239 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			239 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 | 
						|
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
#include "rdft/rdft.h"
 | 
						|
#include <stddef.h>
 | 
						|
 | 
						|
static void destroy(problem *ego_)
 | 
						|
{
 | 
						|
     problem_rdft *ego = (problem_rdft *) ego_;
 | 
						|
#if !defined(STRUCT_HACK_C99) && !defined(STRUCT_HACK_KR)
 | 
						|
     X(ifree0)(ego->kind);
 | 
						|
#endif
 | 
						|
     X(tensor_destroy2)(ego->vecsz, ego->sz);
 | 
						|
     X(ifree)(ego_);
 | 
						|
}
 | 
						|
 | 
						|
static void kind_hash(md5 *m, const rdft_kind *kind, int rnk)
 | 
						|
{
 | 
						|
     int i;
 | 
						|
     for (i = 0; i < rnk; ++i)
 | 
						|
	  X(md5int)(m, kind[i]);
 | 
						|
}
 | 
						|
 | 
						|
static void hash(const problem *p_, md5 *m)
 | 
						|
{
 | 
						|
     const problem_rdft *p = (const problem_rdft *) p_;
 | 
						|
     X(md5puts)(m, "rdft");
 | 
						|
     X(md5int)(m, p->I == p->O);
 | 
						|
     kind_hash(m, p->kind, p->sz->rnk);
 | 
						|
     X(md5int)(m, X(ialignment_of)(p->I));
 | 
						|
     X(md5int)(m, X(ialignment_of)(p->O));
 | 
						|
     X(tensor_md5)(m, p->sz);
 | 
						|
     X(tensor_md5)(m, p->vecsz);
 | 
						|
}
 | 
						|
 | 
						|
static void recur(const iodim *dims, int rnk, R *I)
 | 
						|
{
 | 
						|
     if (rnk == RNK_MINFTY)
 | 
						|
          return;
 | 
						|
     else if (rnk == 0)
 | 
						|
          I[0] = K(0.0);
 | 
						|
     else if (rnk > 0) {
 | 
						|
          INT i, n = dims[0].n, is = dims[0].is;
 | 
						|
 | 
						|
	  if (rnk == 1) {
 | 
						|
	       /* this case is redundant but faster */
 | 
						|
	       for (i = 0; i < n; ++i)
 | 
						|
		    I[i * is] = K(0.0);
 | 
						|
	  } else {
 | 
						|
	       for (i = 0; i < n; ++i)
 | 
						|
		    recur(dims + 1, rnk - 1, I + i * is);
 | 
						|
	  }
 | 
						|
     }
 | 
						|
}
 | 
						|
 | 
						|
void X(rdft_zerotens)(tensor *sz, R *I)
 | 
						|
{
 | 
						|
     recur(sz->dims, sz->rnk, I);
 | 
						|
}
 | 
						|
 | 
						|
#define KSTR_LEN 8
 | 
						|
 | 
						|
const char *X(rdft_kind_str)(rdft_kind kind)
 | 
						|
{
 | 
						|
     static const char kstr[][KSTR_LEN] = {
 | 
						|
	  "r2hc", "r2hc01", "r2hc10", "r2hc11",
 | 
						|
	  "hc2r", "hc2r01", "hc2r10", "hc2r11",
 | 
						|
	  "dht",
 | 
						|
	  "redft00", "redft01", "redft10", "redft11",
 | 
						|
	  "rodft00", "rodft01", "rodft10", "rodft11"
 | 
						|
     };
 | 
						|
     A(kind >= 0 && kind < sizeof(kstr) / KSTR_LEN);
 | 
						|
     return kstr[kind];
 | 
						|
}
 | 
						|
 | 
						|
static void print(const problem *ego_, printer *p)
 | 
						|
{
 | 
						|
     const problem_rdft *ego = (const problem_rdft *) ego_;
 | 
						|
     int i;
 | 
						|
     p->print(p, "(rdft %d %D %T %T", 
 | 
						|
	      X(ialignment_of)(ego->I),
 | 
						|
	      (INT)(ego->O - ego->I), 
 | 
						|
	      ego->sz,
 | 
						|
	      ego->vecsz);
 | 
						|
     for (i = 0; i < ego->sz->rnk; ++i)
 | 
						|
	  p->print(p, " %d", (int)ego->kind[i]);
 | 
						|
     p->print(p, ")");
 | 
						|
}
 | 
						|
 | 
						|
static void zero(const problem *ego_)
 | 
						|
{
 | 
						|
     const problem_rdft *ego = (const problem_rdft *) ego_;
 | 
						|
     tensor *sz = X(tensor_append)(ego->vecsz, ego->sz);
 | 
						|
     X(rdft_zerotens)(sz, UNTAINT(ego->I));
 | 
						|
     X(tensor_destroy)(sz);
 | 
						|
}
 | 
						|
 | 
						|
static const problem_adt padt =
 | 
						|
{
 | 
						|
     PROBLEM_RDFT,
 | 
						|
     hash,
 | 
						|
     zero,
 | 
						|
     print,
 | 
						|
     destroy
 | 
						|
};
 | 
						|
 | 
						|
/* Dimensions of size 1 that are not REDFT/RODFT are no-ops and can be
 | 
						|
   eliminated.  REDFT/RODFT unit dimensions often have factors of 2.0
 | 
						|
   and suchlike from normalization and phases, although in principle
 | 
						|
   these constant factors from different dimensions could be combined. */
 | 
						|
static int nontrivial(const iodim *d, rdft_kind kind)
 | 
						|
{
 | 
						|
     return (d->n > 1 || kind == R2HC11 || kind == HC2R11
 | 
						|
	     || (REODFT_KINDP(kind) && kind != REDFT01 && kind != RODFT01));
 | 
						|
}
 | 
						|
 | 
						|
problem *X(mkproblem_rdft)(const tensor *sz, const tensor *vecsz,
 | 
						|
			   R *I, R *O, const rdft_kind *kind)
 | 
						|
{
 | 
						|
     problem_rdft *ego;
 | 
						|
     int rnk = sz->rnk;
 | 
						|
     int i;
 | 
						|
 | 
						|
     A(X(tensor_kosherp)(sz));
 | 
						|
     A(X(tensor_kosherp)(vecsz));
 | 
						|
     A(FINITE_RNK(sz->rnk));
 | 
						|
 | 
						|
     if (UNTAINT(I) == UNTAINT(O))
 | 
						|
	  I = O = JOIN_TAINT(I, O);
 | 
						|
 | 
						|
     if (I == O && !X(tensor_inplace_locations)(sz, vecsz))
 | 
						|
	  return X(mkproblem_unsolvable)();
 | 
						|
 | 
						|
     for (i = rnk = 0; i < sz->rnk; ++i) {
 | 
						|
          A(sz->dims[i].n > 0);
 | 
						|
          if (nontrivial(sz->dims + i, kind[i]))
 | 
						|
               ++rnk;
 | 
						|
     }
 | 
						|
 | 
						|
#if defined(STRUCT_HACK_KR)
 | 
						|
     ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft)
 | 
						|
					 + sizeof(rdft_kind)
 | 
						|
					 * (rnk > 0 ? rnk - 1u : 0u), &padt);
 | 
						|
#elif defined(STRUCT_HACK_C99)
 | 
						|
     ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft)
 | 
						|
					 + sizeof(rdft_kind) * (unsigned)rnk, &padt);
 | 
						|
#else
 | 
						|
     ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft), &padt);
 | 
						|
     ego->kind = (rdft_kind *) MALLOC(sizeof(rdft_kind) * (unsigned)rnk, PROBLEMS);
 | 
						|
#endif
 | 
						|
 | 
						|
     /* do compression and sorting as in X(tensor_compress), but take
 | 
						|
	transform kind into account (sigh) */
 | 
						|
     ego->sz = X(mktensor)(rnk);
 | 
						|
     for (i = rnk = 0; i < sz->rnk; ++i) {
 | 
						|
          if (nontrivial(sz->dims + i, kind[i])) {
 | 
						|
	       ego->kind[rnk] = kind[i];
 | 
						|
               ego->sz->dims[rnk++] = sz->dims[i];
 | 
						|
	  }
 | 
						|
     }
 | 
						|
     for (i = 0; i + 1 < rnk; ++i) {
 | 
						|
	  int j;
 | 
						|
	  for (j = i + 1; j < rnk; ++j)
 | 
						|
	       if (X(dimcmp)(ego->sz->dims + i, ego->sz->dims + j) > 0) {
 | 
						|
		    iodim dswap;
 | 
						|
		    rdft_kind kswap;
 | 
						|
		    dswap = ego->sz->dims[i];
 | 
						|
		    ego->sz->dims[i] = ego->sz->dims[j];
 | 
						|
		    ego->sz->dims[j] = dswap;
 | 
						|
		    kswap = ego->kind[i];
 | 
						|
		    ego->kind[i] = ego->kind[j];
 | 
						|
		    ego->kind[j] = kswap;
 | 
						|
	       }
 | 
						|
     }
 | 
						|
 | 
						|
     for (i = 0; i < rnk; ++i)
 | 
						|
	  if (ego->sz->dims[i].n == 2 && (ego->kind[i] == REDFT00
 | 
						|
					  || ego->kind[i] == DHT
 | 
						|
					  || ego->kind[i] == HC2R))
 | 
						|
	       ego->kind[i] = R2HC; /* size-2 transforms are equivalent */
 | 
						|
 | 
						|
     ego->vecsz = X(tensor_compress_contiguous)(vecsz);
 | 
						|
     ego->I = I;
 | 
						|
     ego->O = O;
 | 
						|
 | 
						|
     A(FINITE_RNK(ego->sz->rnk));
 | 
						|
 | 
						|
     return &(ego->super);
 | 
						|
}
 | 
						|
 | 
						|
/* Same as X(mkproblem_rdft), but also destroy input tensors. */
 | 
						|
problem *X(mkproblem_rdft_d)(tensor *sz, tensor *vecsz,
 | 
						|
			     R *I, R *O, const rdft_kind *kind)
 | 
						|
{
 | 
						|
     problem *p = X(mkproblem_rdft)(sz, vecsz, I, O, kind);
 | 
						|
     X(tensor_destroy2)(vecsz, sz);
 | 
						|
     return p;
 | 
						|
}
 | 
						|
 | 
						|
/* As above, but for rnk <= 1 only and takes a scalar kind parameter */
 | 
						|
problem *X(mkproblem_rdft_1)(const tensor *sz, const tensor *vecsz,
 | 
						|
			     R *I, R *O, rdft_kind kind)
 | 
						|
{
 | 
						|
     A(sz->rnk <= 1);
 | 
						|
     return X(mkproblem_rdft)(sz, vecsz, I, O, &kind);
 | 
						|
}
 | 
						|
 | 
						|
problem *X(mkproblem_rdft_1_d)(tensor *sz, tensor *vecsz,
 | 
						|
			       R *I, R *O, rdft_kind kind)
 | 
						|
{
 | 
						|
     A(sz->rnk <= 1);
 | 
						|
     return X(mkproblem_rdft_d)(sz, vecsz, I, O, &kind);
 | 
						|
}
 | 
						|
 | 
						|
/* create a zero-dimensional problem */
 | 
						|
problem *X(mkproblem_rdft_0_d)(tensor *vecsz, R *I, R *O)
 | 
						|
{
 | 
						|
     return X(mkproblem_rdft_d)(X(mktensor_0d)(), vecsz, I, O, 
 | 
						|
				(const rdft_kind *)0);
 | 
						|
}
 |