225 lines
		
	
	
		
			6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			225 lines
		
	
	
		
			6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include "dft/dft.h"
 | |
| #include "rdft/rdft.h"
 | |
| #include <stddef.h>
 | |
| 
 | |
| static void destroy(problem *ego_)
 | |
| {
 | |
|      problem_rdft2 *ego = (problem_rdft2 *) ego_;
 | |
|      X(tensor_destroy2)(ego->vecsz, ego->sz);
 | |
|      X(ifree)(ego_);
 | |
| }
 | |
| 
 | |
| static void hash(const problem *p_, md5 *m)
 | |
| {
 | |
|      const problem_rdft2 *p = (const problem_rdft2 *) p_;
 | |
|      X(md5puts)(m, "rdft2");
 | |
|      X(md5int)(m, p->r0 == p->cr);
 | |
|      X(md5INT)(m, p->r1 - p->r0);
 | |
|      X(md5INT)(m, p->ci - p->cr);
 | |
|      X(md5int)(m, X(ialignment_of)(p->r0));
 | |
|      X(md5int)(m, X(ialignment_of)(p->r1));
 | |
|      X(md5int)(m, X(ialignment_of)(p->cr)); 
 | |
|      X(md5int)(m, X(ialignment_of)(p->ci)); 
 | |
|      X(md5int)(m, p->kind);
 | |
|      X(tensor_md5)(m, p->sz);
 | |
|      X(tensor_md5)(m, p->vecsz);
 | |
| }
 | |
| 
 | |
| static void print(const problem *ego_, printer *p)
 | |
| {
 | |
|      const problem_rdft2 *ego = (const problem_rdft2 *) ego_;
 | |
|      p->print(p, "(rdft2 %d %d %T %T)", 
 | |
| 	      (int)(ego->cr == ego->r0), 
 | |
| 	      (int)(ego->kind),
 | |
| 	      ego->sz,
 | |
| 	      ego->vecsz);
 | |
| }
 | |
| 
 | |
| static void recur(const iodim *dims, int rnk, R *I0, R *I1)
 | |
| {
 | |
|      if (rnk == RNK_MINFTY)
 | |
|           return;
 | |
|      else if (rnk == 0)
 | |
|           I0[0] = K(0.0);
 | |
|      else if (rnk > 0) {
 | |
|           INT i, n = dims[0].n, is = dims[0].is;
 | |
| 
 | |
| 	  if (rnk == 1) {
 | |
| 	       for (i = 0; i < n - 1; i += 2) {
 | |
| 		    *I0 = *I1 = K(0.0);
 | |
| 		    I0 += is; I1 += is;
 | |
| 	       }
 | |
| 	       if (i < n) 
 | |
| 		    *I0 = K(0.0);
 | |
| 	  } else {
 | |
| 	       for (i = 0; i < n; ++i)
 | |
| 		    recur(dims + 1, rnk - 1, I0 + i * is, I1 + i * is);
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static void vrecur(const iodim *vdims, int vrnk,
 | |
| 		   const iodim *dims, int rnk, R *I0, R *I1)
 | |
| {
 | |
|      if (vrnk == RNK_MINFTY)
 | |
|           return;
 | |
|      else if (vrnk == 0)
 | |
| 	  recur(dims, rnk, I0, I1);
 | |
|      else if (vrnk > 0) {
 | |
|           INT i, n = vdims[0].n, is = vdims[0].is;
 | |
| 
 | |
| 	  for (i = 0; i < n; ++i)
 | |
| 	       vrecur(vdims + 1, vrnk - 1, 
 | |
| 		      dims, rnk, I0 + i * is, I1 + i * is);
 | |
|      }
 | |
| }
 | |
| 
 | |
| INT X(rdft2_complex_n)(INT real_n, rdft_kind kind)
 | |
| {
 | |
|      switch (kind) {
 | |
| 	 case R2HC:
 | |
| 	 case HC2R:
 | |
| 	      return (real_n / 2) + 1;
 | |
| 	 case R2HCII:
 | |
| 	 case HC2RIII:
 | |
| 	      return (real_n + 1) / 2;
 | |
| 	 default:
 | |
| 	      /* can't happen */
 | |
| 	      A(0);
 | |
| 	      return 0;
 | |
|      }
 | |
| }
 | |
| 
 | |
| static void zero(const problem *ego_)
 | |
| {
 | |
|      const problem_rdft2 *ego = (const problem_rdft2 *) ego_;
 | |
|      if (R2HC_KINDP(ego->kind)) {
 | |
| 	  /* FIXME: can we avoid the double recursion somehow? */
 | |
| 	  vrecur(ego->vecsz->dims, ego->vecsz->rnk, 
 | |
| 		 ego->sz->dims, ego->sz->rnk, 
 | |
| 		 UNTAINT(ego->r0), UNTAINT(ego->r1));
 | |
|      } else {
 | |
| 	  tensor *sz;
 | |
| 	  tensor *sz2 = X(tensor_copy)(ego->sz);
 | |
| 	  int rnk = sz2->rnk;
 | |
| 	  if (rnk > 0) /* ~half as many complex outputs */
 | |
| 	       sz2->dims[rnk-1].n = 
 | |
| 		    X(rdft2_complex_n)(sz2->dims[rnk-1].n, ego->kind);
 | |
| 	  sz = X(tensor_append)(ego->vecsz, sz2);
 | |
| 	  X(tensor_destroy)(sz2);
 | |
| 	  X(dft_zerotens)(sz, UNTAINT(ego->cr), UNTAINT(ego->ci));
 | |
| 	  X(tensor_destroy)(sz);
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const problem_adt padt =
 | |
| {
 | |
|      PROBLEM_RDFT2,
 | |
|      hash,
 | |
|      zero,
 | |
|      print,
 | |
|      destroy
 | |
| };
 | |
| 
 | |
| problem *X(mkproblem_rdft2)(const tensor *sz, const tensor *vecsz,
 | |
| 			    R *r0, R *r1, R *cr, R *ci,
 | |
| 			    rdft_kind kind)
 | |
| {
 | |
|      problem_rdft2 *ego;
 | |
| 
 | |
|      A(kind == R2HC || kind == R2HCII || kind == HC2R || kind == HC2RIII);
 | |
|      A(X(tensor_kosherp)(sz));
 | |
|      A(X(tensor_kosherp)(vecsz));
 | |
|      A(FINITE_RNK(sz->rnk));
 | |
| 
 | |
|      /* require in-place problems to use r0 == cr */
 | |
|      if (UNTAINT(r0) == UNTAINT(ci))
 | |
| 	  return X(mkproblem_unsolvable)();
 | |
| 
 | |
|      /* FIXME: should check UNTAINT(r1) == UNTAINT(cr) but
 | |
| 	only if odd elements exist, which requires compressing the 
 | |
| 	tensors first */
 | |
| 
 | |
|      if (UNTAINT(r0) == UNTAINT(cr)) 
 | |
| 	  r0 = cr = JOIN_TAINT(r0, cr);
 | |
| 
 | |
|      ego = (problem_rdft2 *)X(mkproblem)(sizeof(problem_rdft2), &padt);
 | |
| 
 | |
|      if (sz->rnk > 1) { /* have to compress rnk-1 dims separately, ugh */
 | |
| 	  tensor *szc = X(tensor_copy_except)(sz, sz->rnk - 1);
 | |
| 	  tensor *szr = X(tensor_copy_sub)(sz, sz->rnk - 1, 1);
 | |
| 	  tensor *szcc = X(tensor_compress)(szc);
 | |
| 	  if (szcc->rnk > 0)
 | |
| 	       ego->sz = X(tensor_append)(szcc, szr);
 | |
| 	  else
 | |
| 	       ego->sz = X(tensor_compress)(szr);
 | |
| 	  X(tensor_destroy2)(szc, szr); X(tensor_destroy)(szcc);
 | |
|      } else {
 | |
| 	  ego->sz = X(tensor_compress)(sz);
 | |
|      }
 | |
|      ego->vecsz = X(tensor_compress_contiguous)(vecsz);
 | |
|      ego->r0 = r0;
 | |
|      ego->r1 = r1;
 | |
|      ego->cr = cr;
 | |
|      ego->ci = ci;
 | |
|      ego->kind = kind;
 | |
| 
 | |
|      A(FINITE_RNK(ego->sz->rnk));
 | |
|      return &(ego->super);
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Same as X(mkproblem_rdft2), but also destroy input tensors. */
 | |
| problem *X(mkproblem_rdft2_d)(tensor *sz, tensor *vecsz,
 | |
| 			      R *r0, R *r1, R *cr, R *ci, rdft_kind kind)
 | |
| {
 | |
|      problem *p = X(mkproblem_rdft2)(sz, vecsz, r0, r1, cr, ci, kind);
 | |
|      X(tensor_destroy2)(vecsz, sz);
 | |
|      return p;
 | |
| }
 | |
| 
 | |
| /* Same as X(mkproblem_rdft2_d), but with only one R pointer.
 | |
|    Used by the API. */
 | |
| problem *X(mkproblem_rdft2_d_3pointers)(tensor *sz, tensor *vecsz,
 | |
| 					R *r0, R *cr, R *ci, rdft_kind kind)
 | |
| {
 | |
|      problem *p;
 | |
|      int rnk = sz->rnk;
 | |
|      R *r1;
 | |
| 
 | |
|      if (rnk == 0)
 | |
| 	  r1 = r0;
 | |
|      else if (R2HC_KINDP(kind)) {
 | |
| 	  r1 = r0 + sz->dims[rnk-1].is;
 | |
| 	  sz->dims[rnk-1].is *= 2;
 | |
|      } else {
 | |
| 	  r1 = r0 + sz->dims[rnk-1].os;
 | |
| 	  sz->dims[rnk-1].os *= 2;
 | |
|      }
 | |
| 
 | |
|      p = X(mkproblem_rdft2)(sz, vecsz, r0, r1, cr, ci, kind);
 | |
|      X(tensor_destroy2)(vecsz, sz);
 | |
|      return p;
 | |
| }
 | 
