355 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			355 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* This file was automatically generated --- DO NOT EDIT */
 | |
| /* Generated on Tue Sep 14 10:44:27 EDT 2021 */
 | |
| 
 | |
| #include "dft/codelet-dft.h"
 | |
| 
 | |
| #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 7 -name t1_7 -include dft/scalar/t.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 72 FP additions, 66 FP multiplications,
 | |
|  * (or, 18 additions, 12 multiplications, 54 fused multiply/add),
 | |
|  * 37 stack variables, 6 constants, and 28 memory accesses
 | |
|  */
 | |
| #include "dft/scalar/t.h"
 | |
| 
 | |
| static void t1_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      DK(KP974927912, +0.974927912181823607018131682993931217232785801);
 | |
|      DK(KP900968867, +0.900968867902419126236102319507445051165919162);
 | |
|      DK(KP801937735, +0.801937735804838252472204639014890102331838324);
 | |
|      DK(KP554958132, +0.554958132087371191422194871006410481067288862);
 | |
|      DK(KP692021471, +0.692021471630095869627814897002069140197260599);
 | |
|      DK(KP356895867, +0.356895867892209443894399510021300583399127187);
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  for (m = mb, W = W + (mb * 12); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) {
 | |
| 	       E T1, T1c, Te, T1h, TR, T19, Tr, T1g, TM, T1a, TE, T1i, TW, T1b;
 | |
| 	       T1 = ri[0];
 | |
| 	       T1c = ii[0];
 | |
| 	       {
 | |
| 		    E T3, T6, T4, TN, T9, Tc, Ta, TP, T2, T8;
 | |
| 		    T3 = ri[WS(rs, 1)];
 | |
| 		    T6 = ii[WS(rs, 1)];
 | |
| 		    T2 = W[0];
 | |
| 		    T4 = T2 * T3;
 | |
| 		    TN = T2 * T6;
 | |
| 		    T9 = ri[WS(rs, 6)];
 | |
| 		    Tc = ii[WS(rs, 6)];
 | |
| 		    T8 = W[10];
 | |
| 		    Ta = T8 * T9;
 | |
| 		    TP = T8 * Tc;
 | |
| 		    {
 | |
| 			 E T7, TO, Td, TQ, T5, Tb;
 | |
| 			 T5 = W[1];
 | |
| 			 T7 = FMA(T5, T6, T4);
 | |
| 			 TO = FNMS(T5, T3, TN);
 | |
| 			 Tb = W[11];
 | |
| 			 Td = FMA(Tb, Tc, Ta);
 | |
| 			 TQ = FNMS(Tb, T9, TP);
 | |
| 			 Te = T7 + Td;
 | |
| 			 T1h = Td - T7;
 | |
| 			 TR = TO - TQ;
 | |
| 			 T19 = TO + TQ;
 | |
| 		    }
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tg, Tj, Th, TI, Tm, Tp, Tn, TK, Tf, Tl;
 | |
| 		    Tg = ri[WS(rs, 2)];
 | |
| 		    Tj = ii[WS(rs, 2)];
 | |
| 		    Tf = W[2];
 | |
| 		    Th = Tf * Tg;
 | |
| 		    TI = Tf * Tj;
 | |
| 		    Tm = ri[WS(rs, 5)];
 | |
| 		    Tp = ii[WS(rs, 5)];
 | |
| 		    Tl = W[8];
 | |
| 		    Tn = Tl * Tm;
 | |
| 		    TK = Tl * Tp;
 | |
| 		    {
 | |
| 			 E Tk, TJ, Tq, TL, Ti, To;
 | |
| 			 Ti = W[3];
 | |
| 			 Tk = FMA(Ti, Tj, Th);
 | |
| 			 TJ = FNMS(Ti, Tg, TI);
 | |
| 			 To = W[9];
 | |
| 			 Tq = FMA(To, Tp, Tn);
 | |
| 			 TL = FNMS(To, Tm, TK);
 | |
| 			 Tr = Tk + Tq;
 | |
| 			 T1g = Tq - Tk;
 | |
| 			 TM = TJ - TL;
 | |
| 			 T1a = TJ + TL;
 | |
| 		    }
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tt, Tw, Tu, TS, Tz, TC, TA, TU, Ts, Ty;
 | |
| 		    Tt = ri[WS(rs, 3)];
 | |
| 		    Tw = ii[WS(rs, 3)];
 | |
| 		    Ts = W[4];
 | |
| 		    Tu = Ts * Tt;
 | |
| 		    TS = Ts * Tw;
 | |
| 		    Tz = ri[WS(rs, 4)];
 | |
| 		    TC = ii[WS(rs, 4)];
 | |
| 		    Ty = W[6];
 | |
| 		    TA = Ty * Tz;
 | |
| 		    TU = Ty * TC;
 | |
| 		    {
 | |
| 			 E Tx, TT, TD, TV, Tv, TB;
 | |
| 			 Tv = W[5];
 | |
| 			 Tx = FMA(Tv, Tw, Tu);
 | |
| 			 TT = FNMS(Tv, Tt, TS);
 | |
| 			 TB = W[7];
 | |
| 			 TD = FMA(TB, TC, TA);
 | |
| 			 TV = FNMS(TB, Tz, TU);
 | |
| 			 TE = Tx + TD;
 | |
| 			 T1i = TD - Tx;
 | |
| 			 TW = TT - TV;
 | |
| 			 T1b = TT + TV;
 | |
| 		    }
 | |
| 	       }
 | |
| 	       ri[0] = T1 + Te + Tr + TE;
 | |
| 	       ii[0] = T19 + T1a + T1b + T1c;
 | |
| 	       {
 | |
| 		    E TG, TY, TF, TX, TH;
 | |
| 		    TF = FNMS(KP356895867, Tr, Te);
 | |
| 		    TG = FNMS(KP692021471, TF, TE);
 | |
| 		    TX = FMA(KP554958132, TW, TR);
 | |
| 		    TY = FMA(KP801937735, TX, TM);
 | |
| 		    TH = FNMS(KP900968867, TG, T1);
 | |
| 		    ri[WS(rs, 6)] = FNMS(KP974927912, TY, TH);
 | |
| 		    ri[WS(rs, 1)] = FMA(KP974927912, TY, TH);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T1e, T1k, T1d, T1j, T1f;
 | |
| 		    T1d = FNMS(KP356895867, T1a, T19);
 | |
| 		    T1e = FNMS(KP692021471, T1d, T1b);
 | |
| 		    T1j = FMA(KP554958132, T1i, T1h);
 | |
| 		    T1k = FMA(KP801937735, T1j, T1g);
 | |
| 		    T1f = FNMS(KP900968867, T1e, T1c);
 | |
| 		    ii[WS(rs, 1)] = FMA(KP974927912, T1k, T1f);
 | |
| 		    ii[WS(rs, 6)] = FNMS(KP974927912, T1k, T1f);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T10, T13, TZ, T12, T11;
 | |
| 		    TZ = FNMS(KP356895867, Te, TE);
 | |
| 		    T10 = FNMS(KP692021471, TZ, Tr);
 | |
| 		    T12 = FMA(KP554958132, TM, TW);
 | |
| 		    T13 = FNMS(KP801937735, T12, TR);
 | |
| 		    T11 = FNMS(KP900968867, T10, T1);
 | |
| 		    ri[WS(rs, 5)] = FNMS(KP974927912, T13, T11);
 | |
| 		    ri[WS(rs, 2)] = FMA(KP974927912, T13, T11);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T1m, T1p, T1l, T1o, T1n;
 | |
| 		    T1l = FNMS(KP356895867, T19, T1b);
 | |
| 		    T1m = FNMS(KP692021471, T1l, T1a);
 | |
| 		    T1o = FMA(KP554958132, T1g, T1i);
 | |
| 		    T1p = FNMS(KP801937735, T1o, T1h);
 | |
| 		    T1n = FNMS(KP900968867, T1m, T1c);
 | |
| 		    ii[WS(rs, 2)] = FMA(KP974927912, T1p, T1n);
 | |
| 		    ii[WS(rs, 5)] = FNMS(KP974927912, T1p, T1n);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T15, T18, T14, T17, T16;
 | |
| 		    T14 = FNMS(KP356895867, TE, Tr);
 | |
| 		    T15 = FNMS(KP692021471, T14, Te);
 | |
| 		    T17 = FNMS(KP554958132, TR, TM);
 | |
| 		    T18 = FNMS(KP801937735, T17, TW);
 | |
| 		    T16 = FNMS(KP900968867, T15, T1);
 | |
| 		    ri[WS(rs, 4)] = FNMS(KP974927912, T18, T16);
 | |
| 		    ri[WS(rs, 3)] = FMA(KP974927912, T18, T16);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T1r, T1u, T1q, T1t, T1s;
 | |
| 		    T1q = FNMS(KP356895867, T1b, T1a);
 | |
| 		    T1r = FNMS(KP692021471, T1q, T19);
 | |
| 		    T1t = FNMS(KP554958132, T1h, T1g);
 | |
| 		    T1u = FNMS(KP801937735, T1t, T1i);
 | |
| 		    T1s = FNMS(KP900968867, T1r, T1c);
 | |
| 		    ii[WS(rs, 3)] = FMA(KP974927912, T1u, T1s);
 | |
| 		    ii[WS(rs, 4)] = FNMS(KP974927912, T1u, T1s);
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      { TW_FULL, 0, 7 },
 | |
|      { TW_NEXT, 1, 0 }
 | |
| };
 | |
| 
 | |
| static const ct_desc desc = { 7, "t1_7", twinstr, &GENUS, { 18, 12, 54, 0 }, 0, 0, 0 };
 | |
| 
 | |
| void X(codelet_t1_7) (planner *p) {
 | |
|      X(kdft_dit_register) (p, t1_7, &desc);
 | |
| }
 | |
| #else
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 7 -name t1_7 -include dft/scalar/t.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 72 FP additions, 60 FP multiplications,
 | |
|  * (or, 36 additions, 24 multiplications, 36 fused multiply/add),
 | |
|  * 29 stack variables, 6 constants, and 28 memory accesses
 | |
|  */
 | |
| #include "dft/scalar/t.h"
 | |
| 
 | |
| static void t1_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      DK(KP222520933, +0.222520933956314404288902564496794759466355569);
 | |
|      DK(KP900968867, +0.900968867902419126236102319507445051165919162);
 | |
|      DK(KP623489801, +0.623489801858733530525004884004239810632274731);
 | |
|      DK(KP433883739, +0.433883739117558120475768332848358754609990728);
 | |
|      DK(KP781831482, +0.781831482468029808708444526674057750232334519);
 | |
|      DK(KP974927912, +0.974927912181823607018131682993931217232785801);
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  for (m = mb, W = W + (mb * 12); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) {
 | |
| 	       E T1, TR, Tc, TS, TC, TO, Tn, TT, TI, TP, Ty, TU, TF, TQ;
 | |
| 	       T1 = ri[0];
 | |
| 	       TR = ii[0];
 | |
| 	       {
 | |
| 		    E T6, TA, Tb, TB;
 | |
| 		    {
 | |
| 			 E T3, T5, T2, T4;
 | |
| 			 T3 = ri[WS(rs, 1)];
 | |
| 			 T5 = ii[WS(rs, 1)];
 | |
| 			 T2 = W[0];
 | |
| 			 T4 = W[1];
 | |
| 			 T6 = FMA(T2, T3, T4 * T5);
 | |
| 			 TA = FNMS(T4, T3, T2 * T5);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E T8, Ta, T7, T9;
 | |
| 			 T8 = ri[WS(rs, 6)];
 | |
| 			 Ta = ii[WS(rs, 6)];
 | |
| 			 T7 = W[10];
 | |
| 			 T9 = W[11];
 | |
| 			 Tb = FMA(T7, T8, T9 * Ta);
 | |
| 			 TB = FNMS(T9, T8, T7 * Ta);
 | |
| 		    }
 | |
| 		    Tc = T6 + Tb;
 | |
| 		    TS = Tb - T6;
 | |
| 		    TC = TA - TB;
 | |
| 		    TO = TA + TB;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Th, TG, Tm, TH;
 | |
| 		    {
 | |
| 			 E Te, Tg, Td, Tf;
 | |
| 			 Te = ri[WS(rs, 2)];
 | |
| 			 Tg = ii[WS(rs, 2)];
 | |
| 			 Td = W[2];
 | |
| 			 Tf = W[3];
 | |
| 			 Th = FMA(Td, Te, Tf * Tg);
 | |
| 			 TG = FNMS(Tf, Te, Td * Tg);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E Tj, Tl, Ti, Tk;
 | |
| 			 Tj = ri[WS(rs, 5)];
 | |
| 			 Tl = ii[WS(rs, 5)];
 | |
| 			 Ti = W[8];
 | |
| 			 Tk = W[9];
 | |
| 			 Tm = FMA(Ti, Tj, Tk * Tl);
 | |
| 			 TH = FNMS(Tk, Tj, Ti * Tl);
 | |
| 		    }
 | |
| 		    Tn = Th + Tm;
 | |
| 		    TT = Tm - Th;
 | |
| 		    TI = TG - TH;
 | |
| 		    TP = TG + TH;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Ts, TD, Tx, TE;
 | |
| 		    {
 | |
| 			 E Tp, Tr, To, Tq;
 | |
| 			 Tp = ri[WS(rs, 3)];
 | |
| 			 Tr = ii[WS(rs, 3)];
 | |
| 			 To = W[4];
 | |
| 			 Tq = W[5];
 | |
| 			 Ts = FMA(To, Tp, Tq * Tr);
 | |
| 			 TD = FNMS(Tq, Tp, To * Tr);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E Tu, Tw, Tt, Tv;
 | |
| 			 Tu = ri[WS(rs, 4)];
 | |
| 			 Tw = ii[WS(rs, 4)];
 | |
| 			 Tt = W[6];
 | |
| 			 Tv = W[7];
 | |
| 			 Tx = FMA(Tt, Tu, Tv * Tw);
 | |
| 			 TE = FNMS(Tv, Tu, Tt * Tw);
 | |
| 		    }
 | |
| 		    Ty = Ts + Tx;
 | |
| 		    TU = Tx - Ts;
 | |
| 		    TF = TD - TE;
 | |
| 		    TQ = TD + TE;
 | |
| 	       }
 | |
| 	       ri[0] = T1 + Tc + Tn + Ty;
 | |
| 	       ii[0] = TO + TP + TQ + TR;
 | |
| 	       {
 | |
| 		    E TJ, Tz, TX, TY;
 | |
| 		    TJ = FNMS(KP781831482, TF, KP974927912 * TC) - (KP433883739 * TI);
 | |
| 		    Tz = FMA(KP623489801, Ty, T1) + FNMA(KP900968867, Tn, KP222520933 * Tc);
 | |
| 		    ri[WS(rs, 5)] = Tz - TJ;
 | |
| 		    ri[WS(rs, 2)] = Tz + TJ;
 | |
| 		    TX = FNMS(KP781831482, TU, KP974927912 * TS) - (KP433883739 * TT);
 | |
| 		    TY = FMA(KP623489801, TQ, TR) + FNMA(KP900968867, TP, KP222520933 * TO);
 | |
| 		    ii[WS(rs, 2)] = TX + TY;
 | |
| 		    ii[WS(rs, 5)] = TY - TX;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TL, TK, TV, TW;
 | |
| 		    TL = FMA(KP781831482, TC, KP974927912 * TI) + (KP433883739 * TF);
 | |
| 		    TK = FMA(KP623489801, Tc, T1) + FNMA(KP900968867, Ty, KP222520933 * Tn);
 | |
| 		    ri[WS(rs, 6)] = TK - TL;
 | |
| 		    ri[WS(rs, 1)] = TK + TL;
 | |
| 		    TV = FMA(KP781831482, TS, KP974927912 * TT) + (KP433883739 * TU);
 | |
| 		    TW = FMA(KP623489801, TO, TR) + FNMA(KP900968867, TQ, KP222520933 * TP);
 | |
| 		    ii[WS(rs, 1)] = TV + TW;
 | |
| 		    ii[WS(rs, 6)] = TW - TV;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TN, TM, TZ, T10;
 | |
| 		    TN = FMA(KP433883739, TC, KP974927912 * TF) - (KP781831482 * TI);
 | |
| 		    TM = FMA(KP623489801, Tn, T1) + FNMA(KP222520933, Ty, KP900968867 * Tc);
 | |
| 		    ri[WS(rs, 4)] = TM - TN;
 | |
| 		    ri[WS(rs, 3)] = TM + TN;
 | |
| 		    TZ = FMA(KP433883739, TS, KP974927912 * TU) - (KP781831482 * TT);
 | |
| 		    T10 = FMA(KP623489801, TP, TR) + FNMA(KP222520933, TQ, KP900968867 * TO);
 | |
| 		    ii[WS(rs, 3)] = TZ + T10;
 | |
| 		    ii[WS(rs, 4)] = T10 - TZ;
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      { TW_FULL, 0, 7 },
 | |
|      { TW_NEXT, 1, 0 }
 | |
| };
 | |
| 
 | |
| static const ct_desc desc = { 7, "t1_7", twinstr, &GENUS, { 36, 24, 36, 0 }, 0, 0, 0 };
 | |
| 
 | |
| void X(codelet_t1_7) (planner *p) {
 | |
|      X(kdft_dit_register) (p, t1_7, &desc);
 | |
| }
 | |
| #endif
 | 
