
 | 
						|
	       b = I[is * (i - 1)];
 | 
						|
	       apb = a + b;
 | 
						|
	       amb = a - b;
 | 
						|
	       wa = W[2*i];
 | 
						|
	       wb = W[2*i+1];
 | 
						|
	       buf[i] = wa * amb + wb * apb; 
 | 
						|
	       buf[n - i] = wa * apb - wb * amb; 
 | 
						|
	  }
 | 
						|
	  if (i == n - i) {
 | 
						|
	       buf[i] = K(2.0) * I[is * (i - 1)] * W[2*i];
 | 
						|
	  }
 | 
						|
	  
 | 
						|
	  {
 | 
						|
	       plan_rdft *cld = (plan_rdft *) ego->cld;
 | 
						|
	       cld->apply((plan *) cld, buf, buf);
 | 
						|
	  }
 | 
						|
	  
 | 
						|
	  O[0] = buf[0];
 | 
						|
	  for (i = 1; i < n - i; ++i) {
 | 
						|
	       E a, b;
 | 
						|
	       INT k;
 | 
						|
	       a = buf[i];
 | 
						|
	       b = buf[n - i];
 | 
						|
	       k = i + i;
 | 
						|
	       O[os * (k - 1)] = b - a;
 | 
						|
	       O[os * k] = a + b;
 | 
						|
	  }
 | 
						|
	  if (i == n - i) {
 | 
						|
	       O[os * (n - 1)] = -buf[i];
 | 
						|
	  }
 | 
						|
     }
 | 
						|
 | 
						|
     X(ifree)(buf);
 | 
						|
}
 | 
						|
 | 
						|
static void apply_re10(const plan *ego_, R *I, R *O)
 | 
						|
{
 | 
						|
     const P *ego = (const P *) ego_;
 | 
						|
     INT is = ego->is, os = ego->os;
 | 
						|
     INT i, n = ego->n;
 | 
						|
     INT iv, vl = ego->vl;
 | 
						|
     INT ivs = ego->ivs, ovs = ego->ovs;
 | 
						|
     R *W = ego->td->W;
 | 
						|
     R *buf;
 | 
						|
 | 
						|
     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
 | 
						|
 | 
						|
     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
 | 
						|
	  buf[0] = I[0];
 | 
						|
	  for (i = 1; i < n - i; ++i) {
 | 
						|
	       E u, v;
 | 
						|
	       INT k = i + i;
 | 
						|
	       u = I[is * (k - 1)];
 | 
						|
	       v = I[is * k];
 | 
						|
	       buf[n - i] = u;
 | 
						|
	       buf[i] = v;
 | 
						|
	  }
 | 
						|
	  if (i == n - i) {
 | 
						|
	       buf[i] = I[is * (n - 1)];
 | 
						|
	  }
 | 
						|
	  
 | 
						|
	  {
 | 
						|
	       plan_rdft *cld = (plan_rdft *) ego->cld;
 | 
						|
	       cld->apply((plan *) cld, buf, buf);
 | 
						|
	  }
 | 
						|
	  
 | 
						|
	  O[0] = K(2.0) * buf[0];
 | 
						|
	  for (i = 1; i < n - i; ++i) {
 | 
						|
	       E a, b, wa, wb;
 | 
						|
	       a = K(2.0) * buf[i];
 | 
						|
	       b = K(2.0) * buf[n - i];
 | 
						|
	       wa = W[2*i];
 | 
						|
	       wb = W[2*i + 1];
 | 
						|
	       O[os * i] = wa * a + wb * b;
 | 
						|
	       O[os * (n - i)] = wb * a - wa * b;
 | 
						|
	  }
 | 
						|
	  if (i == n - i) {
 | 
						|
	       O[os * i] = K(2.0) * buf[i] * W[2*i];
 | 
						|
	  }
 | 
						|
     }
 | 
						|
 | 
						|
     X(ifree)(buf);
 | 
						|
}
 | 
						|
 | 
						|
/* ro10 is same as re10, but with i <-> n - 1 - i in the output and
 | 
						|
   the sign of the odd input elements flipped. */
 | 
						|
static void apply_ro10(const plan *ego_, R *I, R *O)
 | 
						|
{
 | 
						|
     const P *ego = (const P *) ego_;
 | 
						|
     INT is = ego->is, os = ego->os;
 | 
						|
     INT i, n = ego->n;
 | 
						|
     INT iv, vl = ego->vl;
 | 
						|
     INT ivs = ego->ivs, ovs = ego->ovs;
 | 
						|
     R *W = ego->td->W;
 | 
						|
     R *buf;
 | 
						|
 | 
						|
     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
 | 
						|
 | 
						|
     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
 | 
						|
	  buf[0] = I[0];
 | 
						|
	  for (i = 1; i < n - i; ++i) {
 | 
						|
	       E u, v;
 | 
						|
	       INT k = i + i;
 | 
						|
	       u = -I[is * (k - 1)];
 | 
						|
	       v = I[is * k];
 | 
						|
	       buf[n - i] = u;
 | 
						|
	       buf[i] = v;
 | 
						|
	  }
 | 
						|
	  if (i == n - i) {
 | 
						|
	       buf[i] = -I[is * (n - 1)];
 | 
						|
	  }
 | 
						|
	  
 | 
						|
	  {
 | 
						|
	       plan_rdft *cld = (plan_rdft *) ego->cld;
 | 
						|
	       cld->apply((plan *) cld, buf, buf);
 | 
						|
	  }
 | 
						|
	  
 | 
						|
	  O[os * (n - 1)] = K(2.0) * buf[0];
 | 
						|
	  for (i = 1; i < n - i; ++i) {
 | 
						|
	       E a, b, wa, wb;
 | 
						|
	       a = K(2.0) * buf[i];
 | 
						|
	       b = K(2.0) * buf[n - i];
 | 
						|
	       wa = W[2*i];
 | 
						|
	       wb = W[2*i + 1];
 | 
						|
	       O[os * (n - 1 - i)] = wa * a + wb * b;
 | 
						|
	       O[os * (i - 1)] = wb * a - wa * b;
 | 
						|
	  }
 | 
						|
	  if (i == n - i) {
 | 
						|
	       O[os * (i - 1)] = K(2.0) * buf[i] * W[2*i];
 | 
						|
	  }
 | 
						|
     }
 | 
						|
 | 
						|
     X(ifree)(buf);
 | 
						|
}
 | 
						|
 | 
						|
static void awake(plan *ego_, enum wakefulness wakefulness)
 | 
						|
{
 | 
						|
     P *ego = (P *) ego_;
 | 
						|
     static const tw_instr reodft010e_tw[] = {
 | 
						|
          { TW_COS, 0, 1 },
 | 
						|
          { TW_SIN, 0, 1 },
 | 
						|
          { TW_NEXT, 1, 0 }
 | 
						|
     };
 | 
						|
 | 
						|
     X(plan_awake)(ego->cld, wakefulness);
 | 
						|
 | 
						|
     X(twiddle_awake)(wakefulness, &ego->td, reodft010e_tw, 
 | 
						|
		      4*ego->n, 1, ego->n/2+1);
 | 
						|
}
 | 
						|
 | 
						|
static void destroy(plan *ego_)
 | 
						|
{
 | 
						|
     P *ego = (P *) ego_;
 | 
						|
     X(plan_destroy_internal)(ego->cld);
 | 
						|
}
 | 
						|
 | 
						|
static void print(const plan *ego_, printer *p)
 | 
						|
{
 | 
						|
     const P *ego = (const P *) ego_;
 | 
						|
     p->print(p, "(%se-r2hc-%D%v%(%p%))",
 | 
						|
	      X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
 | 
						|
}
 | 
						|
 | 
						|
static int applicable0(const solver *ego_, const problem *p_)
 | 
						|
{
 | 
						|
     const problem_rdft *p = (const problem_rdft *) p_;
 | 
						|
     UNUSED(ego_);
 | 
						|
 | 
						|
     return (1
 | 
						|
	     && p->sz->rnk == 1
 | 
						|
	     && p->vecsz->rnk <= 1
 | 
						|
	     && (p->kind[0] == REDFT01 || p->kind[0] == REDFT10
 | 
						|
		 || p->kind[0] == RODFT01 || p->kind[0] == RODFT10)
 | 
						|
	  );
 | 
						|
}
 | 
						|
 | 
						|
static int applicable(const solver *ego, const problem *p, const planner *plnr)
 | 
						|
{
 | 
						|
     return (!NO_SLOWP(plnr) && applicable0(ego, p));
 | 
						|
}
 | 
						|
 | 
						|
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
 | 
						|
{
 | 
						|
     P *pln;
 | 
						|
     const problem_rdft *p;
 | 
						|
     plan *cld;
 | 
						|
     R *buf;
 | 
						|
     INT n;
 | 
						|
     opcnt ops;
 | 
						|
 | 
						|
     static const plan_adt padt = {
 | 
						|
	  X(rdft_solve), awake, print, destroy
 | 
						|
     };
 | 
						|
 | 
						|
     if (!applicable(ego_, p_, plnr))
 | 
						|
          return (plan *)0;
 | 
						|
 | 
						|
     p = (const problem_rdft *) p_;
 | 
						|
 | 
						|
     n = p->sz->dims[0].n;
 | 
						|
     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
 | 
						|
 | 
						|
     cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1),
 | 
						|
                                                   X(mktensor_0d)(),
 | 
						|
                                                   buf, buf, R2HC));
 | 
						|
     X(ifree)(buf);
 | 
						|
     if (!cld)
 | 
						|
          return (plan *)0;
 | 
						|
 | 
						|
     switch (p->kind[0]) {
 | 
						|
	 case REDFT01: pln = MKPLAN_RDFT(P, &padt, apply_re01); break;
 | 
						|
	 case REDFT10: pln = MKPLAN_RDFT(P, &padt, apply_re10); break;
 | 
						|
	 case RODFT01: pln = MKPLAN_RDFT(P, &padt, apply_ro01); break;
 | 
						|
	 case RODFT10: pln = MKPLAN_RDFT(P, &padt, apply_ro10); break;
 | 
						|
	 default: A(0); return (plan*)0;
 | 
						|
     }
 | 
						|
 | 
						|
     pln->n = n;
 | 
						|
     pln->is = p->sz->dims[0].is;
 | 
						|
     pln->os = p->sz->dims[0].os;
 | 
						|
     pln->cld = cld;
 | 
						|
     pln->td = 0;
 | 
						|
     pln->kind = p->kind[0];
 | 
						|
     
 | 
						|
     X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
 | 
						|
     
 | 
						|
     X(ops_zero)(&ops);
 | 
						|
     ops.other = 4 + (n-1)/2 * 10 + (1 - n % 2) * 5;
 | 
						|
     if (p->kind[0] == REDFT01 || p->kind[0] == RODFT01) {
 | 
						|
	  ops.add = (n-1)/2 * 6;
 | 
						|
	  ops.mul = (n-1)/2 * 4 + (1 - n % 2) * 2;
 | 
						|
     }
 | 
						|
     else { /* 10 transforms */
 | 
						|
	  ops.add = (n-1)/2 * 2;
 | 
						|
	  ops.mul = 1 + (n-1)/2 * 6 + (1 - n % 2) * 2;
 | 
						|
     }
 | 
						|
     
 | 
						|
     X(ops_zero)(&pln->super.super.ops);
 | 
						|
     X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
 | 
						|
     X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
 | 
						|
 | 
						|
     return &(pln->super.super);
 | 
						|
}
 | 
						|
 | 
						|
/* constructor */
 | 
						|
static solver *mksolver(void)
 | 
						|
{
 | 
						|
     static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
 | 
						|
     S *slv = MKSOLVER(S, &sadt);
 | 
						|
     return &(slv->super);
 | 
						|
}
 | 
						|
 | 
						|
void X(reodft010e_r2hc_register)(planner *p)
 | 
						|
{
 | 
						|
     REGISTER_SOLVER(p, mksolver());
 | 
						|
}
 |