546 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			546 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | ||
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | ||
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | ||
|  *
 | ||
|  * This program is free software; you can redistribute it and/or modify
 | ||
|  * it under the terms of the GNU General Public License as published by
 | ||
|  * the Free Software Foundation; either version 2 of the License, or
 | ||
|  * (at your option) any later version.
 | ||
|  *
 | ||
|  * This program is distributed in the hope that it will be useful,
 | ||
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | ||
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | ||
|  * GNU General Public License for more details.
 | ||
|  *
 | ||
|  * You should have received a copy of the GNU General Public License
 | ||
|  * along with this program; if not, write to the Free Software
 | ||
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | ||
|  *
 | ||
|  */
 | ||
| 
 | ||
| 
 | ||
| #include "verify.h"
 | ||
| #include <math.h>
 | ||
| #include <stdlib.h>
 | ||
| #include <stdio.h>
 | ||
| 
 | ||
| /*
 | ||
|  * Utility functions:
 | ||
|  */
 | ||
| static double dabs(double x) { return (x < 0.0) ? -x : x; }
 | ||
| static double dmin(double x, double y) { return (x < y) ? x : y; }
 | ||
| static double norm2(double x, double y) { return dmax(dabs(x), dabs(y)); }
 | ||
| 
 | ||
| double dmax(double x, double y) { return (x > y) ? x : y; }
 | ||
| 
 | ||
| static double aerror(C *a, C *b, int n)
 | ||
| {
 | ||
|      if (n > 0) {
 | ||
| 	  /* compute the relative Linf error */
 | ||
| 	  double e = 0.0, mag = 0.0;
 | ||
| 	  int i;
 | ||
| 
 | ||
| 	  for (i = 0; i < n; ++i) {
 | ||
| 	       e = dmax(e, norm2(c_re(a[i]) - c_re(b[i]),
 | ||
| 				 c_im(a[i]) - c_im(b[i])));
 | ||
| 	       mag = dmax(mag, 
 | ||
| 			  dmin(norm2(c_re(a[i]), c_im(a[i])),
 | ||
| 			       norm2(c_re(b[i]), c_im(b[i]))));
 | ||
| 	  }
 | ||
| 	  e /= mag;
 | ||
| 
 | ||
| #ifdef HAVE_ISNAN
 | ||
| 	  BENCH_ASSERT(!isnan(e));
 | ||
| #endif
 | ||
| 	  return e;
 | ||
|      } else
 | ||
| 	  return 0.0;
 | ||
| }
 | ||
| 
 | ||
| #ifdef HAVE_DRAND48
 | ||
| #  if defined(HAVE_DECL_DRAND48) && !HAVE_DECL_DRAND48
 | ||
| extern double drand48(void);
 | ||
| #  endif
 | ||
| double mydrand(void)
 | ||
| {
 | ||
|      return drand48() - 0.5;
 | ||
| }
 | ||
| #else
 | ||
| double mydrand(void)
 | ||
| {
 | ||
|      double d = rand();
 | ||
|      return (d / (double) RAND_MAX) - 0.5;
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| void arand(C *a, int n)
 | ||
| {
 | ||
|      int i;
 | ||
| 
 | ||
|      /* generate random inputs */
 | ||
|      for (i = 0; i < n; ++i) {
 | ||
| 	  c_re(a[i]) = mydrand();
 | ||
| 	  c_im(a[i]) = mydrand();
 | ||
|      }
 | ||
| }
 | ||
| 
 | ||
| /* make array real */
 | ||
| void mkreal(C *A, int n)
 | ||
| {
 | ||
|      int i;
 | ||
| 
 | ||
|      for (i = 0; i < n; ++i) {
 | ||
|           c_im(A[i]) = 0.0;
 | ||
|      }
 | ||
| }
 | ||
| 
 | ||
| static void assign_conj(C *Ac, C *A, int rank, const bench_iodim *dim, int stride)
 | ||
| {
 | ||
|      if (rank == 0) {
 | ||
|           c_re(*Ac) = c_re(*A);
 | ||
|           c_im(*Ac) = -c_im(*A);
 | ||
|      }
 | ||
|      else {
 | ||
|           int i, n0 = dim[rank - 1].n, s = stride;
 | ||
|           rank -= 1;
 | ||
| 	  stride *= n0;
 | ||
|           assign_conj(Ac, A, rank, dim, stride);
 | ||
|           for (i = 1; i < n0; ++i)
 | ||
|                assign_conj(Ac + (n0 - i) * s, A + i * s, rank, dim, stride);
 | ||
|      }
 | ||
| }
 | ||
| 
 | ||
| /* make array hermitian */
 | ||
| void mkhermitian(C *A, int rank, const bench_iodim *dim, int stride)
 | ||
| {
 | ||
|      if (rank == 0)
 | ||
|           c_im(*A) = 0.0;
 | ||
|      else {
 | ||
|           int i, n0 = dim[rank - 1].n, s = stride;
 | ||
|           rank -= 1;
 | ||
| 	  stride *= n0;
 | ||
|           mkhermitian(A, rank, dim, stride);
 | ||
|           for (i = 1; 2*i < n0; ++i)
 | ||
|                assign_conj(A + (n0 - i) * s, A + i * s, rank, dim, stride);
 | ||
|           if (2*i == n0)
 | ||
|                mkhermitian(A + i * s, rank, dim, stride);
 | ||
|      }
 | ||
| }
 | ||
| 
 | ||
| void mkhermitian1(C *a, int n)
 | ||
| {
 | ||
|      bench_iodim d;
 | ||
| 
 | ||
|      d.n = n;
 | ||
|      d.is = d.os = 1;
 | ||
|      mkhermitian(a, 1, &d, 1);
 | ||
| }
 | ||
| 
 | ||
| /* C = A */
 | ||
| void acopy(C *c, C *a, int n)
 | ||
| {
 | ||
|      int i;
 | ||
| 
 | ||
|      for (i = 0; i < n; ++i) {
 | ||
| 	  c_re(c[i]) = c_re(a[i]);
 | ||
| 	  c_im(c[i]) = c_im(a[i]);
 | ||
|      }
 | ||
| }
 | ||
| 
 | ||
| /* C = A + B */
 | ||
| void aadd(C *c, C *a, C *b, int n)
 | ||
| {
 | ||
|      int i;
 | ||
| 
 | ||
|      for (i = 0; i < n; ++i) {
 | ||
| 	  c_re(c[i]) = c_re(a[i]) + c_re(b[i]);
 | ||
| 	  c_im(c[i]) = c_im(a[i]) + c_im(b[i]);
 | ||
|      }
 | ||
| }
 | ||
| 
 | ||
| /* C = A - B */
 | ||
| void asub(C *c, C *a, C *b, int n)
 | ||
| {
 | ||
|      int i;
 | ||
| 
 | ||
|      for (i = 0; i < n; ++i) {
 | ||
| 	  c_re(c[i]) = c_re(a[i]) - c_re(b[i]);
 | ||
| 	  c_im(c[i]) = c_im(a[i]) - c_im(b[i]);
 | ||
|      }
 | ||
| }
 | ||
| 
 | ||
| /* B = rotate left A (complex) */
 | ||
| void arol(C *b, C *a, int n, int nb, int na)
 | ||
| {
 | ||
|      int i, ib, ia;
 | ||
| 
 | ||
|      for (ib = 0; ib < nb; ++ib) {
 | ||
| 	  for (i = 0; i < n - 1; ++i)
 | ||
| 	       for (ia = 0; ia < na; ++ia) {
 | ||
| 		    C *pb = b + (ib * n + i) * na + ia;
 | ||
| 		    C *pa = a + (ib * n + i + 1) * na + ia;
 | ||
| 		    c_re(*pb) = c_re(*pa);
 | ||
| 		    c_im(*pb) = c_im(*pa);
 | ||
| 	       }
 | ||
| 
 | ||
| 	  for (ia = 0; ia < na; ++ia) {
 | ||
| 	       C *pb = b + (ib * n + n - 1) * na + ia;
 | ||
| 	       C *pa = a + ib * n * na + ia;
 | ||
| 	       c_re(*pb) = c_re(*pa);
 | ||
| 	       c_im(*pb) = c_im(*pa);
 | ||
| 	  }
 | ||
|      }
 | ||
| }
 | ||
| 
 | ||
| void aphase_shift(C *b, C *a, int n, int nb, int na, double sign)
 | ||
| {
 | ||
|      int j, jb, ja;
 | ||
|      trigreal twopin;
 | ||
|      twopin = K2PI / n;
 | ||
| 
 | ||
|      for (jb = 0; jb < nb; ++jb)
 | ||
| 	  for (j = 0; j < n; ++j) {
 | ||
| 	       trigreal s = sign * SIN(j * twopin);
 | ||
| 	       trigreal c = COS(j * twopin);
 | ||
| 
 | ||
| 	       for (ja = 0; ja < na; ++ja) {
 | ||
| 		    int k = (jb * n + j) * na + ja;
 | ||
| 		    c_re(b[k]) = c_re(a[k]) * c - c_im(a[k]) * s;
 | ||
| 		    c_im(b[k]) = c_re(a[k]) * s + c_im(a[k]) * c;
 | ||
| 	       }
 | ||
| 	  }
 | ||
| }
 | ||
| 
 | ||
| /* A = alpha * A  (complex, in place) */
 | ||
| void ascale(C *a, C alpha, int n)
 | ||
| {
 | ||
|      int i;
 | ||
| 
 | ||
|      for (i = 0; i < n; ++i) {
 | ||
| 	  R xr = c_re(a[i]), xi = c_im(a[i]);
 | ||
| 	  c_re(a[i]) = xr * c_re(alpha) - xi * c_im(alpha);
 | ||
| 	  c_im(a[i]) = xr * c_im(alpha) + xi * c_re(alpha);
 | ||
|      }
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| double acmp(C *a, C *b, int n, const char *test, double tol)
 | ||
| {
 | ||
|      double d = aerror(a, b, n);
 | ||
|      if (d > tol) {
 | ||
| 	  ovtpvt_err("Found relative error %e (%s)\n", d, test);
 | ||
| 
 | ||
| 	  {
 | ||
| 	       int i, N;
 | ||
| 	       N = n > 300 && verbose <= 2 ? 300 : n;
 | ||
| 	       for (i = 0; i < N; ++i) 
 | ||
| 		    ovtpvt_err("%8d %16.12f %16.12f   %16.12f %16.12f\n", i, 
 | ||
| 			       (double) c_re(a[i]), (double) c_im(a[i]),
 | ||
| 			       (double) c_re(b[i]), (double) c_im(b[i]));
 | ||
| 	  }
 | ||
| 
 | ||
| 	  bench_exit(EXIT_FAILURE);
 | ||
|      }
 | ||
|      return d;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|  * Implementation of the FFT tester described in
 | ||
|  *
 | ||
|  * Funda Erg<72>n. Testing multivariate linear functions: Overcoming the
 | ||
|  * generator bottleneck. In Proceedings of the Twenty-Seventh Annual
 | ||
|  * ACM Symposium on the Theory of Computing, pages 407-416, Las Vegas,
 | ||
|  * Nevada, 29 May--1 June 1995.
 | ||
|  *
 | ||
|  * Also: F. Ergun, S. R. Kumar, and D. Sivakumar, "Self-testing without
 | ||
|  * the generator bottleneck," SIAM J. on Computing 29 (5), 1630-51 (2000).
 | ||
|  */
 | ||
| 
 | ||
| static double impulse0(dofft_closure *k,
 | ||
| 		       int n, int vecn, 
 | ||
| 		       C *inA, C *inB, C *inC,
 | ||
| 		       C *outA, C *outB, C *outC,
 | ||
| 		       C *tmp, int rounds, double tol)
 | ||
| {
 | ||
|      int N = n * vecn;
 | ||
|      double e = 0.0;
 | ||
|      int j;
 | ||
| 
 | ||
|      k->apply(k, inA, tmp);
 | ||
|      e = dmax(e, acmp(tmp, outA, N, "impulse 1", tol));
 | ||
| 
 | ||
|      for (j = 0; j < rounds; ++j) {
 | ||
| 	  arand(inB, N);
 | ||
| 	  asub(inC, inA, inB, N);
 | ||
| 	  k->apply(k, inB, outB);
 | ||
| 	  k->apply(k, inC, outC);
 | ||
| 	  aadd(tmp, outB, outC, N);
 | ||
| 	  e = dmax(e, acmp(tmp, outA, N, "impulse", tol));
 | ||
|      }
 | ||
|      return e;
 | ||
| }
 | ||
| 
 | ||
| double impulse(dofft_closure *k,
 | ||
| 	       int n, int vecn, 
 | ||
| 	       C *inA, C *inB, C *inC,
 | ||
| 	       C *outA, C *outB, C *outC,
 | ||
| 	       C *tmp, int rounds, double tol)
 | ||
| {
 | ||
|      int i, j;
 | ||
|      double e = 0.0;
 | ||
| 
 | ||
|      /* check impulsive input */
 | ||
|      for (i = 0; i < vecn; ++i) {
 | ||
| 	  R x = (sqrt(n)*(i+1)) / (double)(vecn+1);
 | ||
| 	  for (j = 0; j < n; ++j) {
 | ||
| 	       c_re(inA[j + i * n]) = 0;
 | ||
| 	       c_im(inA[j + i * n]) = 0;
 | ||
| 	       c_re(outA[j + i * n]) = x;
 | ||
| 	       c_im(outA[j + i * n]) = 0;
 | ||
| 	  }
 | ||
| 	  c_re(inA[i * n]) = x;
 | ||
| 	  c_im(inA[i * n]) = 0;
 | ||
|      }
 | ||
| 
 | ||
|      e = dmax(e, impulse0(k, n, vecn, inA, inB, inC, outA, outB, outC,
 | ||
| 			  tmp, rounds, tol));
 | ||
| 
 | ||
|      /* check constant input */
 | ||
|      for (i = 0; i < vecn; ++i) {
 | ||
| 	  R x = (i+1) / ((double)(vecn+1) * sqrt(n));
 | ||
| 	  for (j = 0; j < n; ++j) {
 | ||
| 	       c_re(inA[j + i * n]) = x;
 | ||
| 	       c_im(inA[j + i * n]) = 0;
 | ||
| 	       c_re(outA[j + i * n]) = 0;
 | ||
| 	       c_im(outA[j + i * n]) = 0;
 | ||
| 	  }
 | ||
| 	  c_re(outA[i * n]) = n * x;
 | ||
| 	  c_im(outA[i * n]) = 0;
 | ||
|      }
 | ||
| 
 | ||
|      e = dmax(e, impulse0(k, n, vecn, inA, inB, inC, outA, outB, outC,
 | ||
| 			  tmp, rounds, tol));
 | ||
|      return e;
 | ||
| }
 | ||
| 
 | ||
| double linear(dofft_closure *k, int realp,
 | ||
| 	      int n, C *inA, C *inB, C *inC, C *outA,
 | ||
| 	      C *outB, C *outC, C *tmp, int rounds, double tol)
 | ||
| {
 | ||
|      int j;
 | ||
|      double e = 0.0;
 | ||
| 
 | ||
|      for (j = 0; j < rounds; ++j) {
 | ||
| 	  C alpha, beta;
 | ||
| 	  c_re(alpha) = mydrand();
 | ||
| 	  c_im(alpha) = realp ? 0.0 : mydrand();
 | ||
| 	  c_re(beta) = mydrand();
 | ||
| 	  c_im(beta) = realp ? 0.0 : mydrand();
 | ||
| 	  arand(inA, n);
 | ||
| 	  arand(inB, n);
 | ||
| 	  k->apply(k, inA, outA);
 | ||
| 	  k->apply(k, inB, outB);
 | ||
| 
 | ||
| 	  ascale(outA, alpha, n);
 | ||
| 	  ascale(outB, beta, n);
 | ||
| 	  aadd(tmp, outA, outB, n);
 | ||
| 	  ascale(inA, alpha, n);
 | ||
| 	  ascale(inB, beta, n);
 | ||
| 	  aadd(inC, inA, inB, n);
 | ||
| 	  k->apply(k, inC, outC);
 | ||
| 
 | ||
| 	  e = dmax(e, acmp(outC, tmp, n, "linear", tol));
 | ||
|      }
 | ||
|      return e;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| double tf_shift(dofft_closure *k,
 | ||
| 		int realp, const bench_tensor *sz,
 | ||
| 		int n, int vecn, double sign,
 | ||
| 		C *inA, C *inB, C *outA, C *outB, C *tmp,
 | ||
| 		int rounds, double tol, int which_shift)
 | ||
| {
 | ||
|      int nb, na, dim, N = n * vecn;
 | ||
|      int i, j;
 | ||
|      double e = 0.0;
 | ||
| 
 | ||
|      /* test 3: check the time-shift property */
 | ||
|      /* the paper performs more tests, but this code should be fine too */
 | ||
| 
 | ||
|      nb = 1;
 | ||
|      na = n;
 | ||
| 
 | ||
|      /* check shifts across all SZ dimensions */
 | ||
|      for (dim = 0; dim < sz->rnk; ++dim) {
 | ||
| 	  int ncur = sz->dims[dim].n;
 | ||
| 
 | ||
| 	  na /= ncur;
 | ||
| 
 | ||
| 	  for (j = 0; j < rounds; ++j) {
 | ||
| 	       arand(inA, N);
 | ||
| 
 | ||
| 	       if (which_shift == TIME_SHIFT) {
 | ||
| 		    for (i = 0; i < vecn; ++i) {
 | ||
| 			 if (realp) mkreal(inA + i * n, n);
 | ||
| 			 arol(inB + i * n, inA + i * n, ncur, nb, na);
 | ||
| 		    }
 | ||
| 		    k->apply(k, inA, outA);
 | ||
| 		    k->apply(k, inB, outB);
 | ||
| 		    for (i = 0; i < vecn; ++i) 
 | ||
| 			 aphase_shift(tmp + i * n, outB + i * n, ncur, 
 | ||
| 				      nb, na, sign);
 | ||
| 		    e = dmax(e, acmp(tmp, outA, N, "time shift", tol));
 | ||
| 	       } else {
 | ||
| 		    for (i = 0; i < vecn; ++i) {
 | ||
| 			 if (realp) 
 | ||
| 			      mkhermitian(inA + i * n, sz->rnk, sz->dims, 1);
 | ||
| 			 aphase_shift(inB + i * n, inA + i * n, ncur,
 | ||
| 				      nb, na, -sign);
 | ||
| 		    }
 | ||
| 		    k->apply(k, inA, outA);
 | ||
| 		    k->apply(k, inB, outB);
 | ||
| 		    for (i = 0; i < vecn; ++i) 
 | ||
| 			 arol(tmp + i * n, outB + i * n, ncur, nb, na);
 | ||
| 		    e = dmax(e, acmp(tmp, outA, N, "freq shift", tol));
 | ||
| 	       }
 | ||
| 	  }
 | ||
| 
 | ||
| 	  nb *= ncur;
 | ||
|      }
 | ||
|      return e;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| void preserves_input(dofft_closure *k, aconstrain constrain,
 | ||
| 		     int n, C *inA, C *inB, C *outB, int rounds)
 | ||
| {
 | ||
|      int j;
 | ||
|      int recopy_input = k->recopy_input;
 | ||
| 
 | ||
|      k->recopy_input = 1;
 | ||
|      for (j = 0; j < rounds; ++j) {
 | ||
| 	  arand(inA, n);
 | ||
| 	  if (constrain)
 | ||
| 	       constrain(inA, n);
 | ||
| 	  
 | ||
| 	  acopy(inB, inA, n);
 | ||
| 	  k->apply(k, inB, outB);
 | ||
| 	  acmp(inB, inA, n, "preserves_input", 0.0);
 | ||
|      }
 | ||
|      k->recopy_input = recopy_input;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Make a copy of the size tensor, with the same dimensions, but with
 | ||
|    the strides corresponding to a "packed" row-major array with the
 | ||
|    given stride. */
 | ||
| bench_tensor *verify_pack(const bench_tensor *sz, int s)
 | ||
| {
 | ||
|      bench_tensor *x = tensor_copy(sz);
 | ||
|      if (BENCH_FINITE_RNK(x->rnk) && x->rnk > 0) {
 | ||
| 	  int i;
 | ||
| 	  x->dims[x->rnk - 1].is = s;
 | ||
| 	  x->dims[x->rnk - 1].os = s;
 | ||
| 	  for (i = x->rnk - 1; i > 0; --i) {
 | ||
| 	       x->dims[i - 1].is = x->dims[i].is * x->dims[i].n;
 | ||
| 	       x->dims[i - 1].os = x->dims[i].os * x->dims[i].n;
 | ||
| 	  }
 | ||
|      }
 | ||
|      return x;
 | ||
| }
 | ||
| 
 | ||
| static int all_zero(C *a, int n)
 | ||
| {
 | ||
|      int i;
 | ||
|      for (i = 0; i < n; ++i)
 | ||
| 	  if (c_re(a[i]) != 0.0 || c_im(a[i]) != 0.0)
 | ||
| 	       return 0;
 | ||
|      return 1;
 | ||
| }
 | ||
| 
 | ||
| static int one_accuracy_test(dofft_closure *k, aconstrain constrain,
 | ||
| 			     int sign, int n, C *a, C *b, 
 | ||
| 			     double t[6])
 | ||
| {
 | ||
|      double err[6];
 | ||
| 
 | ||
|      if (constrain)
 | ||
| 	  constrain(a, n);
 | ||
|      
 | ||
|      if (all_zero(a, n))
 | ||
| 	  return 0;
 | ||
|      
 | ||
|      k->apply(k, a, b);
 | ||
|      fftaccuracy(n, a, b, sign, err);
 | ||
|      
 | ||
|      t[0] += err[0];
 | ||
|      t[1] += err[1] * err[1];
 | ||
|      t[2] = dmax(t[2], err[2]);
 | ||
|      t[3] += err[3];
 | ||
|      t[4] += err[4] * err[4];
 | ||
|      t[5] = dmax(t[5], err[5]);
 | ||
| 
 | ||
|      return 1;
 | ||
| }
 | ||
| 
 | ||
| void accuracy_test(dofft_closure *k, aconstrain constrain,
 | ||
| 		   int sign, int n, C *a, C *b, int rounds, int impulse_rounds,
 | ||
| 		   double t[6])
 | ||
| {
 | ||
|      int r, i;
 | ||
|      int ntests = 0;
 | ||
|      bench_complex czero = {0, 0};
 | ||
| 
 | ||
|      for (i = 0; i < 6; ++i) t[i] = 0.0;
 | ||
| 
 | ||
|      for (r = 0; r < rounds; ++r) {
 | ||
| 	  arand(a, n);
 | ||
| 	  if (one_accuracy_test(k, constrain, sign, n, a, b, t))
 | ||
| 	       ++ntests;
 | ||
|      }
 | ||
| 
 | ||
|      /* impulses at beginning of array */
 | ||
|      for (r = 0; r < impulse_rounds; ++r) {
 | ||
| 	  if (r > n - r - 1)
 | ||
| 	       continue;
 | ||
| 	  
 | ||
| 	  caset(a, n, czero);
 | ||
| 	  c_re(a[r]) = c_im(a[r]) = 1.0;
 | ||
| 	  
 | ||
| 	  if (one_accuracy_test(k, constrain, sign, n, a, b, t))
 | ||
| 	       ++ntests;
 | ||
|      }
 | ||
|      
 | ||
|      /* impulses at end of array */
 | ||
|      for (r = 0; r < impulse_rounds; ++r) {
 | ||
| 	  if (r <= n - r - 1)
 | ||
| 	       continue;
 | ||
| 	  
 | ||
| 	  caset(a, n, czero);
 | ||
| 	  c_re(a[n - r - 1]) = c_im(a[n - r - 1]) = 1.0;
 | ||
| 	  
 | ||
| 	  if (one_accuracy_test(k, constrain, sign, n, a, b, t))
 | ||
| 	       ++ntests;
 | ||
|      }
 | ||
|      
 | ||
|      /* randomly-located impulses */
 | ||
|      for (r = 0; r < impulse_rounds; ++r) {
 | ||
| 	  caset(a, n, czero);
 | ||
| 	  i = rand() % n;
 | ||
| 	  c_re(a[i]) = c_im(a[i]) = 1.0;
 | ||
| 	  
 | ||
| 	  if (one_accuracy_test(k, constrain, sign, n, a, b, t))
 | ||
| 	       ++ntests;
 | ||
|      }
 | ||
| 
 | ||
|      t[0] /= ntests;
 | ||
|      t[1] = sqrt(t[1] / ntests);
 | ||
|      t[3] /= ntests;
 | ||
|      t[4] = sqrt(t[4] / ntests);
 | ||
| 
 | ||
|      fftaccuracy_done();
 | ||
| }
 | 
