218 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			218 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* This file was automatically generated --- DO NOT EDIT */
 | |
| /* Generated on Tue Sep 14 10:46:10 EDT 2021 */
 | |
| 
 | |
| #include "rdft/codelet-rdft.h"
 | |
| 
 | |
| #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 9 -name r2cf_9 -include rdft/scalar/r2cf.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 38 FP additions, 30 FP multiplications,
 | |
|  * (or, 12 additions, 4 multiplications, 26 fused multiply/add),
 | |
|  * 48 stack variables, 18 constants, and 18 memory accesses
 | |
|  */
 | |
| #include "rdft/scalar/r2cf.h"
 | |
| 
 | |
| static void r2cf_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
 | |
| {
 | |
|      DK(KP907603734, +0.907603734547952313649323976213898122064543220);
 | |
|      DK(KP347296355, +0.347296355333860697703433253538629592000751354);
 | |
|      DK(KP852868531, +0.852868531952443209628250963940074071936020296);
 | |
|      DK(KP666666666, +0.666666666666666666666666666666666666666666667);
 | |
|      DK(KP898197570, +0.898197570222573798468955502359086394667167570);
 | |
|      DK(KP673648177, +0.673648177666930348851716626769314796000375677);
 | |
|      DK(KP879385241, +0.879385241571816768108218554649462939872416269);
 | |
|      DK(KP984807753, +0.984807753012208059366743024589523013670643252);
 | |
|      DK(KP939692620, +0.939692620785908384054109277324731469936208134);
 | |
|      DK(KP394930843, +0.394930843634698457567117349190734585290304520);
 | |
|      DK(KP866025403, +0.866025403784438646763723170752936183471402627);
 | |
|      DK(KP586256827, +0.586256827714544512072145703099641959914944179);
 | |
|      DK(KP726681596, +0.726681596905677465811651808188092531873167623);
 | |
|      DK(KP968908795, +0.968908795874236621082202410917456709164223497);
 | |
|      DK(KP203604859, +0.203604859554852403062088995281827210665664861);
 | |
|      DK(KP152703644, +0.152703644666139302296566746461370407999248646);
 | |
|      DK(KP500000000, +0.500000000000000000000000000000000000000000000);
 | |
|      DK(KP184792530, +0.184792530904095372701352047572203755870913560);
 | |
|      {
 | |
| 	  INT i;
 | |
| 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
 | |
| 	       E T1, T4, To, Tk, Ta, Tu, Tf, Th, Tj, Tx, Tl, Tm, Ty, Tq, T2;
 | |
| 	       E T3, T5, Tg;
 | |
| 	       T1 = R0[0];
 | |
| 	       T2 = R1[WS(rs, 1)];
 | |
| 	       T3 = R0[WS(rs, 3)];
 | |
| 	       T4 = T2 + T3;
 | |
| 	       To = T3 - T2;
 | |
| 	       {
 | |
| 		    E T6, Tb, T9, Te, Ti;
 | |
| 		    T6 = R1[0];
 | |
| 		    Tb = R0[WS(rs, 1)];
 | |
| 		    {
 | |
| 			 E T7, T8, Tc, Td;
 | |
| 			 T7 = R0[WS(rs, 2)];
 | |
| 			 T8 = R1[WS(rs, 3)];
 | |
| 			 T9 = T7 + T8;
 | |
| 			 Tk = T7 - T8;
 | |
| 			 Tc = R1[WS(rs, 2)];
 | |
| 			 Td = R0[WS(rs, 4)];
 | |
| 			 Te = Tc + Td;
 | |
| 			 Ti = Td - Tc;
 | |
| 		    }
 | |
| 		    Ta = T6 + T9;
 | |
| 		    Tu = FMA(KP184792530, Tk, Ti);
 | |
| 		    Tf = Tb + Te;
 | |
| 		    Th = FNMS(KP500000000, Te, Tb);
 | |
| 		    Tj = FNMS(KP152703644, Ti, Th);
 | |
| 		    Tx = FMA(KP203604859, Th, Ti);
 | |
| 		    Tl = FMS(KP500000000, T9, T6);
 | |
| 		    Tm = FNMS(KP968908795, Tl, Tk);
 | |
| 		    Ty = FMA(KP726681596, Tk, Tl);
 | |
| 		    Tq = FMA(KP586256827, Tl, Ti);
 | |
| 	       }
 | |
| 	       Ci[WS(csi, 3)] = KP866025403 * (Tf - Ta);
 | |
| 	       T5 = T1 + T4;
 | |
| 	       Tg = Ta + Tf;
 | |
| 	       Cr[WS(csr, 3)] = FNMS(KP500000000, Tg, T5);
 | |
| 	       Cr[0] = T5 + Tg;
 | |
| 	       {
 | |
| 		    E Tv, Tt, Tn, TC, TB;
 | |
| 		    Tt = FMA(KP394930843, Th, To);
 | |
| 		    Tv = FNMS(KP939692620, Tu, Tt);
 | |
| 		    Ci[WS(csi, 2)] = KP984807753 * (FNMS(KP879385241, Tv, Tl));
 | |
| 		    Tn = FMA(KP673648177, Tm, Tj);
 | |
| 		    TB = FMA(KP898197570, Ty, Tx);
 | |
| 		    TC = FMA(KP666666666, Tn, TB);
 | |
| 		    Ci[WS(csi, 1)] = -(KP984807753 * (FNMS(KP879385241, To, Tn)));
 | |
| 		    Ci[WS(csi, 4)] = KP866025403 * (FMA(KP852868531, TC, To));
 | |
| 		    {
 | |
| 			 E Tp, Ts, Tz, TA, Tr, Tw;
 | |
| 			 Tp = FNMS(KP500000000, T4, T1);
 | |
| 			 Tr = FNMS(KP347296355, Tq, Tk);
 | |
| 			 Ts = FNMS(KP907603734, Tr, Th);
 | |
| 			 Tw = FNMS(KP673648177, Tm, Tj);
 | |
| 			 Tz = FNMS(KP898197570, Ty, Tx);
 | |
| 			 TA = FNMS(KP500000000, Tz, Tw);
 | |
| 			 Cr[WS(csr, 2)] = FNMS(KP939692620, Ts, Tp);
 | |
| 			 Cr[WS(csr, 1)] = FMA(KP852868531, Tz, Tp);
 | |
| 			 Cr[WS(csr, 4)] = FMA(KP852868531, TA, Tp);
 | |
| 		    }
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const kr2c_desc desc = { 9, "r2cf_9", { 12, 4, 26, 0 }, &GENUS };
 | |
| 
 | |
| void X(codelet_r2cf_9) (planner *p) { X(kr2c_register) (p, r2cf_9, &desc);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 9 -name r2cf_9 -include rdft/scalar/r2cf.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 38 FP additions, 26 FP multiplications,
 | |
|  * (or, 21 additions, 9 multiplications, 17 fused multiply/add),
 | |
|  * 36 stack variables, 14 constants, and 18 memory accesses
 | |
|  */
 | |
| #include "rdft/scalar/r2cf.h"
 | |
| 
 | |
| static void r2cf_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
 | |
| {
 | |
|      DK(KP939692620, +0.939692620785908384054109277324731469936208134);
 | |
|      DK(KP296198132, +0.296198132726023843175338011893050938967728390);
 | |
|      DK(KP342020143, +0.342020143325668733044099614682259580763083368);
 | |
|      DK(KP813797681, +0.813797681349373692844693217248393223289101568);
 | |
|      DK(KP984807753, +0.984807753012208059366743024589523013670643252);
 | |
|      DK(KP150383733, +0.150383733180435296639271897612501926072238258);
 | |
|      DK(KP642787609, +0.642787609686539326322643409907263432907559884);
 | |
|      DK(KP663413948, +0.663413948168938396205421319635891297216863310);
 | |
|      DK(KP852868531, +0.852868531952443209628250963940074071936020296);
 | |
|      DK(KP173648177, +0.173648177666930348851716626769314796000375677);
 | |
|      DK(KP556670399, +0.556670399226419366452912952047023132968291906);
 | |
|      DK(KP766044443, +0.766044443118978035202392650555416673935832457);
 | |
|      DK(KP866025403, +0.866025403784438646763723170752936183471402627);
 | |
|      DK(KP500000000, +0.500000000000000000000000000000000000000000000);
 | |
|      {
 | |
| 	  INT i;
 | |
| 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
 | |
| 	       E T1, T4, Tr, Ta, Tl, Ti, Tf, Tk, Tj, T2, T3, T5, Tg;
 | |
| 	       T1 = R0[0];
 | |
| 	       T2 = R1[WS(rs, 1)];
 | |
| 	       T3 = R0[WS(rs, 3)];
 | |
| 	       T4 = T2 + T3;
 | |
| 	       Tr = T3 - T2;
 | |
| 	       {
 | |
| 		    E T6, T7, T8, T9;
 | |
| 		    T6 = R1[0];
 | |
| 		    T7 = R0[WS(rs, 2)];
 | |
| 		    T8 = R1[WS(rs, 3)];
 | |
| 		    T9 = T7 + T8;
 | |
| 		    Ta = T6 + T9;
 | |
| 		    Tl = T8 - T7;
 | |
| 		    Ti = FNMS(KP500000000, T9, T6);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tb, Tc, Td, Te;
 | |
| 		    Tb = R0[WS(rs, 1)];
 | |
| 		    Tc = R1[WS(rs, 2)];
 | |
| 		    Td = R0[WS(rs, 4)];
 | |
| 		    Te = Tc + Td;
 | |
| 		    Tf = Tb + Te;
 | |
| 		    Tk = FNMS(KP500000000, Te, Tb);
 | |
| 		    Tj = Td - Tc;
 | |
| 	       }
 | |
| 	       Ci[WS(csi, 3)] = KP866025403 * (Tf - Ta);
 | |
| 	       T5 = T1 + T4;
 | |
| 	       Tg = Ta + Tf;
 | |
| 	       Cr[WS(csr, 3)] = FNMS(KP500000000, Tg, T5);
 | |
| 	       Cr[0] = T5 + Tg;
 | |
| 	       {
 | |
| 		    E Tt, Th, Tm, Tn, To, Tp, Tq, Ts;
 | |
| 		    Tt = KP866025403 * Tr;
 | |
| 		    Th = FNMS(KP500000000, T4, T1);
 | |
| 		    Tm = FMA(KP766044443, Ti, KP556670399 * Tl);
 | |
| 		    Tn = FMA(KP173648177, Tk, KP852868531 * Tj);
 | |
| 		    To = Tm + Tn;
 | |
| 		    Tp = FNMS(KP642787609, Ti, KP663413948 * Tl);
 | |
| 		    Tq = FNMS(KP984807753, Tk, KP150383733 * Tj);
 | |
| 		    Ts = Tp + Tq;
 | |
| 		    Cr[WS(csr, 1)] = Th + To;
 | |
| 		    Ci[WS(csi, 1)] = Tt + Ts;
 | |
| 		    Cr[WS(csr, 4)] = FMA(KP866025403, Tp - Tq, Th) - (KP500000000 * To);
 | |
| 		    Ci[WS(csi, 4)] = FNMS(KP500000000, Ts, KP866025403 * (Tr + (Tn - Tm)));
 | |
| 		    Ci[WS(csi, 2)] = FNMS(KP342020143, Tk, KP813797681 * Tj) + FNMA(KP150383733, Tl, KP984807753 * Ti) - Tt;
 | |
| 		    Cr[WS(csr, 2)] = FMA(KP173648177, Ti, Th) + FNMA(KP296198132, Tj, KP939692620 * Tk) - (KP852868531 * Tl);
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const kr2c_desc desc = { 9, "r2cf_9", { 21, 9, 17, 0 }, &GENUS };
 | |
| 
 | |
| void X(codelet_r2cf_9) (planner *p) { X(kr2c_register) (p, r2cf_9, &desc);
 | |
| }
 | |
| 
 | |
| #endif
 |