488 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			488 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* Distributed transposes using a sequence of carefully scheduled
 | |
|    pairwise exchanges.  This has the advantage that it can be done
 | |
|    in-place, or out-of-place while preserving the input, using buffer
 | |
|    space proportional to the local size divided by the number of
 | |
|    processes (i.e. to the total array size divided by the number of
 | |
|    processes squared). */
 | |
| 
 | |
| #include "mpi-transpose.h"
 | |
| #include <string.h>
 | |
| 
 | |
| typedef struct {
 | |
|      solver super;
 | |
|      int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
 | |
| } S;
 | |
| 
 | |
| typedef struct {
 | |
|      plan_mpi_transpose super;
 | |
| 
 | |
|      plan *cld1, *cld2, *cld2rest, *cld3;
 | |
|      INT rest_Ioff, rest_Ooff;
 | |
|      
 | |
|      int n_pes, my_pe, *sched;
 | |
|      INT *send_block_sizes, *send_block_offsets;
 | |
|      INT *recv_block_sizes, *recv_block_offsets;
 | |
|      MPI_Comm comm;
 | |
|      int preserve_input;
 | |
| } P;
 | |
| 
 | |
| static void transpose_chunks(int *sched, int n_pes, int my_pe,
 | |
| 			     INT *sbs, INT *sbo, INT *rbs, INT *rbo,
 | |
| 			     MPI_Comm comm,
 | |
| 			     R *I, R *O)
 | |
| {
 | |
|      if (sched) {
 | |
| 	  int i;
 | |
| 	  MPI_Status status;
 | |
| 
 | |
| 	  /* TODO: explore non-synchronous send/recv? */
 | |
| 
 | |
| 	  if (I == O) {
 | |
| 	       R *buf = (R*) MALLOC(sizeof(R) * sbs[0], BUFFERS);
 | |
| 	       
 | |
| 	       for (i = 0; i < n_pes; ++i) {
 | |
| 		    int pe = sched[i];
 | |
| 		    if (my_pe == pe) {
 | |
| 			 if (rbo[pe] != sbo[pe])
 | |
| 			      memmove(O + rbo[pe], O + sbo[pe],
 | |
| 				      sbs[pe] * sizeof(R));
 | |
| 		    }
 | |
| 		    else {
 | |
| 			 memcpy(buf, O + sbo[pe], sbs[pe] * sizeof(R));
 | |
| 			 MPI_Sendrecv(buf, (int) (sbs[pe]), FFTW_MPI_TYPE,
 | |
| 				      pe, (my_pe * n_pes + pe) & 0x7fff,
 | |
| 				      O + rbo[pe], (int) (rbs[pe]),
 | |
| 				      FFTW_MPI_TYPE,
 | |
| 				      pe, (pe * n_pes + my_pe) & 0x7fff,
 | |
| 				      comm, &status);
 | |
| 		    }
 | |
| 	       }
 | |
| 
 | |
| 	       X(ifree)(buf);
 | |
| 	  }
 | |
| 	  else { /* I != O */
 | |
| 	       for (i = 0; i < n_pes; ++i) {
 | |
| 		    int pe = sched[i];
 | |
| 		    if (my_pe == pe)
 | |
| 			 memcpy(O + rbo[pe], I + sbo[pe], sbs[pe] * sizeof(R));
 | |
| 		    else
 | |
| 			 MPI_Sendrecv(I + sbo[pe], (int) (sbs[pe]),
 | |
| 				      FFTW_MPI_TYPE,
 | |
| 				      pe, (my_pe * n_pes + pe) & 0x7fff,
 | |
| 				      O + rbo[pe], (int) (rbs[pe]),
 | |
| 				      FFTW_MPI_TYPE,
 | |
| 				      pe, (pe * n_pes + my_pe) & 0x7fff,
 | |
| 				      comm, &status);
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static void apply(const plan *ego_, R *I, R *O)
 | |
| {
 | |
|      const P *ego = (const P *) ego_;
 | |
|      plan_rdft *cld1, *cld2, *cld2rest, *cld3;
 | |
| 
 | |
|      /* transpose locally to get contiguous chunks */
 | |
|      cld1 = (plan_rdft *) ego->cld1;
 | |
|      if (cld1) {
 | |
| 	  cld1->apply(ego->cld1, I, O);
 | |
| 	  
 | |
| 	  if (ego->preserve_input) I = O;
 | |
| 
 | |
| 	  /* transpose chunks globally */
 | |
| 	  transpose_chunks(ego->sched, ego->n_pes, ego->my_pe,
 | |
| 			   ego->send_block_sizes, ego->send_block_offsets,
 | |
| 			   ego->recv_block_sizes, ego->recv_block_offsets,
 | |
| 			   ego->comm, O, I);
 | |
|      }
 | |
|      else if (ego->preserve_input) {
 | |
| 	  /* transpose chunks globally */
 | |
| 	  transpose_chunks(ego->sched, ego->n_pes, ego->my_pe,
 | |
| 			   ego->send_block_sizes, ego->send_block_offsets,
 | |
| 			   ego->recv_block_sizes, ego->recv_block_offsets,
 | |
| 			   ego->comm, I, O);
 | |
| 
 | |
| 	  I = O;
 | |
|      }
 | |
|      else {
 | |
| 	  /* transpose chunks globally */
 | |
| 	  transpose_chunks(ego->sched, ego->n_pes, ego->my_pe,
 | |
| 			   ego->send_block_sizes, ego->send_block_offsets,
 | |
| 			   ego->recv_block_sizes, ego->recv_block_offsets,
 | |
| 			   ego->comm, I, I);
 | |
|      }
 | |
| 
 | |
|      /* transpose locally, again, to get ordinary row-major;
 | |
| 	this may take two transposes if the block sizes are unequal
 | |
| 	(3 subplans, two of which operate on disjoint data) */
 | |
|      cld2 = (plan_rdft *) ego->cld2;
 | |
|      cld2->apply(ego->cld2, I, O);
 | |
|      cld2rest = (plan_rdft *) ego->cld2rest;
 | |
|      if (cld2rest) {
 | |
| 	  cld2rest->apply(ego->cld2rest,
 | |
| 			  I + ego->rest_Ioff, O + ego->rest_Ooff);
 | |
| 	  cld3 = (plan_rdft *) ego->cld3;
 | |
| 	  if (cld3)
 | |
| 	       cld3->apply(ego->cld3, O, O);
 | |
| 	  /* else TRANSPOSED_OUT is true and user wants O transposed */
 | |
|      }
 | |
| }
 | |
| 
 | |
| static int applicable(const S *ego, const problem *p_,
 | |
| 		      const planner *plnr)
 | |
| {
 | |
|      const problem_mpi_transpose *p = (const problem_mpi_transpose *) p_;
 | |
|      /* Note: this is *not* UGLY for out-of-place, destroy-input plans;
 | |
| 	the planner often prefers transpose-pairwise to transpose-alltoall,
 | |
| 	at least with LAM MPI on my machine. */
 | |
|      return (1
 | |
| 	     && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
 | |
| 					  && p->I != p->O))
 | |
| 	     && ONLY_TRANSPOSEDP(p->flags));
 | |
| }
 | |
| 
 | |
| static void awake(plan *ego_, enum wakefulness wakefulness)
 | |
| {
 | |
|      P *ego = (P *) ego_;
 | |
|      X(plan_awake)(ego->cld1, wakefulness);
 | |
|      X(plan_awake)(ego->cld2, wakefulness);
 | |
|      X(plan_awake)(ego->cld2rest, wakefulness);
 | |
|      X(plan_awake)(ego->cld3, wakefulness);
 | |
| }
 | |
| 
 | |
| static void destroy(plan *ego_)
 | |
| {
 | |
|      P *ego = (P *) ego_;
 | |
|      X(ifree0)(ego->sched);
 | |
|      X(ifree0)(ego->send_block_sizes);
 | |
|      MPI_Comm_free(&ego->comm);
 | |
|      X(plan_destroy_internal)(ego->cld3);
 | |
|      X(plan_destroy_internal)(ego->cld2rest);
 | |
|      X(plan_destroy_internal)(ego->cld2);
 | |
|      X(plan_destroy_internal)(ego->cld1);
 | |
| }
 | |
| 
 | |
| static void print(const plan *ego_, printer *p)
 | |
| {
 | |
|      const P *ego = (const P *) ego_;
 | |
|      p->print(p, "(mpi-transpose-pairwise%s%(%p%)%(%p%)%(%p%)%(%p%))", 
 | |
| 	      ego->preserve_input==2 ?"/p":"",
 | |
| 	      ego->cld1, ego->cld2, ego->cld2rest, ego->cld3);
 | |
| }
 | |
| 
 | |
| /* Given a process which_pe and a number of processes npes, fills
 | |
|    the array sched[npes] with a sequence of processes to communicate
 | |
|    with for a deadlock-free, optimum-overlap all-to-all communication.
 | |
|    (All processes must call this routine to get their own schedules.)
 | |
|    The schedule can be re-ordered arbitrarily as long as all processes
 | |
|    apply the same permutation to their schedules.
 | |
| 
 | |
|    The algorithm here is based upon the one described in:
 | |
|        J. A. M. Schreuder, "Constructing timetables for sport
 | |
|        competitions," Mathematical Programming Study 13, pp. 58-67 (1980). 
 | |
|    In a sport competition, you have N teams and want every team to
 | |
|    play every other team in as short a time as possible (maximum overlap
 | |
|    between games).  This timetabling problem is therefore identical
 | |
|    to that of an all-to-all communications problem.  In our case, there
 | |
|    is one wrinkle: as part of the schedule, the process must do
 | |
|    some data transfer with itself (local data movement), analogous
 | |
|    to a requirement that each team "play itself" in addition to other
 | |
|    teams.  With this wrinkle, it turns out that an optimal timetable
 | |
|    (N parallel games) can be constructed for any N, not just for even
 | |
|    N as in the original problem described by Schreuder.
 | |
| */
 | |
| static void fill1_comm_sched(int *sched, int which_pe, int npes)
 | |
| {
 | |
|      int pe, i, n, s = 0;
 | |
|      A(which_pe >= 0 && which_pe < npes);
 | |
|      if (npes % 2 == 0) {
 | |
| 	  n = npes;
 | |
| 	  sched[s++] = which_pe;
 | |
|      }
 | |
|      else
 | |
| 	  n = npes + 1;
 | |
|      for (pe = 0; pe < n - 1; ++pe) {
 | |
| 	  if (npes % 2 == 0) {
 | |
| 	       if (pe == which_pe) sched[s++] = npes - 1;
 | |
| 	       else if (npes - 1 == which_pe) sched[s++] = pe;
 | |
| 	  }
 | |
| 	  else if (pe == which_pe) sched[s++] = pe;
 | |
| 
 | |
| 	  if (pe != which_pe && which_pe < n - 1) {
 | |
| 	       i = (pe - which_pe + (n - 1)) % (n - 1);
 | |
| 	       if (i < n/2)
 | |
| 		    sched[s++] = (pe + i) % (n - 1);
 | |
| 	       
 | |
| 	       i = (which_pe - pe + (n - 1)) % (n - 1);
 | |
| 	       if (i < n/2)
 | |
| 		    sched[s++] = (pe - i + (n - 1)) % (n - 1);
 | |
| 	  }
 | |
|      }
 | |
|      A(s == npes);
 | |
| }
 | |
| 
 | |
| /* Sort the communication schedule sched for npes so that the schedule
 | |
|    on process sortpe is ascending or descending (!ascending).  This is
 | |
|    necessary to allow in-place transposes when the problem does not
 | |
|    divide equally among the processes.  In this case there is one
 | |
|    process where the incoming blocks are bigger/smaller than the
 | |
|    outgoing blocks and thus have to be received in
 | |
|    descending/ascending order, respectively, to avoid overwriting data
 | |
|    before it is sent. */
 | |
| static void sort1_comm_sched(int *sched, int npes, int sortpe, int ascending)
 | |
| {
 | |
|      int *sortsched, i;
 | |
|      sortsched = (int *) MALLOC(npes * sizeof(int) * 2, OTHER);
 | |
|      fill1_comm_sched(sortsched, sortpe, npes);
 | |
|      if (ascending)
 | |
| 	  for (i = 0; i < npes; ++i)
 | |
| 	       sortsched[npes + sortsched[i]] = sched[i];
 | |
|      else
 | |
| 	  for (i = 0; i < npes; ++i)
 | |
| 	       sortsched[2*npes - 1 - sortsched[i]] = sched[i];
 | |
|      for (i = 0; i < npes; ++i)
 | |
| 	  sched[i] = sortsched[npes + i];
 | |
|      X(ifree)(sortsched);
 | |
| }
 | |
| 
 | |
| /* make the plans to do the post-MPI transpositions (shared with
 | |
|    transpose-alltoall) */
 | |
| int XM(mkplans_posttranspose)(const problem_mpi_transpose *p, planner *plnr,
 | |
| 			      R *I, R *O, int my_pe,
 | |
| 			      plan **cld2, plan **cld2rest, plan **cld3,
 | |
| 			      INT *rest_Ioff, INT *rest_Ooff)
 | |
| {
 | |
|      INT vn = p->vn;
 | |
|      INT b = p->block;
 | |
|      INT bt = XM(block)(p->ny, p->tblock, my_pe);
 | |
|      INT nxb = p->nx / b; /* number of equal-sized blocks */
 | |
|      INT nxr = p->nx - nxb * b; /* leftover rows after equal blocks */
 | |
| 
 | |
|      *cld2 = *cld2rest = *cld3 = NULL;
 | |
|      *rest_Ioff = *rest_Ooff = 0;
 | |
| 
 | |
|      if (!(p->flags & TRANSPOSED_OUT) && (nxr == 0 || I != O)) {
 | |
| 	  INT nx = p->nx * vn;
 | |
| 	  b *= vn;
 | |
| 	  *cld2 = X(mkplan_f_d)(plnr, 
 | |
| 				X(mkproblem_rdft_0_d)(X(mktensor_3d)
 | |
| 						      (nxb, bt * b, b,
 | |
| 						       bt, b, nx,
 | |
| 						       b, 1, 1),
 | |
| 						      I, O),
 | |
| 				0, 0, NO_SLOW);
 | |
| 	  if (!*cld2) goto nada;
 | |
| 
 | |
| 	  if (nxr > 0) {
 | |
| 	       *rest_Ioff = nxb * bt * b;
 | |
| 	       *rest_Ooff = nxb * b;
 | |
| 	       b = nxr * vn;
 | |
| 	       *cld2rest = X(mkplan_f_d)(plnr,
 | |
| 					 X(mkproblem_rdft_0_d)(X(mktensor_2d)
 | |
| 							       (bt, b, nx,
 | |
| 								b, 1, 1),
 | |
| 							       I + *rest_Ioff,
 | |
| 							       O + *rest_Ooff),
 | |
|                                         0, 0, NO_SLOW);
 | |
|                if (!*cld2rest) goto nada;
 | |
| 	  }
 | |
|      }
 | |
|      else {
 | |
| 	  *cld2 = X(mkplan_f_d)(plnr,
 | |
| 				X(mkproblem_rdft_0_d)(
 | |
| 				     X(mktensor_4d)
 | |
| 				     (nxb, bt * b * vn, bt * b * vn,
 | |
| 				      bt, b * vn, vn,
 | |
| 				      b, vn, bt * vn,
 | |
| 				      vn, 1, 1),
 | |
| 				     I, O),
 | |
| 				0, 0, NO_SLOW);
 | |
| 	  if (!*cld2) goto nada;
 | |
| 
 | |
| 	  *rest_Ioff = *rest_Ooff = nxb * bt * b * vn;
 | |
| 	  *cld2rest = X(mkplan_f_d)(plnr,
 | |
| 				    X(mkproblem_rdft_0_d)(
 | |
| 					 X(mktensor_3d)
 | |
| 					 (bt, nxr * vn, vn,
 | |
| 					  nxr, vn, bt * vn,
 | |
| 					  vn, 1, 1),
 | |
| 					 I + *rest_Ioff, O + *rest_Ooff),
 | |
| 				    0, 0, NO_SLOW);
 | |
| 	  if (!*cld2rest) goto nada;
 | |
| 
 | |
| 	  if (!(p->flags & TRANSPOSED_OUT)) {
 | |
| 	       *cld3 = X(mkplan_f_d)(plnr,
 | |
| 				     X(mkproblem_rdft_0_d)(
 | |
| 					  X(mktensor_3d)
 | |
| 					  (p->nx, bt * vn, vn,
 | |
| 					   bt, vn, p->nx * vn,
 | |
| 					   vn, 1, 1),
 | |
| 					  O, O),
 | |
| 				     0, 0, NO_SLOW);
 | |
| 	       if (!*cld3) goto nada;
 | |
| 	  }
 | |
|      }
 | |
| 
 | |
|      return 1;
 | |
| 
 | |
| nada:
 | |
|      X(plan_destroy_internal)(*cld3);
 | |
|      X(plan_destroy_internal)(*cld2rest);
 | |
|      X(plan_destroy_internal)(*cld2);
 | |
|      *cld2 = *cld2rest = *cld3 = NULL;
 | |
|      return 0;
 | |
| }
 | |
| 
 | |
| static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
 | |
| {
 | |
|      const S *ego = (const S *) ego_;
 | |
|      const problem_mpi_transpose *p;
 | |
|      P *pln;
 | |
|      plan *cld1 = 0, *cld2 = 0, *cld2rest = 0, *cld3 = 0;
 | |
|      INT b, bt, vn, rest_Ioff, rest_Ooff;
 | |
|      INT *sbs, *sbo, *rbs, *rbo;
 | |
|      int pe, my_pe, n_pes, sort_pe = -1, ascending = 1;
 | |
|      R *I, *O;
 | |
|      static const plan_adt padt = {
 | |
|           XM(transpose_solve), awake, print, destroy
 | |
|      };
 | |
| 
 | |
|      UNUSED(ego);
 | |
| 
 | |
|      if (!applicable(ego, p_, plnr))
 | |
|           return (plan *) 0;
 | |
| 
 | |
|      p = (const problem_mpi_transpose *) p_;
 | |
|      vn = p->vn;
 | |
|      I = p->I; O = p->O;
 | |
| 
 | |
|      MPI_Comm_rank(p->comm, &my_pe);
 | |
|      MPI_Comm_size(p->comm, &n_pes);
 | |
| 
 | |
|      b = XM(block)(p->nx, p->block, my_pe);
 | |
|      
 | |
|      if (!(p->flags & TRANSPOSED_IN)) { /* b x ny x vn -> ny x b x vn */
 | |
| 	  cld1 = X(mkplan_f_d)(plnr, 
 | |
| 			       X(mkproblem_rdft_0_d)(X(mktensor_3d)
 | |
| 						     (b, p->ny * vn, vn,
 | |
| 						      p->ny, vn, b * vn,
 | |
| 						      vn, 1, 1),
 | |
| 						     I, O),
 | |
| 			       0, 0, NO_SLOW);
 | |
| 	  if (XM(any_true)(!cld1, p->comm)) goto nada;
 | |
|      }
 | |
|      if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) I = O;
 | |
| 
 | |
|      if (XM(any_true)(!XM(mkplans_posttranspose)(p, plnr, I, O, my_pe,
 | |
| 						 &cld2, &cld2rest, &cld3,
 | |
| 						 &rest_Ioff, &rest_Ooff),
 | |
| 		      p->comm)) goto nada;
 | |
| 
 | |
|      pln = MKPLAN_MPI_TRANSPOSE(P, &padt, apply);
 | |
| 
 | |
|      pln->cld1 = cld1;
 | |
|      pln->cld2 = cld2;
 | |
|      pln->cld2rest = cld2rest;
 | |
|      pln->rest_Ioff = rest_Ioff;
 | |
|      pln->rest_Ooff = rest_Ooff;
 | |
|      pln->cld3 = cld3;
 | |
|      pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
 | |
| 
 | |
|      MPI_Comm_dup(p->comm, &pln->comm);
 | |
| 
 | |
|      n_pes = (int) X(imax)(XM(num_blocks)(p->nx, p->block),
 | |
| 			   XM(num_blocks)(p->ny, p->tblock));
 | |
| 
 | |
|      /* Compute sizes/offsets of blocks to exchange between processors */
 | |
|      sbs = (INT *) MALLOC(4 * n_pes * sizeof(INT), PLANS);
 | |
|      sbo = sbs + n_pes;
 | |
|      rbs = sbo + n_pes;
 | |
|      rbo = rbs + n_pes;
 | |
|      b = XM(block)(p->nx, p->block, my_pe);
 | |
|      bt = XM(block)(p->ny, p->tblock, my_pe);
 | |
|      for (pe = 0; pe < n_pes; ++pe) {
 | |
| 	  INT db, dbt; /* destination block sizes */
 | |
| 	  db = XM(block)(p->nx, p->block, pe);
 | |
| 	  dbt = XM(block)(p->ny, p->tblock, pe);
 | |
| 
 | |
| 	  sbs[pe] = b * dbt * vn;
 | |
| 	  sbo[pe] = pe * (b * p->tblock) * vn;
 | |
| 	  rbs[pe] = db * bt * vn;
 | |
| 	  rbo[pe] = pe * (p->block * bt) * vn;
 | |
| 
 | |
| 	  if (db * dbt > 0 && db * p->tblock != p->block * dbt) {
 | |
| 	       A(sort_pe == -1); /* only one process should need sorting */
 | |
| 	       sort_pe = pe;
 | |
| 	       ascending = db * p->tblock > p->block * dbt;
 | |
| 	  }
 | |
|      }
 | |
|      pln->n_pes = n_pes;
 | |
|      pln->my_pe = my_pe;
 | |
|      pln->send_block_sizes = sbs;
 | |
|      pln->send_block_offsets = sbo;
 | |
|      pln->recv_block_sizes = rbs;
 | |
|      pln->recv_block_offsets = rbo;
 | |
| 
 | |
|      if (my_pe >= n_pes) {
 | |
| 	  pln->sched = 0; /* this process is not doing anything */
 | |
|      }
 | |
|      else {
 | |
| 	  pln->sched = (int *) MALLOC(n_pes * sizeof(int), PLANS);
 | |
| 	  fill1_comm_sched(pln->sched, my_pe, n_pes);
 | |
| 	  if (sort_pe >= 0)
 | |
| 	       sort1_comm_sched(pln->sched, n_pes, sort_pe, ascending);
 | |
|      }
 | |
| 
 | |
|      X(ops_zero)(&pln->super.super.ops);
 | |
|      if (cld1) X(ops_add2)(&cld1->ops, &pln->super.super.ops);
 | |
|      if (cld2) X(ops_add2)(&cld2->ops, &pln->super.super.ops);
 | |
|      if (cld2rest) X(ops_add2)(&cld2rest->ops, &pln->super.super.ops);
 | |
|      if (cld3) X(ops_add2)(&cld3->ops, &pln->super.super.ops);
 | |
|      /* FIXME: should MPI operations be counted in "other" somehow? */
 | |
| 
 | |
|      return &(pln->super.super);
 | |
| 
 | |
|  nada:
 | |
|      X(plan_destroy_internal)(cld3);
 | |
|      X(plan_destroy_internal)(cld2rest);
 | |
|      X(plan_destroy_internal)(cld2);
 | |
|      X(plan_destroy_internal)(cld1);
 | |
|      return (plan *) 0;
 | |
| }
 | |
| 
 | |
| static solver *mksolver(int preserve_input)
 | |
| {
 | |
|      static const solver_adt sadt = { PROBLEM_MPI_TRANSPOSE, mkplan, 0 };
 | |
|      S *slv = MKSOLVER(S, &sadt);
 | |
|      slv->preserve_input = preserve_input;
 | |
|      return &(slv->super);
 | |
| }
 | |
| 
 | |
| void XM(transpose_pairwise_register)(planner *p)
 | |
| {
 | |
|      int preserve_input;
 | |
|      for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
 | |
| 	  REGISTER_SOLVER(p, mksolver(preserve_input));
 | |
| }
 | 
