235 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			235 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| 
 | |
| /* trigonometric functions */
 | |
| #include "kernel/ifftw.h"
 | |
| #include <math.h>
 | |
| 
 | |
| #if defined(TRIGREAL_IS_LONG_DOUBLE)
 | |
| #  define COS cosl
 | |
| #  define SIN sinl
 | |
| #  define KTRIG(x) (x##L)
 | |
| #  if defined(HAVE_DECL_SINL) && !HAVE_DECL_SINL
 | |
|      extern long double sinl(long double x);
 | |
| #  endif
 | |
| #  if defined(HAVE_DECL_COSL) && !HAVE_DECL_COSL
 | |
|      extern long double cosl(long double x);
 | |
| #  endif
 | |
| #elif defined(TRIGREAL_IS_QUAD)
 | |
| #  define COS cosq
 | |
| #  define SIN sinq
 | |
| #  define KTRIG(x) (x##Q)
 | |
|    extern __float128 sinq(__float128 x);
 | |
|    extern __float128 cosq(__float128 x);
 | |
| #else
 | |
| #  define COS cos
 | |
| #  define SIN sin
 | |
| #  define KTRIG(x) (x)
 | |
| #endif
 | |
| 
 | |
| static const trigreal K2PI =
 | |
|     KTRIG(6.2831853071795864769252867665590057683943388);
 | |
| #define by2pi(m, n) ((K2PI * (m)) / (n))
 | |
| 
 | |
| /*
 | |
|  * Improve accuracy by reducing x to range [0..1/8]
 | |
|  * before multiplication by 2 * PI.
 | |
|  */
 | |
| 
 | |
| static void real_cexp(INT m, INT n, trigreal *out)
 | |
| {
 | |
|      trigreal theta, c, s, t;
 | |
|      unsigned octant = 0;
 | |
|      INT quarter_n = n;
 | |
| 
 | |
|      n += n; n += n;
 | |
|      m += m; m += m;
 | |
| 
 | |
|      if (m < 0) m += n;
 | |
|      if (m > n - m) { m = n - m; octant |= 4; }
 | |
|      if (m - quarter_n > 0) { m = m - quarter_n; octant |= 2; }
 | |
|      if (m > quarter_n - m) { m = quarter_n - m; octant |= 1; }
 | |
| 
 | |
|      theta = by2pi(m, n);
 | |
|      c = COS(theta); s = SIN(theta);
 | |
| 
 | |
|      if (octant & 1) { t = c; c = s; s = t; }
 | |
|      if (octant & 2) { t = c; c = -s; s = t; }
 | |
|      if (octant & 4) { s = -s; }
 | |
| 
 | |
|      out[0] = c; 
 | |
|      out[1] = s; 
 | |
| }
 | |
| 
 | |
| static INT choose_twshft(INT n)
 | |
| {
 | |
|      INT log2r = 0;
 | |
|      while (n > 0) {
 | |
| 	  ++log2r;
 | |
| 	  n /= 4;
 | |
|      }
 | |
|      return log2r;
 | |
| }
 | |
| 
 | |
| static void cexpl_sqrtn_table(triggen *p, INT m, trigreal *res)
 | |
| {
 | |
|      m += p->n * (m < 0);
 | |
| 
 | |
|      {
 | |
| 	  INT m0 = m & p->twmsk;
 | |
| 	  INT m1 = m >> p->twshft;
 | |
| 	  trigreal wr0 = p->W0[2 * m0];
 | |
| 	  trigreal wi0 = p->W0[2 * m0 + 1];
 | |
| 	  trigreal wr1 = p->W1[2 * m1];
 | |
| 	  trigreal wi1 = p->W1[2 * m1 + 1];
 | |
| 
 | |
| 	  res[0] = wr1 * wr0 - wi1 * wi0;
 | |
| 	  res[1] = wi1 * wr0 + wr1 * wi0;
 | |
|      }
 | |
| }
 | |
| 
 | |
| /* multiply (xr, xi) by exp(FFT_SIGN * 2*pi*i*m/n) */
 | |
| static void rotate_sqrtn_table(triggen *p, INT m, R xr, R xi, R *res)
 | |
| {
 | |
|      m += p->n * (m < 0);
 | |
| 
 | |
|      {
 | |
| 	  INT m0 = m & p->twmsk;
 | |
| 	  INT m1 = m >> p->twshft;
 | |
| 	  trigreal wr0 = p->W0[2 * m0];
 | |
| 	  trigreal wi0 = p->W0[2 * m0 + 1];
 | |
| 	  trigreal wr1 = p->W1[2 * m1];
 | |
| 	  trigreal wi1 = p->W1[2 * m1 + 1];
 | |
| 	  trigreal wr = wr1 * wr0 - wi1 * wi0;
 | |
| 	  trigreal wi = wi1 * wr0 + wr1 * wi0;
 | |
| 
 | |
| #if FFT_SIGN == -1
 | |
| 	  res[0] = xr * wr + xi * wi;
 | |
| 	  res[1] = xi * wr - xr * wi;
 | |
| #else
 | |
| 	  res[0] = xr * wr - xi * wi;
 | |
| 	  res[1] = xi * wr + xr * wi;
 | |
| #endif
 | |
|      }
 | |
| }
 | |
| 
 | |
| static void cexpl_sincos(triggen *p, INT m, trigreal *res)
 | |
| {
 | |
|      real_cexp(m, p->n, res);
 | |
| }
 | |
| 
 | |
| static void cexp_zero(triggen *p, INT m, R *res)
 | |
| {
 | |
|      UNUSED(p); UNUSED(m);
 | |
|      res[0] = 0;
 | |
|      res[1] = 0;
 | |
| }
 | |
| 
 | |
| static void cexpl_zero(triggen *p, INT m, trigreal *res)
 | |
| {
 | |
|      UNUSED(p); UNUSED(m);
 | |
|      res[0] = 0;
 | |
|      res[1] = 0;
 | |
| }
 | |
| 
 | |
| static void cexp_generic(triggen *p, INT m, R *res)
 | |
| {
 | |
|      trigreal resl[2];
 | |
|      p->cexpl(p, m, resl);
 | |
|      res[0] = (R)resl[0];
 | |
|      res[1] = (R)resl[1];
 | |
| }
 | |
| 
 | |
| static void rotate_generic(triggen *p, INT m, R xr, R xi, R *res)
 | |
| {
 | |
|      trigreal w[2];
 | |
|      p->cexpl(p, m, w);
 | |
|      res[0] = xr * w[0] - xi * (FFT_SIGN * w[1]);
 | |
|      res[1] = xi * w[0] + xr * (FFT_SIGN * w[1]);
 | |
| }
 | |
| 
 | |
| triggen *X(mktriggen)(enum wakefulness wakefulness, INT n)
 | |
| {
 | |
|      INT i, n0, n1;
 | |
|      triggen *p = (triggen *)MALLOC(sizeof(*p), TWIDDLES);
 | |
| 
 | |
|      p->n = n;
 | |
|      p->W0 = p->W1 = 0;
 | |
|      p->cexp = 0;
 | |
|      p->rotate = 0;
 | |
| 
 | |
|      switch (wakefulness) {
 | |
| 	 case SLEEPY:
 | |
| 	      A(0 /* can't happen */);
 | |
| 	      break;
 | |
| 
 | |
| 	 case AWAKE_SQRTN_TABLE: {
 | |
| 	      INT twshft = choose_twshft(n);
 | |
| 
 | |
| 	      p->twshft = twshft;
 | |
| 	      p->twradix = ((INT)1) << twshft;
 | |
| 	      p->twmsk = p->twradix - 1;
 | |
| 
 | |
| 	      n0 = p->twradix;
 | |
| 	      n1 = (n + n0 - 1) / n0;
 | |
| 
 | |
| 	      p->W0 = (trigreal *)MALLOC(n0 * 2 * sizeof(trigreal), TWIDDLES);
 | |
| 	      p->W1 = (trigreal *)MALLOC(n1 * 2 * sizeof(trigreal), TWIDDLES);
 | |
| 
 | |
| 	      for (i = 0; i < n0; ++i) 
 | |
| 		   real_cexp(i, n, p->W0 + 2 * i);
 | |
| 
 | |
| 	      for (i = 0; i < n1; ++i) 
 | |
| 		   real_cexp(i * p->twradix, n, p->W1 + 2 * i);
 | |
| 
 | |
| 	      p->cexpl = cexpl_sqrtn_table;
 | |
| 	      p->rotate = rotate_sqrtn_table;
 | |
| 	      break;
 | |
| 	 }
 | |
| 
 | |
| 	 case AWAKE_SINCOS: 
 | |
| 	      p->cexpl = cexpl_sincos;
 | |
| 	      break;
 | |
| 
 | |
| 	 case AWAKE_ZERO: 
 | |
| 	      p->cexp = cexp_zero;
 | |
| 	      p->cexpl = cexpl_zero;
 | |
| 	      break;
 | |
|      }
 | |
| 
 | |
|      if (!p->cexp) {
 | |
| 	  if (sizeof(trigreal) == sizeof(R))
 | |
| 	       p->cexp = (void (*)(triggen *, INT, R *))p->cexpl;
 | |
| 	  else
 | |
| 	       p->cexp = cexp_generic;
 | |
|      }
 | |
|      if (!p->rotate)     
 | |
| 	       p->rotate = rotate_generic;
 | |
|      return p;
 | |
| }
 | |
| 
 | |
| void X(triggen_destroy)(triggen *p)
 | |
| {
 | |
|      X(ifree0)(p->W0);
 | |
|      X(ifree0)(p->W1);
 | |
|      X(ifree)(p);
 | |
| }
 | 
