280 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			280 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* This file was automatically generated --- DO NOT EDIT */
 | |
| /* Generated on Tue Sep 14 10:46:57 EDT 2021 */
 | |
| 
 | |
| #include "rdft/codelet-rdft.h"
 | |
| 
 | |
| #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 5 -dif -name hb2_5 -include rdft/scalar/hb.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 44 FP additions, 40 FP multiplications,
 | |
|  * (or, 14 additions, 10 multiplications, 30 fused multiply/add),
 | |
|  * 37 stack variables, 4 constants, and 20 memory accesses
 | |
|  */
 | |
| #include "rdft/scalar/hb.h"
 | |
| 
 | |
| static void hb2_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      DK(KP951056516, +0.951056516295153572116439333379382143405698634);
 | |
|      DK(KP559016994, +0.559016994374947424102293417182819058860154590);
 | |
|      DK(KP250000000, +0.250000000000000000000000000000000000000000000);
 | |
|      DK(KP618033988, +0.618033988749894848204586834365638117720309180);
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) {
 | |
| 	       E T9, TB, Tz, Tm, TC, TO, TG, TJ, TA, TF;
 | |
| 	       T9 = W[0];
 | |
| 	       TB = W[3];
 | |
| 	       Tz = W[2];
 | |
| 	       TA = T9 * Tz;
 | |
| 	       TF = T9 * TB;
 | |
| 	       Tm = W[1];
 | |
| 	       TC = FNMS(Tm, TB, TA);
 | |
| 	       TO = FNMS(Tm, Tz, TF);
 | |
| 	       TG = FMA(Tm, Tz, TF);
 | |
| 	       TJ = FMA(Tm, TB, TA);
 | |
| 	       {
 | |
| 		    E T1, Tb, TQ, Tw, T8, Ta, Tn, Tj, TL, Ts, Tq, Tr;
 | |
| 		    {
 | |
| 			 E T4, Tu, T7, Tv;
 | |
| 			 T1 = cr[0];
 | |
| 			 {
 | |
| 			      E T2, T3, T5, T6;
 | |
| 			      T2 = cr[WS(rs, 1)];
 | |
| 			      T3 = ci[0];
 | |
| 			      T4 = T2 + T3;
 | |
| 			      Tu = T2 - T3;
 | |
| 			      T5 = cr[WS(rs, 2)];
 | |
| 			      T6 = ci[WS(rs, 1)];
 | |
| 			      T7 = T5 + T6;
 | |
| 			      Tv = T5 - T6;
 | |
| 			 }
 | |
| 			 Tb = T4 - T7;
 | |
| 			 TQ = FNMS(KP618033988, Tu, Tv);
 | |
| 			 Tw = FMA(KP618033988, Tv, Tu);
 | |
| 			 T8 = T4 + T7;
 | |
| 			 Ta = FNMS(KP250000000, T8, T1);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E Tf, To, Ti, Tp;
 | |
| 			 Tn = ci[WS(rs, 4)];
 | |
| 			 {
 | |
| 			      E Td, Te, Tg, Th;
 | |
| 			      Td = ci[WS(rs, 3)];
 | |
| 			      Te = cr[WS(rs, 4)];
 | |
| 			      Tf = Td + Te;
 | |
| 			      To = Td - Te;
 | |
| 			      Tg = ci[WS(rs, 2)];
 | |
| 			      Th = cr[WS(rs, 3)];
 | |
| 			      Ti = Tg + Th;
 | |
| 			      Tp = Tg - Th;
 | |
| 			 }
 | |
| 			 Tj = FMA(KP618033988, Ti, Tf);
 | |
| 			 TL = FNMS(KP618033988, Tf, Ti);
 | |
| 			 Ts = To - Tp;
 | |
| 			 Tq = To + Tp;
 | |
| 			 Tr = FNMS(KP250000000, Tq, Tn);
 | |
| 		    }
 | |
| 		    cr[0] = T1 + T8;
 | |
| 		    ci[0] = Tn + Tq;
 | |
| 		    {
 | |
| 			 E Tk, TD, Tx, TH, Tc, Tt;
 | |
| 			 Tc = FMA(KP559016994, Tb, Ta);
 | |
| 			 Tk = FNMS(KP951056516, Tj, Tc);
 | |
| 			 TD = FMA(KP951056516, Tj, Tc);
 | |
| 			 Tt = FMA(KP559016994, Ts, Tr);
 | |
| 			 Tx = FMA(KP951056516, Tw, Tt);
 | |
| 			 TH = FNMS(KP951056516, Tw, Tt);
 | |
| 			 {
 | |
| 			      E Tl, Ty, TE, TI;
 | |
| 			      Tl = T9 * Tk;
 | |
| 			      cr[WS(rs, 1)] = FNMS(Tm, Tx, Tl);
 | |
| 			      Ty = Tm * Tk;
 | |
| 			      ci[WS(rs, 1)] = FMA(T9, Tx, Ty);
 | |
| 			      TE = TC * TD;
 | |
| 			      cr[WS(rs, 4)] = FNMS(TG, TH, TE);
 | |
| 			      TI = TG * TD;
 | |
| 			      ci[WS(rs, 4)] = FMA(TC, TH, TI);
 | |
| 			 }
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E TM, TT, TR, TV, TK, TP;
 | |
| 			 TK = FNMS(KP559016994, Tb, Ta);
 | |
| 			 TM = FMA(KP951056516, TL, TK);
 | |
| 			 TT = FNMS(KP951056516, TL, TK);
 | |
| 			 TP = FNMS(KP559016994, Ts, Tr);
 | |
| 			 TR = FNMS(KP951056516, TQ, TP);
 | |
| 			 TV = FMA(KP951056516, TQ, TP);
 | |
| 			 {
 | |
| 			      E TN, TS, TU, TW;
 | |
| 			      TN = TJ * TM;
 | |
| 			      cr[WS(rs, 2)] = FNMS(TO, TR, TN);
 | |
| 			      TS = TO * TM;
 | |
| 			      ci[WS(rs, 2)] = FMA(TJ, TR, TS);
 | |
| 			      TU = Tz * TT;
 | |
| 			      cr[WS(rs, 3)] = FNMS(TB, TV, TU);
 | |
| 			      TW = TB * TT;
 | |
| 			      ci[WS(rs, 3)] = FMA(Tz, TV, TW);
 | |
| 			 }
 | |
| 		    }
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      { TW_CEXP, 1, 1 },
 | |
|      { TW_CEXP, 1, 3 },
 | |
|      { TW_NEXT, 1, 0 }
 | |
| };
 | |
| 
 | |
| static const hc2hc_desc desc = { 5, "hb2_5", twinstr, &GENUS, { 14, 10, 30, 0 } };
 | |
| 
 | |
| void X(codelet_hb2_5) (planner *p) {
 | |
|      X(khc2hc_register) (p, hb2_5, &desc);
 | |
| }
 | |
| #else
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 5 -dif -name hb2_5 -include rdft/scalar/hb.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 44 FP additions, 32 FP multiplications,
 | |
|  * (or, 30 additions, 18 multiplications, 14 fused multiply/add),
 | |
|  * 33 stack variables, 4 constants, and 20 memory accesses
 | |
|  */
 | |
| #include "rdft/scalar/hb.h"
 | |
| 
 | |
| static void hb2_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      DK(KP250000000, +0.250000000000000000000000000000000000000000000);
 | |
|      DK(KP587785252, +0.587785252292473129168705954639072768597652438);
 | |
|      DK(KP951056516, +0.951056516295153572116439333379382143405698634);
 | |
|      DK(KP559016994, +0.559016994374947424102293417182819058860154590);
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) {
 | |
| 	       E Th, Tk, Ti, Tl, Tn, TP, Tx, TN;
 | |
| 	       {
 | |
| 		    E Tj, Tw, Tm, Tv;
 | |
| 		    Th = W[0];
 | |
| 		    Tk = W[1];
 | |
| 		    Ti = W[2];
 | |
| 		    Tl = W[3];
 | |
| 		    Tj = Th * Ti;
 | |
| 		    Tw = Tk * Ti;
 | |
| 		    Tm = Tk * Tl;
 | |
| 		    Tv = Th * Tl;
 | |
| 		    Tn = Tj + Tm;
 | |
| 		    TP = Tv + Tw;
 | |
| 		    Tx = Tv - Tw;
 | |
| 		    TN = Tj - Tm;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T1, Tp, TK, TA, T8, To, T9, Tt, TI, TC, Tg, TB;
 | |
| 		    {
 | |
| 			 E T4, Ty, T7, Tz;
 | |
| 			 T1 = cr[0];
 | |
| 			 {
 | |
| 			      E T2, T3, T5, T6;
 | |
| 			      T2 = cr[WS(rs, 1)];
 | |
| 			      T3 = ci[0];
 | |
| 			      T4 = T2 + T3;
 | |
| 			      Ty = T2 - T3;
 | |
| 			      T5 = cr[WS(rs, 2)];
 | |
| 			      T6 = ci[WS(rs, 1)];
 | |
| 			      T7 = T5 + T6;
 | |
| 			      Tz = T5 - T6;
 | |
| 			 }
 | |
| 			 Tp = KP559016994 * (T4 - T7);
 | |
| 			 TK = FMA(KP951056516, Ty, KP587785252 * Tz);
 | |
| 			 TA = FNMS(KP951056516, Tz, KP587785252 * Ty);
 | |
| 			 T8 = T4 + T7;
 | |
| 			 To = FNMS(KP250000000, T8, T1);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E Tc, Tr, Tf, Ts;
 | |
| 			 T9 = ci[WS(rs, 4)];
 | |
| 			 {
 | |
| 			      E Ta, Tb, Td, Te;
 | |
| 			      Ta = ci[WS(rs, 3)];
 | |
| 			      Tb = cr[WS(rs, 4)];
 | |
| 			      Tc = Ta - Tb;
 | |
| 			      Tr = Ta + Tb;
 | |
| 			      Td = ci[WS(rs, 2)];
 | |
| 			      Te = cr[WS(rs, 3)];
 | |
| 			      Tf = Td - Te;
 | |
| 			      Ts = Td + Te;
 | |
| 			 }
 | |
| 			 Tt = FNMS(KP951056516, Ts, KP587785252 * Tr);
 | |
| 			 TI = FMA(KP951056516, Tr, KP587785252 * Ts);
 | |
| 			 TC = KP559016994 * (Tc - Tf);
 | |
| 			 Tg = Tc + Tf;
 | |
| 			 TB = FNMS(KP250000000, Tg, T9);
 | |
| 		    }
 | |
| 		    cr[0] = T1 + T8;
 | |
| 		    ci[0] = T9 + Tg;
 | |
| 		    {
 | |
| 			 E Tu, TF, TE, TG, Tq, TD;
 | |
| 			 Tq = To - Tp;
 | |
| 			 Tu = Tq - Tt;
 | |
| 			 TF = Tq + Tt;
 | |
| 			 TD = TB - TC;
 | |
| 			 TE = TA + TD;
 | |
| 			 TG = TD - TA;
 | |
| 			 cr[WS(rs, 2)] = FNMS(Tx, TE, Tn * Tu);
 | |
| 			 ci[WS(rs, 2)] = FMA(Tn, TE, Tx * Tu);
 | |
| 			 cr[WS(rs, 3)] = FNMS(Tl, TG, Ti * TF);
 | |
| 			 ci[WS(rs, 3)] = FMA(Ti, TG, Tl * TF);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E TJ, TO, TM, TQ, TH, TL;
 | |
| 			 TH = Tp + To;
 | |
| 			 TJ = TH - TI;
 | |
| 			 TO = TH + TI;
 | |
| 			 TL = TC + TB;
 | |
| 			 TM = TK + TL;
 | |
| 			 TQ = TL - TK;
 | |
| 			 cr[WS(rs, 1)] = FNMS(Tk, TM, Th * TJ);
 | |
| 			 ci[WS(rs, 1)] = FMA(Th, TM, Tk * TJ);
 | |
| 			 cr[WS(rs, 4)] = FNMS(TP, TQ, TN * TO);
 | |
| 			 ci[WS(rs, 4)] = FMA(TN, TQ, TP * TO);
 | |
| 		    }
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      { TW_CEXP, 1, 1 },
 | |
|      { TW_CEXP, 1, 3 },
 | |
|      { TW_NEXT, 1, 0 }
 | |
| };
 | |
| 
 | |
| static const hc2hc_desc desc = { 5, "hb2_5", twinstr, &GENUS, { 30, 18, 14, 0 } };
 | |
| 
 | |
| void X(codelet_hb2_5) (planner *p) {
 | |
|      X(khc2hc_register) (p, hb2_5, &desc);
 | |
| }
 | |
| #endif
 | 
