/** * Furnace Tracker - multi-system chiptune tracker * Copyright (C) 2021-2022 tildearrow and contributors * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "opll.h" #include "../engine.h" #include #include #define rWrite(a,v) if (!skipRegisterWrites) {pendingWrites[a]=v;} #define immWrite(a,v) if (!skipRegisterWrites) {writes.emplace(a,v); if (dumpWrites) {addWrite(a,v);} } #define CHIP_FREQBASE 1180067 const char* DivPlatformOPLL::getEffectName(unsigned char effect) { switch (effect) { case 0x10: return "10xy: Setup LFO (x: enable; y: speed)"; break; case 0x11: return "11xx: Set feedback (0 to 7)"; break; case 0x12: return "12xx: Set level of operator 1 (0 highest, 7F lowest)"; break; case 0x13: return "13xx: Set level of operator 2 (0 highest, 7F lowest)"; break; case 0x14: return "14xx: Set level of operator 3 (0 highest, 7F lowest)"; break; case 0x15: return "15xx: Set level of operator 4 (0 highest, 7F lowest)"; break; case 0x16: return "16xy: Set operator multiplier (x: operator from 1 to 4; y: multiplier)"; break; case 0x17: return "17xx: Enable channel 6 DAC"; break; case 0x18: return "18xx: Toggle extended channel 3 mode"; break; case 0x19: return "19xx: Set attack of all operators (0 to 1F)"; break; case 0x1a: return "1Axx: Set attack of operator 1 (0 to 1F)"; break; case 0x1b: return "1Bxx: Set attack of operator 2 (0 to 1F)"; break; case 0x1c: return "1Cxx: Set attack of operator 3 (0 to 1F)"; break; case 0x1d: return "1Dxx: Set attack of operator 4 (0 to 1F)"; break; } return NULL; } void DivPlatformOPLL::acquire_nuked(short* bufL, short* bufR, size_t start, size_t len) { static int o[2]; for (size_t h=start; h32767) o[1]=32767; bufL[h]=(o[0]+o[1])<<12; } } void DivPlatformOPLL::acquire_ymfm(short* bufL, short* bufR, size_t start, size_t len) { } void DivPlatformOPLL::acquire(short* bufL, short* bufR, size_t start, size_t len) { acquire_nuked(bufL,bufR,start,len); } void DivPlatformOPLL::tick() { for (int i=0; i<9; i++) { chan[i].std.next(); /*if (chan[i].std.hadVol) { chan[i].outVol=(chan[i].vol*MIN(127,chan[i].std.vol))/127; for (int j=0; j<4; j++) { unsigned short baseAddr=chanOffs[i]|opOffs[j]; DivInstrumentFM::Operator& op=chan[i].state.op[j]; if (isMuted[i]) { rWrite(baseAddr+ADDR_TL,127); } else { if (isOutput[chan[i].state.alg][j]) { rWrite(baseAddr+ADDR_TL,127-(((127-op.tl)*(chan[i].outVol&0x7f))/127)); } else { rWrite(baseAddr+ADDR_TL,op.tl); } } } } if (chan[i].std.hadArp) { if (!chan[i].inPorta) { if (chan[i].std.arpMode) { chan[i].baseFreq=NOTE_FREQUENCY(chan[i].std.arp); } else { chan[i].baseFreq=NOTE_FREQUENCY(chan[i].note+(signed char)chan[i].std.arp); } } chan[i].freqChanged=true; } else { if (chan[i].std.arpMode && chan[i].std.finishedArp) { chan[i].baseFreq=NOTE_FREQUENCY(chan[i].note); chan[i].freqChanged=true; } } if (chan[i].std.hadAlg) { chan[i].state.alg=chan[i].std.alg; rWrite(chanOffs[i]+ADDR_FB_ALG,(chan[i].state.alg&7)|(chan[i].state.fb<<3)); if (!parent->song.algMacroBehavior) for (int j=0; j<4; j++) { unsigned short baseAddr=chanOffs[i]|opOffs[j]; DivInstrumentFM::Operator& op=chan[i].state.op[j]; if (isMuted[i]) { rWrite(baseAddr+ADDR_TL,127); } else { if (isOutput[chan[i].state.alg][j]) { rWrite(baseAddr+ADDR_TL,127-(((127-op.tl)*(chan[i].outVol&0x7f))/127)); } else { rWrite(baseAddr+ADDR_TL,op.tl); } } } } if (chan[i].std.hadFb) { chan[i].state.fb=chan[i].std.fb; rWrite(chanOffs[i]+ADDR_FB_ALG,(chan[i].state.alg&7)|(chan[i].state.fb<<3)); } if (chan[i].std.hadFms) { chan[i].state.fms=chan[i].std.fms; rWrite(chanOffs[i]+ADDR_LRAF,(isMuted[i]?0:(chan[i].pan<<6))|(chan[i].state.fms&7)|((chan[i].state.ams&3)<<4)); } if (chan[i].std.hadAms) { chan[i].state.ams=chan[i].std.ams; rWrite(chanOffs[i]+ADDR_LRAF,(isMuted[i]?0:(chan[i].pan<<6))|(chan[i].state.fms&7)|((chan[i].state.ams&3)<<4)); } for (int j=0; j<2; j++) { unsigned short baseAddr=chanOffs[i]|opOffs[j]; DivInstrumentFM::Operator& op=chan[i].state.op[j]; DivMacroInt::IntOp& m=chan[i].std.op[j]; if (m.hadAm) { op.am=m.am; rWrite(baseAddr+ADDR_AM_DR,(op.dr&31)|(op.am<<7)); } if (m.hadAr) { op.ar=m.ar; rWrite(baseAddr+ADDR_RS_AR,(op.ar&31)|(op.rs<<6)); } if (m.hadDr) { op.dr=m.dr; rWrite(baseAddr+ADDR_AM_DR,(op.dr&31)|(op.am<<7)); } if (m.hadMult) { op.mult=m.mult; rWrite(baseAddr+ADDR_MULT_DT,(op.mult&15)|(dtTable[op.dt&7]<<4)); } if (m.hadRr) { op.rr=m.rr; rWrite(baseAddr+ADDR_SL_RR,(op.rr&15)|(op.sl<<4)); } if (m.hadSl) { op.sl=m.sl; rWrite(baseAddr+ADDR_SL_RR,(op.rr&15)|(op.sl<<4)); } if (m.hadTl) { op.tl=127-m.tl; if (isMuted[i]) { rWrite(baseAddr+ADDR_TL,127); } else { if (isOutput[chan[i].state.alg][j]) { rWrite(baseAddr+ADDR_TL,127-(((127-op.tl)*(chan[i].outVol&0x7f))/127)); } else { rWrite(baseAddr+ADDR_TL,op.tl); } } } if (m.hadRs) { op.rs=m.rs; rWrite(baseAddr+ADDR_RS_AR,(op.ar&31)|(op.rs<<6)); } if (m.hadDt) { op.dt=m.dt; rWrite(baseAddr+ADDR_MULT_DT,(op.mult&15)|(dtTable[op.dt&7]<<4)); } if (m.hadD2r) { op.d2r=m.d2r; rWrite(baseAddr+ADDR_DT2_D2R,op.d2r&31); } if (m.hadSsg) { op.ssgEnv=m.ssg; rWrite(baseAddr+ADDR_SSG,op.ssgEnv&15); } }*/ if (chan[i].keyOn || chan[i].keyOff) { // TODO: FIX immWrite(0x20+i,0x00); //chan[i].keyOn=false; chan[i].keyOff=false; } } for (int i=0; i<256; i++) { if (pendingWrites[i]!=oldWrites[i]) { immWrite(i,pendingWrites[i]&0xff); oldWrites[i]=pendingWrites[i]; } } for (int i=0; i<9; i++) { if (chan[i].freqChanged) { chan[i].freq=parent->calcFreq(chan[i].baseFreq,chan[i].pitch,false,octave(chan[i].baseFreq)); if (chan[i].freq>262143) chan[i].freq=262143; int freqt=toFreq(chan[i].freq); chan[i].freqH=freqt>>8; chan[i].freqL=freqt&0xff; immWrite(0x10+i,freqt&0xff); chan[i].freqChanged=false; } if (chan[i].keyOn) { //immWrite(0x28,0xf0|konOffs[i]); immWrite(0x20+i,(chan[i].freqH)|(chan[i].active<<4)|0x20); chan[i].keyOn=false; } } } int DivPlatformOPLL::octave(int freq) { if (freq>=32768) { return 128; } else if (freq>=16384) { return 64; } else if (freq>=8192) { return 32; } else if (freq>=4096) { return 16; } else if (freq>=2048) { return 8; } else if (freq>=1024) { return 4; } else if (freq>=512) { return 2; } else { return 1; } return 1; } int DivPlatformOPLL::toFreq(int freq) { if (freq>=32768) { return 0xe00|((freq>>7)&0x1ff); } else if (freq>=16384) { return 0xc00|((freq>>6)&0x1ff); } else if (freq>=8192) { return 0xa00|((freq>>5)&0x1ff); } else if (freq>=4096) { return 0x800|((freq>>4)&0x1ff); } else if (freq>=2048) { return 0x600|((freq>>3)&0x1ff); } else if (freq>=1024) { return 0x400|((freq>>2)&0x1ff); } else if (freq>=512) { return 0x200|((freq>>1)&0x1ff); } else { return freq&0x1ff; } } void DivPlatformOPLL::muteChannel(int ch, bool mute) { isMuted[ch]=mute; /* for (int j=0; j<4; j++) { unsigned short baseAddr=chanOffs[ch]|opOffs[j]; DivInstrumentFM::Operator& op=chan[ch].state.op[j]; if (isMuted[ch]) { rWrite(baseAddr+ADDR_TL,127); } else { if (isOutput[chan[ch].state.alg][j]) { rWrite(baseAddr+ADDR_TL,127-(((127-op.tl)*(chan[ch].outVol&0x7f))/127)); } else { rWrite(baseAddr+ADDR_TL,op.tl); } } } rWrite(chanOffs[ch]+ADDR_LRAF,(isMuted[ch]?0:(chan[ch].pan<<6))|(chan[ch].state.fms&7)|((chan[ch].state.ams&3)<<4));*/ } int DivPlatformOPLL::dispatch(DivCommand c) { switch (c.cmd) { case DIV_CMD_NOTE_ON: { DivInstrument* ins=parent->getIns(chan[c.chan].ins); if (chan[c.chan].insChanged) { chan[c.chan].state=ins->fm; } chan[c.chan].std.init(ins); if (!chan[c.chan].std.willVol) { chan[c.chan].outVol=chan[c.chan].vol; } /* for (int i=0; i<2; i++) { unsigned short baseAddr=chanOffs[c.chan]|opOffs[i]; DivInstrumentFM::Operator& op=chan[c.chan].state.op[i]; if (isMuted[c.chan]) { rWrite(baseAddr+ADDR_TL,127); } else { if (isOutput[chan[c.chan].state.alg][i]) { if (!chan[c.chan].active || chan[c.chan].insChanged) { rWrite(baseAddr+ADDR_TL,127-(((127-op.tl)*(chan[c.chan].outVol&0x7f))/127)); } } else { if (chan[c.chan].insChanged) { rWrite(baseAddr+ADDR_TL,op.tl); } } } if (chan[c.chan].insChanged) { rWrite(baseAddr+ADDR_MULT_DT,(op.mult&15)|(dtTable[op.dt&7]<<4)); rWrite(baseAddr+ADDR_RS_AR,(op.ar&31)|(op.rs<<6)); rWrite(baseAddr+ADDR_AM_DR,(op.dr&31)|(op.am<<7)); rWrite(baseAddr+ADDR_DT2_D2R,op.d2r&31); rWrite(baseAddr+ADDR_SL_RR,(op.rr&15)|(op.sl<<4)); rWrite(baseAddr+ADDR_SSG,op.ssgEnv&15); } } if (chan[c.chan].insChanged) { rWrite(chanOffs[c.chan]+ADDR_FB_ALG,(chan[c.chan].state.alg&7)|(chan[c.chan].state.fb<<3)); rWrite(chanOffs[c.chan]+ADDR_LRAF,(isMuted[c.chan]?0:(chan[c.chan].pan<<6))|(chan[c.chan].state.fms&7)|((chan[c.chan].state.ams&3)<<4)); } */ // for now rWrite(0x30+c.chan,0x1e); chan[c.chan].insChanged=false; if (c.value!=DIV_NOTE_NULL) { chan[c.chan].baseFreq=NOTE_FREQUENCY(c.value); chan[c.chan].note=c.value; chan[c.chan].freqChanged=true; } chan[c.chan].keyOn=true; chan[c.chan].active=true; break; } case DIV_CMD_NOTE_OFF: chan[c.chan].keyOff=true; chan[c.chan].keyOn=false; chan[c.chan].active=false; break; case DIV_CMD_NOTE_OFF_ENV: chan[c.chan].keyOff=true; chan[c.chan].keyOn=false; chan[c.chan].active=false; chan[c.chan].std.release(); break; case DIV_CMD_ENV_RELEASE: chan[c.chan].std.release(); break; case DIV_CMD_VOLUME: { chan[c.chan].vol=c.value; if (!chan[c.chan].std.hasVol) { chan[c.chan].outVol=c.value; } /* for (int i=0; i<4; i++) { unsigned short baseAddr=chanOffs[c.chan]|opOffs[i]; DivInstrumentFM::Operator& op=chan[c.chan].state.op[i]; if (isMuted[c.chan]) { rWrite(baseAddr+ADDR_TL,127); } else { if (isOutput[chan[c.chan].state.alg][i]) { rWrite(baseAddr+ADDR_TL,127-(((127-op.tl)*(chan[c.chan].outVol&0x7f))/127)); } else { rWrite(baseAddr+ADDR_TL,op.tl); } } }*/ break; } case DIV_CMD_GET_VOLUME: { return chan[c.chan].vol; break; } case DIV_CMD_INSTRUMENT: if (chan[c.chan].ins!=c.value || c.value2==1) { chan[c.chan].insChanged=true; } chan[c.chan].ins=c.value; break; case DIV_CMD_PITCH: { chan[c.chan].pitch=c.value; chan[c.chan].freqChanged=true; break; } case DIV_CMD_NOTE_PORTA: { int destFreq=NOTE_FREQUENCY(c.value2); int newFreq; bool return2=false; if (destFreq>chan[c.chan].baseFreq) { newFreq=chan[c.chan].baseFreq+c.value*octave(chan[c.chan].baseFreq); if (newFreq>=destFreq) { newFreq=destFreq; return2=true; } } else { newFreq=chan[c.chan].baseFreq-c.value*octave(chan[c.chan].baseFreq); if (newFreq<=destFreq) { newFreq=destFreq; return2=true; } } if (!chan[c.chan].portaPause) { if (octave(chan[c.chan].baseFreq)!=octave(newFreq)) { chan[c.chan].portaPause=true; break; } } chan[c.chan].baseFreq=newFreq; chan[c.chan].portaPause=false; chan[c.chan].freqChanged=true; if (return2) { chan[c.chan].inPorta=false; return 2; } break; } case DIV_CMD_LEGATO: { chan[c.chan].baseFreq=NOTE_FREQUENCY(c.value); chan[c.chan].note=c.value; chan[c.chan].freqChanged=true; break; } /* case DIV_CMD_FM_FB: { chan[c.chan].state.fb=c.value&7; rWrite(chanOffs[c.chan]+ADDR_FB_ALG,(chan[c.chan].state.alg&7)|(chan[c.chan].state.fb<<3)); break; } case DIV_CMD_FM_MULT: { unsigned short baseAddr=chanOffs[c.chan]|opOffs[orderedOps[c.value]]; DivInstrumentFM::Operator& op=chan[c.chan].state.op[orderedOps[c.value]]; op.mult=c.value2&15; rWrite(baseAddr+ADDR_MULT_DT,(op.mult&15)|(dtTable[op.dt&7]<<4)); break; } case DIV_CMD_FM_TL: { unsigned short baseAddr=chanOffs[c.chan]|opOffs[orderedOps[c.value]]; DivInstrumentFM::Operator& op=chan[c.chan].state.op[orderedOps[c.value]]; op.tl=c.value2; if (isMuted[c.chan]) { rWrite(baseAddr+ADDR_TL,127); } else { if (isOutput[chan[c.chan].state.alg][c.value]) { rWrite(baseAddr+ADDR_TL,127-(((127-op.tl)*(chan[c.chan].outVol&0x7f))/127)); } else { rWrite(baseAddr+ADDR_TL,op.tl); } } break; } case DIV_CMD_FM_AR: { if (c.value<0) { for (int i=0; i<4; i++) { DivInstrumentFM::Operator& op=chan[c.chan].state.op[i]; op.ar=c.value2&31; unsigned short baseAddr=chanOffs[c.chan]|opOffs[i]; rWrite(baseAddr+ADDR_RS_AR,(op.ar&31)|(op.rs<<6)); } } else { DivInstrumentFM::Operator& op=chan[c.chan].state.op[orderedOps[c.value]]; op.ar=c.value2&31; unsigned short baseAddr=chanOffs[c.chan]|opOffs[orderedOps[c.value]]; rWrite(baseAddr+ADDR_RS_AR,(op.ar&31)|(op.rs<<6)); } break; } */ case DIV_ALWAYS_SET_VOLUME: return 0; break; case DIV_CMD_GET_VOLMAX: return 127; break; case DIV_CMD_PRE_PORTA: chan[c.chan].inPorta=c.value; break; case DIV_CMD_PRE_NOTE: break; default: //printf("WARNING: unimplemented command %d\n",c.cmd); break; } return 1; } void DivPlatformOPLL::forceIns() { /* for (int i=0; i<6; i++) { for (int j=0; j<4; j++) { unsigned short baseAddr=chanOffs[i]|opOffs[j]; DivInstrumentFM::Operator& op=chan[i].state.op[j]; if (isMuted[i]) { rWrite(baseAddr+ADDR_TL,127); } else { if (isOutput[chan[i].state.alg][j]) { rWrite(baseAddr+ADDR_TL,127-(((127-op.tl)*(chan[i].outVol&0x7f))/127)); } else { rWrite(baseAddr+ADDR_TL,op.tl); } } rWrite(baseAddr+ADDR_MULT_DT,(op.mult&15)|(dtTable[op.dt&7]<<4)); rWrite(baseAddr+ADDR_RS_AR,(op.ar&31)|(op.rs<<6)); rWrite(baseAddr+ADDR_AM_DR,(op.dr&31)|(op.am<<7)); rWrite(baseAddr+ADDR_DT2_D2R,op.d2r&31); rWrite(baseAddr+ADDR_SL_RR,(op.rr&15)|(op.sl<<4)); rWrite(baseAddr+ADDR_SSG,op.ssgEnv&15); } rWrite(chanOffs[i]+ADDR_FB_ALG,(chan[i].state.alg&7)|(chan[i].state.fb<<3)); rWrite(chanOffs[i]+ADDR_LRAF,(isMuted[i]?0:(chan[i].pan<<6))|(chan[i].state.fms&7)|((chan[i].state.ams&3)<<4)); if (chan[i].active) { chan[i].keyOn=true; chan[i].freqChanged=true; } } if (dacMode) { rWrite(0x2b,0x80); } immWrite(0x22,lfoValue);*/ } void DivPlatformOPLL::toggleRegisterDump(bool enable) { DivDispatch::toggleRegisterDump(enable); } void* DivPlatformOPLL::getChanState(int ch) { return &chan[ch]; } unsigned char* DivPlatformOPLL::getRegisterPool() { return regPool; } int DivPlatformOPLL::getRegisterPoolSize() { return 256; } void DivPlatformOPLL::reset() { while (!writes.empty()) writes.pop(); memset(regPool,0,256); OPLL_Reset(&fm,opll_type_ym2413); if (dumpWrites) { addWrite(0xffffffff,0); } for (int i=0; i<9; i++) { chan[i]=DivPlatformOPLL::Channel(); chan[i].vol=15; chan[i].outVol=15; } for (int i=0; i<256; i++) { oldWrites[i]=-1; pendingWrites[i]=-1; } lastBusy=60; delay=0; } bool DivPlatformOPLL::keyOffAffectsArp(int ch) { return false; } bool DivPlatformOPLL::keyOffAffectsPorta(int ch) { return false; } void DivPlatformOPLL::notifyInsChange(int ins) { for (int i=0; i<9; i++) { if (chan[i].ins==ins) { chan[i].insChanged=true; } } } void DivPlatformOPLL::notifyInsDeletion(void* ins) { } void DivPlatformOPLL::poke(unsigned int addr, unsigned short val) { immWrite(addr,val); } void DivPlatformOPLL::poke(std::vector& wlist) { for (DivRegWrite& i: wlist) immWrite(i.addr,i.val); } int DivPlatformOPLL::getPortaFloor(int ch) { return (ch>5)?12:0; } void DivPlatformOPLL::setYMFM(bool use) { useYMFM=use; } void DivPlatformOPLL::setFlags(unsigned int flags) { if (flags==3) { chipClock=COLOR_NTSC; } else if (flags==2) { chipClock=8000000.0; } else if (flags==1) { chipClock=COLOR_PAL*4.0/5.0; } else { chipClock=COLOR_NTSC; } rate=chipClock; } int DivPlatformOPLL::init(DivEngine* p, int channels, int sugRate, unsigned int flags) { parent=p; dumpWrites=false; skipRegisterWrites=false; for (int i=0; i<9; i++) { isMuted[i]=false; } setFlags(flags); reset(); return 10; } void DivPlatformOPLL::quit() { } DivPlatformOPLL::~DivPlatformOPLL() { }