317 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			317 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* This file was automatically generated --- DO NOT EDIT */
 | |
| /* Generated on Tue Sep 14 10:44:41 EDT 2021 */
 | |
| 
 | |
| #include "dft/codelet-dft.h"
 | |
| 
 | |
| #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 3 -name q1_3 -include dft/scalar/q.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 48 FP additions, 42 FP multiplications,
 | |
|  * (or, 18 additions, 12 multiplications, 30 fused multiply/add),
 | |
|  * 35 stack variables, 2 constants, and 36 memory accesses
 | |
|  */
 | |
| #include "dft/scalar/q.h"
 | |
| 
 | |
| static void q1_3(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      DK(KP866025403, +0.866025403784438646763723170752936183471402627);
 | |
|      DK(KP500000000, +0.500000000000000000000000000000000000000000000);
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  for (m = mb, W = W + (mb * 4); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 4, MAKE_VOLATILE_STRIDE(6, rs), MAKE_VOLATILE_STRIDE(0, vs)) {
 | |
| 	       E T1, T4, T6, Tg, Td, Te, T9, Tf, Tp, Ts, Tu, TE, TB, TC, Tx;
 | |
| 	       E TD, TZ, T10, TV, T11, TN, TQ, TS, T12;
 | |
| 	       {
 | |
| 		    E T2, T3, Tv, Tw;
 | |
| 		    T1 = rio[0];
 | |
| 		    T2 = rio[WS(rs, 1)];
 | |
| 		    T3 = rio[WS(rs, 2)];
 | |
| 		    T4 = T2 + T3;
 | |
| 		    T6 = FNMS(KP500000000, T4, T1);
 | |
| 		    Tg = T3 - T2;
 | |
| 		    {
 | |
| 			 E T7, T8, Tq, Tr;
 | |
| 			 Td = iio[0];
 | |
| 			 T7 = iio[WS(rs, 1)];
 | |
| 			 T8 = iio[WS(rs, 2)];
 | |
| 			 Te = T7 + T8;
 | |
| 			 T9 = T7 - T8;
 | |
| 			 Tf = FNMS(KP500000000, Te, Td);
 | |
| 			 Tp = rio[WS(vs, 1)];
 | |
| 			 Tq = rio[WS(vs, 1) + WS(rs, 1)];
 | |
| 			 Tr = rio[WS(vs, 1) + WS(rs, 2)];
 | |
| 			 Ts = Tq + Tr;
 | |
| 			 Tu = FNMS(KP500000000, Ts, Tp);
 | |
| 			 TE = Tr - Tq;
 | |
| 		    }
 | |
| 		    TB = iio[WS(vs, 1)];
 | |
| 		    Tv = iio[WS(vs, 1) + WS(rs, 1)];
 | |
| 		    Tw = iio[WS(vs, 1) + WS(rs, 2)];
 | |
| 		    TC = Tv + Tw;
 | |
| 		    Tx = Tv - Tw;
 | |
| 		    TD = FNMS(KP500000000, TC, TB);
 | |
| 		    {
 | |
| 			 E TT, TU, TO, TP;
 | |
| 			 TZ = iio[WS(vs, 2)];
 | |
| 			 TT = iio[WS(vs, 2) + WS(rs, 1)];
 | |
| 			 TU = iio[WS(vs, 2) + WS(rs, 2)];
 | |
| 			 T10 = TT + TU;
 | |
| 			 TV = TT - TU;
 | |
| 			 T11 = FNMS(KP500000000, T10, TZ);
 | |
| 			 TN = rio[WS(vs, 2)];
 | |
| 			 TO = rio[WS(vs, 2) + WS(rs, 1)];
 | |
| 			 TP = rio[WS(vs, 2) + WS(rs, 2)];
 | |
| 			 TQ = TO + TP;
 | |
| 			 TS = FNMS(KP500000000, TQ, TN);
 | |
| 			 T12 = TP - TO;
 | |
| 		    }
 | |
| 	       }
 | |
| 	       rio[0] = T1 + T4;
 | |
| 	       iio[0] = Td + Te;
 | |
| 	       rio[WS(rs, 1)] = Tp + Ts;
 | |
| 	       iio[WS(rs, 1)] = TB + TC;
 | |
| 	       iio[WS(rs, 2)] = TZ + T10;
 | |
| 	       rio[WS(rs, 2)] = TN + TQ;
 | |
| 	       {
 | |
| 		    E Ta, Th, Tb, Ti, T5, Tc;
 | |
| 		    Ta = FMA(KP866025403, T9, T6);
 | |
| 		    Th = FMA(KP866025403, Tg, Tf);
 | |
| 		    T5 = W[0];
 | |
| 		    Tb = T5 * Ta;
 | |
| 		    Ti = T5 * Th;
 | |
| 		    Tc = W[1];
 | |
| 		    rio[WS(vs, 1)] = FMA(Tc, Th, Tb);
 | |
| 		    iio[WS(vs, 1)] = FNMS(Tc, Ta, Ti);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T16, T19, T17, T1a, T15, T18;
 | |
| 		    T16 = FNMS(KP866025403, TV, TS);
 | |
| 		    T19 = FNMS(KP866025403, T12, T11);
 | |
| 		    T15 = W[2];
 | |
| 		    T17 = T15 * T16;
 | |
| 		    T1a = T15 * T19;
 | |
| 		    T18 = W[3];
 | |
| 		    rio[WS(vs, 2) + WS(rs, 2)] = FMA(T18, T19, T17);
 | |
| 		    iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T18, T16, T1a);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TI, TL, TJ, TM, TH, TK;
 | |
| 		    TI = FNMS(KP866025403, Tx, Tu);
 | |
| 		    TL = FNMS(KP866025403, TE, TD);
 | |
| 		    TH = W[2];
 | |
| 		    TJ = TH * TI;
 | |
| 		    TM = TH * TL;
 | |
| 		    TK = W[3];
 | |
| 		    rio[WS(vs, 2) + WS(rs, 1)] = FMA(TK, TL, TJ);
 | |
| 		    iio[WS(vs, 2) + WS(rs, 1)] = FNMS(TK, TI, TM);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Ty, TF, Tz, TG, Tt, TA;
 | |
| 		    Ty = FMA(KP866025403, Tx, Tu);
 | |
| 		    TF = FMA(KP866025403, TE, TD);
 | |
| 		    Tt = W[0];
 | |
| 		    Tz = Tt * Ty;
 | |
| 		    TG = Tt * TF;
 | |
| 		    TA = W[1];
 | |
| 		    rio[WS(vs, 1) + WS(rs, 1)] = FMA(TA, TF, Tz);
 | |
| 		    iio[WS(vs, 1) + WS(rs, 1)] = FNMS(TA, Ty, TG);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TW, T13, TX, T14, TR, TY;
 | |
| 		    TW = FMA(KP866025403, TV, TS);
 | |
| 		    T13 = FMA(KP866025403, T12, T11);
 | |
| 		    TR = W[0];
 | |
| 		    TX = TR * TW;
 | |
| 		    T14 = TR * T13;
 | |
| 		    TY = W[1];
 | |
| 		    rio[WS(vs, 1) + WS(rs, 2)] = FMA(TY, T13, TX);
 | |
| 		    iio[WS(vs, 1) + WS(rs, 2)] = FNMS(TY, TW, T14);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tk, Tn, Tl, To, Tj, Tm;
 | |
| 		    Tk = FNMS(KP866025403, T9, T6);
 | |
| 		    Tn = FNMS(KP866025403, Tg, Tf);
 | |
| 		    Tj = W[2];
 | |
| 		    Tl = Tj * Tk;
 | |
| 		    To = Tj * Tn;
 | |
| 		    Tm = W[3];
 | |
| 		    rio[WS(vs, 2)] = FMA(Tm, Tn, Tl);
 | |
| 		    iio[WS(vs, 2)] = FNMS(Tm, Tk, To);
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      { TW_FULL, 0, 3 },
 | |
|      { TW_NEXT, 1, 0 }
 | |
| };
 | |
| 
 | |
| static const ct_desc desc = { 3, "q1_3", twinstr, &GENUS, { 18, 12, 30, 0 }, 0, 0, 0 };
 | |
| 
 | |
| void X(codelet_q1_3) (planner *p) {
 | |
|      X(kdft_difsq_register) (p, q1_3, &desc);
 | |
| }
 | |
| #else
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 3 -name q1_3 -include dft/scalar/q.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 48 FP additions, 36 FP multiplications,
 | |
|  * (or, 30 additions, 18 multiplications, 18 fused multiply/add),
 | |
|  * 35 stack variables, 2 constants, and 36 memory accesses
 | |
|  */
 | |
| #include "dft/scalar/q.h"
 | |
| 
 | |
| static void q1_3(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      DK(KP866025403, +0.866025403784438646763723170752936183471402627);
 | |
|      DK(KP500000000, +0.500000000000000000000000000000000000000000000);
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  for (m = mb, W = W + (mb * 4); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 4, MAKE_VOLATILE_STRIDE(6, rs), MAKE_VOLATILE_STRIDE(0, vs)) {
 | |
| 	       E T1, T4, T6, Tc, Td, Te, T9, Tf, Tl, To, Tq, Tw, Tx, Ty, Tt;
 | |
| 	       E Tz, TR, TS, TN, TT, TF, TI, TK, TQ;
 | |
| 	       {
 | |
| 		    E T2, T3, Tr, Ts;
 | |
| 		    T1 = rio[0];
 | |
| 		    T2 = rio[WS(rs, 1)];
 | |
| 		    T3 = rio[WS(rs, 2)];
 | |
| 		    T4 = T2 + T3;
 | |
| 		    T6 = FNMS(KP500000000, T4, T1);
 | |
| 		    Tc = KP866025403 * (T3 - T2);
 | |
| 		    {
 | |
| 			 E T7, T8, Tm, Tn;
 | |
| 			 Td = iio[0];
 | |
| 			 T7 = iio[WS(rs, 1)];
 | |
| 			 T8 = iio[WS(rs, 2)];
 | |
| 			 Te = T7 + T8;
 | |
| 			 T9 = KP866025403 * (T7 - T8);
 | |
| 			 Tf = FNMS(KP500000000, Te, Td);
 | |
| 			 Tl = rio[WS(vs, 1)];
 | |
| 			 Tm = rio[WS(vs, 1) + WS(rs, 1)];
 | |
| 			 Tn = rio[WS(vs, 1) + WS(rs, 2)];
 | |
| 			 To = Tm + Tn;
 | |
| 			 Tq = FNMS(KP500000000, To, Tl);
 | |
| 			 Tw = KP866025403 * (Tn - Tm);
 | |
| 		    }
 | |
| 		    Tx = iio[WS(vs, 1)];
 | |
| 		    Tr = iio[WS(vs, 1) + WS(rs, 1)];
 | |
| 		    Ts = iio[WS(vs, 1) + WS(rs, 2)];
 | |
| 		    Ty = Tr + Ts;
 | |
| 		    Tt = KP866025403 * (Tr - Ts);
 | |
| 		    Tz = FNMS(KP500000000, Ty, Tx);
 | |
| 		    {
 | |
| 			 E TL, TM, TG, TH;
 | |
| 			 TR = iio[WS(vs, 2)];
 | |
| 			 TL = iio[WS(vs, 2) + WS(rs, 1)];
 | |
| 			 TM = iio[WS(vs, 2) + WS(rs, 2)];
 | |
| 			 TS = TL + TM;
 | |
| 			 TN = KP866025403 * (TL - TM);
 | |
| 			 TT = FNMS(KP500000000, TS, TR);
 | |
| 			 TF = rio[WS(vs, 2)];
 | |
| 			 TG = rio[WS(vs, 2) + WS(rs, 1)];
 | |
| 			 TH = rio[WS(vs, 2) + WS(rs, 2)];
 | |
| 			 TI = TG + TH;
 | |
| 			 TK = FNMS(KP500000000, TI, TF);
 | |
| 			 TQ = KP866025403 * (TH - TG);
 | |
| 		    }
 | |
| 	       }
 | |
| 	       rio[0] = T1 + T4;
 | |
| 	       iio[0] = Td + Te;
 | |
| 	       rio[WS(rs, 1)] = Tl + To;
 | |
| 	       iio[WS(rs, 1)] = Tx + Ty;
 | |
| 	       iio[WS(rs, 2)] = TR + TS;
 | |
| 	       rio[WS(rs, 2)] = TF + TI;
 | |
| 	       {
 | |
| 		    E Ta, Tg, T5, Tb;
 | |
| 		    Ta = T6 + T9;
 | |
| 		    Tg = Tc + Tf;
 | |
| 		    T5 = W[0];
 | |
| 		    Tb = W[1];
 | |
| 		    rio[WS(vs, 1)] = FMA(T5, Ta, Tb * Tg);
 | |
| 		    iio[WS(vs, 1)] = FNMS(Tb, Ta, T5 * Tg);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TW, TY, TV, TX;
 | |
| 		    TW = TK - TN;
 | |
| 		    TY = TT - TQ;
 | |
| 		    TV = W[2];
 | |
| 		    TX = W[3];
 | |
| 		    rio[WS(vs, 2) + WS(rs, 2)] = FMA(TV, TW, TX * TY);
 | |
| 		    iio[WS(vs, 2) + WS(rs, 2)] = FNMS(TX, TW, TV * TY);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TC, TE, TB, TD;
 | |
| 		    TC = Tq - Tt;
 | |
| 		    TE = Tz - Tw;
 | |
| 		    TB = W[2];
 | |
| 		    TD = W[3];
 | |
| 		    rio[WS(vs, 2) + WS(rs, 1)] = FMA(TB, TC, TD * TE);
 | |
| 		    iio[WS(vs, 2) + WS(rs, 1)] = FNMS(TD, TC, TB * TE);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tu, TA, Tp, Tv;
 | |
| 		    Tu = Tq + Tt;
 | |
| 		    TA = Tw + Tz;
 | |
| 		    Tp = W[0];
 | |
| 		    Tv = W[1];
 | |
| 		    rio[WS(vs, 1) + WS(rs, 1)] = FMA(Tp, Tu, Tv * TA);
 | |
| 		    iio[WS(vs, 1) + WS(rs, 1)] = FNMS(Tv, Tu, Tp * TA);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TO, TU, TJ, TP;
 | |
| 		    TO = TK + TN;
 | |
| 		    TU = TQ + TT;
 | |
| 		    TJ = W[0];
 | |
| 		    TP = W[1];
 | |
| 		    rio[WS(vs, 1) + WS(rs, 2)] = FMA(TJ, TO, TP * TU);
 | |
| 		    iio[WS(vs, 1) + WS(rs, 2)] = FNMS(TP, TO, TJ * TU);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Ti, Tk, Th, Tj;
 | |
| 		    Ti = T6 - T9;
 | |
| 		    Tk = Tf - Tc;
 | |
| 		    Th = W[2];
 | |
| 		    Tj = W[3];
 | |
| 		    rio[WS(vs, 2)] = FMA(Th, Ti, Tj * Tk);
 | |
| 		    iio[WS(vs, 2)] = FNMS(Tj, Ti, Th * Tk);
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      { TW_FULL, 0, 3 },
 | |
|      { TW_NEXT, 1, 0 }
 | |
| };
 | |
| 
 | |
| static const ct_desc desc = { 3, "q1_3", twinstr, &GENUS, { 30, 18, 18, 0 }, 0, 0, 0 };
 | |
| 
 | |
| void X(codelet_q1_3) (planner *p) {
 | |
|      X(kdft_difsq_register) (p, q1_3, &desc);
 | |
| }
 | |
| #endif
 | 
