/** * Furnace Tracker - multi-system chiptune tracker * Copyright (C) 2021-2025 tildearrow and contributors * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "c64.h" #include "../engine.h" #include "sound/c64_fp/siddefs-fp.h" #include "IconsFontAwesome4.h" #include #include "../../ta-log.h" #define rWrite(a,v) if (!skipRegisterWrites) {writes.push(QueuedWrite(a,v)); if (dumpWrites) {addWrite(a,v);} } #define CHIP_FREQBASE 524288 const char* regCheatSheetSID[]={ "FreqL0", "00", "FreqH0", "01", "PWL0", "02", "PWH0", "03", "Control0", "04", "AtkDcy0", "05", "StnRis0", "06", "FreqL1", "07", "FreqH1", "08", "PWL1", "09", "PWH1", "0A", "Control1", "0B", "AtkDcy1", "0C", "StnRis1", "0D", "FreqL2", "0E", "FreqH2", "0F", "PWL2", "10", "PWH2", "11", "Control2", "12", "AtkDcy2", "13", "StnRis2", "14", "FCL", "15", "FCH", "16", "FilterRes", "17", "FilterMode", "18", "PotX", "19", "PotY", "1A", "Osc3", "1B", "Env3", "1C", NULL }; const char** DivPlatformC64::getRegisterSheet() { return regCheatSheetSID; } short DivPlatformC64::runFakeFilter(unsigned char ch, int in) { if (!(regPool[0x17]&(1<0x5F)?8.0/(float)(regPool[0x17]>>4):1.41): (pow(2,((float)(4-(float)(regPool[0x17]>>4))/8))) ); float tmp=fin+fakeBand[ch]*reso+fakeLow[ch]; if (regPool[0x18]&0x40) { fout-=tmp; } tmp=fakeBand[ch]-tmp*ctf; fakeBand[ch]=tmp; if (regPool[0x18]&0x20) { fout-=tmp; } tmp=fakeLow[ch]+tmp*ctf; fakeLow[ch]=tmp; if (regPool[0x18]&0x10) { fout+=tmp; } if (noSoftPCM) { fout*=(float)(regPool[0x18]&15)/20.0f; } return CLAMP(fout,-32768,32767); } void DivPlatformC64::processDAC(int sRate) { bool didWrite=false; if (chan[3].sample>=0 && chan[3].samplesong.sampleLen) { chan[3].pcmPeriod-=chan[3].pcmRate*4; while (chan[3].pcmPeriod<0) { chan[3].pcmPeriod+=sRate; DivSample* s=parent->getSample(chan[3].sample); if (s!=NULL) { if (chan[3].pcmPos<0 || chan[3].pcmPos>=(int)s->samples) { chan[3].pcmOut=15; didWrite=true; } else { chan[3].pcmOut=(0x80+s->data8[chan[3].pcmPos])>>4; didWrite=true; } chan[3].pcmPos++; if (s->isLoopable() && chan[3].pcmPos>=s->loopEnd) { chan[3].pcmPos=s->loopStart; } else if (chan[3].pcmPos>=(int)s->samples) { chan[3].sample=-1; didWrite=true; } } else { chan[3].sample=-1; didWrite=true; } } } if (didWrite && !isMuted[3]) updateVolume(); } void DivPlatformC64::acquire(short** buf, size_t len) { int dcOff=(sidCore)?0:sid->get_dc(0); for (int i=0; i<4; i++) { oscBuf[i]->begin(len); } for (size_t i=0; i=(rate*2)) { pcmCycle-=(rate*2); processDAC(lineRate); } // the rest if (!writes.empty()) { QueuedWrite w=writes.front(); if (sidCore==2) { dSID_write(sid_d,w.addr,w.val); } else if (sidCore==1) { sid_fp->write(w.addr,w.val); } else { sid->write(w.addr,w.val); } regPool[w.addr&0x1f]=w.val; writes.pop(); } if (sidCore==2) { double o=dSID_render(sid_d); buf[0][i]=32767*CLAMP(o,-1.0,1.0); if (++writeOscBuf>=4) { writeOscBuf=0; oscBuf[0]->putSample(i,sid_d->lastOut[0]); oscBuf[1]->putSample(i,sid_d->lastOut[1]); oscBuf[2]->putSample(i,sid_d->lastOut[2]); oscBuf[3]->putSample(i,chan[3].pcmOut<<11); } } else if (sidCore==1) { sid_fp->clock(4,&buf[0][i]); if (++writeOscBuf>=4) { writeOscBuf=0; oscBuf[0]->putSample(i,runFakeFilter(0,(sid_fp->lastChanOut[0]-dcOff)>>5)); oscBuf[1]->putSample(i,runFakeFilter(1,(sid_fp->lastChanOut[1]-dcOff)>>5)); oscBuf[2]->putSample(i,runFakeFilter(2,(sid_fp->lastChanOut[2]-dcOff)>>5)); oscBuf[3]->putSample(i,chan[3].pcmOut<<11); } } else { sid->clock(); buf[0][i]=sid->output(); if (++writeOscBuf>=16) { writeOscBuf=0; oscBuf[0]->putSample(i,runFakeFilter(0,(sid->last_chan_out[0]-dcOff)>>5)); oscBuf[1]->putSample(i,runFakeFilter(1,(sid->last_chan_out[1]-dcOff)>>5)); oscBuf[2]->putSample(i,runFakeFilter(2,(sid->last_chan_out[2]-dcOff)>>5)); oscBuf[3]->putSample(i,chan[3].pcmOut<<11); } } } for (int i=0; i<4; i++) { oscBuf[i]->end(len); } } void DivPlatformC64::updateFilter() { rWrite(0x15,filtCut&7); rWrite(0x16,filtCut>>3); rWrite(0x17,(filtRes<<4)|(chan[2].filter<<2)|(chan[1].filter<<1)|(int)(chan[0].filter)); updateVolume(); } void DivPlatformC64::updateVolume() { if (chan[3].sample>=0 && !isMuted[3]) { rWrite(0x18,(filtControl<<4)|chan[3].pcmOut); } else { rWrite(0x18,(filtControl<<4)|vol); } } void DivPlatformC64::tick(bool sysTick) { bool willUpdateFilter=false; for (int _i=0; _i<3; _i++) { int i=chanOrder[_i]; chan[i].std.next(); if (sysTick) { if (chan[i].pw_slide!=0) { chan[i].duty-=chan[i].pw_slide; chan[i].duty=CLAMP(chan[i].duty,0,0xfff); rWrite(i*7+2,chan[i].duty&0xff); rWrite(i*7+3,(chan[i].duty>>8)|(chan[i].outVol<<4)); } if (cutoff_slide!=0) { filtCut+=cutoff_slide; filtCut=CLAMP(filtCut,0,0x7ff); updateFilter(); } } if (chan[i].std.vol.had) { vol=MIN(15,chan[i].std.vol.val); willUpdateFilter=true; } if (NEW_ARP_STRAT) { chan[i].handleArp(); } else if (chan[i].std.arp.had) { if (!chan[i].inPorta) { chan[i].baseFreq=NOTE_FREQUENCY(parent->calcArp(chan[i].note,chan[i].std.arp.val)); } chan[i].freqChanged=true; } if (chan[i].std.duty.had) { DivInstrument* ins=parent->getIns(chan[i].ins,DIV_INS_C64); if (ins->c64.dutyIsAbs) { chan[i].duty=chan[i].std.duty.val; } else { if (multiplyRel) { chan[i].duty-=((signed char)chan[i].std.duty.val)*4; } else { chan[i].duty-=chan[i].std.duty.val; } } chan[i].duty&=4095; rWrite(i*7+2,chan[i].duty&0xff); rWrite(i*7+3,chan[i].duty>>8); } if (chan[i].std.wave.had) { chan[i].wave=chan[i].std.wave.val; rWrite(i*7+4,(chan[i].wave<<4)|(chan[i].test<<3)|(chan[i].ring<<2)|(chan[i].sync<<1)|(int)(chan[i].active && chan[i].gate)); } if (chan[i].std.pitch.had) { if (chan[i].std.pitch.mode) { chan[i].pitch2+=chan[i].std.pitch.val; CLAMP_VAR(chan[i].pitch2,-65535,65535); } else { chan[i].pitch2=chan[i].std.pitch.val; } chan[i].freqChanged=true; } bool condition=chan[i].std.alg.will; DivInstrument* ins=parent->getIns(chan[i].ins,DIV_INS_C64); if ((!ins->c64.filterIsAbs) || macroRace) { condition=chan[i].std.alg.had; } if (condition) { // new cutoff macro if (ins->c64.filterIsAbs) { filtCut=MIN(2047,chan[i].std.alg.val); } else { if (multiplyRel) { filtCut+=((signed char)chan[i].std.alg.val)*7; } else { filtCut+=chan[i].std.alg.val; } if (filtCut>2047) filtCut=2047; if (filtCut<0) filtCut=0; } willUpdateFilter=true; } if (chan[i].std.ex1.had) { filtControl=chan[i].std.ex1.val&15; willUpdateFilter=true; } if (chan[i].std.ex2.had) { filtRes=chan[i].std.ex2.val&15; willUpdateFilter=true; } if (chan[i].std.ex3.had) { chan[i].filter=(chan[i].std.ex3.val&1); willUpdateFilter=true; } if (chan[i].std.ex4.had) { chan[i].gate=chan[i].std.ex4.val&1; chan[i].sync=chan[i].std.ex4.val&2; chan[i].ring=chan[i].std.ex4.val&4; chan[i].test=chan[i].std.ex4.val&8; chan[i].freqChanged=true; rWrite(i*7+4,(chan[i].wave<<4)|(chan[i].test<<3)|(chan[i].ring<<2)|(chan[i].sync<<1)|(int)(chan[i].active && chan[i].gate)); } if (chan[i].std.ex5.had) { chan[i].attack=chan[i].std.ex5.val&15; rWrite(i*7+5,(chan[i].attack<<4)|(chan[i].decay)); } if (chan[i].std.ex6.had) { chan[i].decay=chan[i].std.ex6.val&15; rWrite(i*7+5,(chan[i].attack<<4)|(chan[i].decay)); } if (chan[i].std.ex7.had) { chan[i].sustain=chan[i].std.ex7.val&15; rWrite(i*7+6,(chan[i].sustain<<4)|(chan[i].release)); } if (chan[i].std.ex8.had) { chan[i].release=chan[i].std.ex8.val&15; rWrite(i*7+6,(chan[i].sustain<<4)|(chan[i].release)); } if (sysTick) { if (chan[i].testWhen>0) { if (--chan[i].testWhen<1) { if (!chan[i].resetMask && !chan[i].inPorta) { DivInstrument* ins=parent->getIns(chan[i].ins,DIV_INS_C64); rWrite(i*7+5,testAD); rWrite(i*7+6,testSR); rWrite(i*7+4,(chan[i].wave<<4)|(ins->c64.noTest?0:8)|(chan[i].test<<3)|(chan[i].ring<<2)|(chan[i].sync<<1)); } } } } if (chan[i].freqChanged || chan[i].keyOn || chan[i].keyOff) { chan[i].freq=parent->calcFreq(chan[i].baseFreq,chan[i].pitch,chan[i].fixedArp?chan[i].baseNoteOverride:chan[i].arpOff,chan[i].fixedArp,false,8,chan[i].pitch2,chipClock,CHIP_FREQBASE); if (chan[i].freq<0) chan[i].freq=0; if (chan[i].freq>0xffff) chan[i].freq=0xffff; if (chan[i].keyOn) { rWrite(i*7+5,(chan[i].attack<<4)|(chan[i].decay)); rWrite(i*7+6,(chan[i].sustain<<4)|(chan[i].release)); rWrite(i*7+4,(chan[i].wave<<4)|(chan[i].test<<3)|(chan[i].ring<<2)|(chan[i].sync<<1)|(chan[i].gate?1:0)); } if (chan[i].keyOff) { rWrite(i*7+5,(chan[i].attack<<4)|(chan[i].decay)); rWrite(i*7+6,(chan[i].sustain<<4)|(chan[i].release)); rWrite(i*7+4,(chan[i].wave<<4)|(chan[i].test<<3)|(chan[i].ring<<2)|(chan[i].sync<<1)|0); } rWrite(i*7,chan[i].freq&0xff); rWrite(i*7+1,chan[i].freq>>8); if (chan[i].keyOn) chan[i].keyOn=false; if (chan[i].keyOff) chan[i].keyOff=false; chan[i].freqChanged=false; } } if (chan[3].freqChanged) { int i=3; double off=1.0; if (chan[i].sample>=0 && chan[i].samplesong.sampleLen) { DivSample* s=parent->getSample(chan[i].sample); if (s->centerRate<1) { off=1.0; } else { off=(double)s->centerRate/parent->getCenterRate(); } } chan[i].pcmRate=off*parent->calcFreq(chan[i].baseFreq,chan[i].pitch,chan[i].fixedArp?chan[i].baseNoteOverride:chan[i].arpOff,chan[i].fixedArp,false,2,chan[i].pitch2,2,1); if (dumpWrites) addWrite(0xffff0001+(i<<8),chan[i].pcmRate); } if (willUpdateFilter) updateFilter(); } int DivPlatformC64::dispatch(DivCommand c) { if (c.chan>3) return 0; switch (c.cmd) { case DIV_CMD_NOTE_ON: { DivInstrument* ins=parent->getIns(chan[c.chan].ins,DIV_INS_C64); if (chan[c.chan].pcm || c.chan>2) { if (skipRegisterWrites) break; if (c.value!=DIV_NOTE_NULL) { chan[c.chan].sample=ins->amiga.getSample(c.value); chan[c.chan].sampleNote=c.value; c.value=ins->amiga.getFreq(c.value); chan[c.chan].sampleNoteDelta=c.value-chan[c.chan].sampleNote; } else if (chan[c.chan].sampleNote!=DIV_NOTE_NULL) { chan[c.chan].sample=ins->amiga.getSample(chan[c.chan].sampleNote); c.value=ins->amiga.getFreq(chan[c.chan].sampleNote); } if (chan[c.chan].sample<0 || chan[c.chan].sample>=parent->song.sampleLen) { chan[c.chan].sample=-1; if (dumpWrites) addWrite(0xffff0002+(c.chan<<8),0); break; } if (chan[c.chan].setPos) { chan[c.chan].setPos=false; } else { chan[c.chan].pcmPos=0; } chan[c.chan].pcmPeriod=0; if (c.value!=DIV_NOTE_NULL) { chan[c.chan].baseFreq=parent->calcBaseFreq(2,1,c.value,false); chan[c.chan].freqChanged=true; chan[c.chan].note=c.value; } chan[c.chan].active=true; chan[c.chan].macroInit(ins); chan[c.chan].keyOn=true; break; } if (c.value!=DIV_NOTE_NULL) { chan[c.chan].baseFreq=NOTE_FREQUENCY(c.value); chan[c.chan].freqChanged=true; chan[c.chan].note=c.value; } chan[c.chan].active=true; chan[c.chan].keyOn=true; chan[c.chan].test=false; if (((chan[c.chan].insChanged || chan[c.chan].resetDuty || ins->std.waveMacro.len>0) && ins->c64.resetDuty) || chan[c.chan].resetDuty) { chan[c.chan].duty=ins->c64.duty; rWrite(c.chan*7+2,chan[c.chan].duty&0xff); rWrite(c.chan*7+3,chan[c.chan].duty>>8); } if (chan[c.chan].insChanged) { chan[c.chan].wave=(ins->c64.noiseOn<<3)|(ins->c64.pulseOn<<2)|(ins->c64.sawOn<<1)|(int)(ins->c64.triOn); chan[c.chan].attack=ins->c64.a; chan[c.chan].decay=(ins->c64.s==15)?0:ins->c64.d; chan[c.chan].sustain=ins->c64.s; chan[c.chan].release=ins->c64.r; chan[c.chan].ring=ins->c64.ringMod; chan[c.chan].sync=ins->c64.oscSync; } if (chan[c.chan].insChanged || chan[c.chan].resetFilter) { chan[c.chan].filter=ins->c64.toFilter; if (ins->c64.initFilter) { filtCut=ins->c64.cut; filtRes=ins->c64.res; filtControl=(int)(ins->c64.lp)|(ins->c64.bp<<1)|(ins->c64.hp<<2)|(ins->c64.ch3off<<3); } updateFilter(); } if (chan[c.chan].insChanged) { chan[c.chan].insChanged=false; } if (keyPriority) { if (chanOrder[1]==c.chan) { chanOrder[1]=chanOrder[2]; chanOrder[2]=c.chan; } else if (chanOrder[0]==c.chan) { chanOrder[0]=chanOrder[1]; chanOrder[1]=chanOrder[2]; chanOrder[2]=c.chan; } } chan[c.chan].macroInit(ins); break; } case DIV_CMD_NOTE_OFF: chan[c.chan].sample=-1; chan[c.chan].pcm=false; chan[c.chan].active=false; chan[c.chan].keyOff=true; chan[c.chan].keyOn=false; //chan[c.chan].macroInit(NULL); break; case DIV_CMD_NOTE_OFF_ENV: if (c.chan>2) break; chan[c.chan].active=false; chan[c.chan].keyOff=true; chan[c.chan].keyOn=false; chan[c.chan].std.release(); break; case DIV_CMD_ENV_RELEASE: if (c.chan>2) break; chan[c.chan].std.release(); break; case DIV_CMD_INSTRUMENT: if (chan[c.chan].ins!=c.value || c.value2==1) { chan[c.chan].insChanged=true; chan[c.chan].ins=c.value; } break; case DIV_CMD_VOLUME: if (c.chan>2) break; if (chan[c.chan].vol!=c.value) { chan[c.chan].vol=c.value; if (!chan[c.chan].std.vol.has) { chan[c.chan].outVol=c.value; vol=chan[c.chan].outVol; } else { vol=chan[c.chan].vol; } updateFilter(); } break; case DIV_CMD_GET_VOLUME: return chan[c.chan].vol; break; case DIV_CMD_PITCH: chan[c.chan].pitch=c.value; chan[c.chan].freqChanged=true; break; case DIV_CMD_NOTE_PORTA: { int destFreq=NOTE_FREQUENCY(c.value2); if (c.chan>2 || chan[c.chan].pcm) { destFreq=parent->calcBaseFreq(2,1,c.value2+chan[c.chan].sampleNoteDelta,false); } bool return2=false; if (destFreq>chan[c.chan].baseFreq) { chan[c.chan].baseFreq+=c.value; if (chan[c.chan].baseFreq>=destFreq) { chan[c.chan].baseFreq=destFreq; return2=true; } } else { chan[c.chan].baseFreq-=c.value; if (chan[c.chan].baseFreq<=destFreq) { chan[c.chan].baseFreq=destFreq; return2=true; } } chan[c.chan].freqChanged=true; if (return2) { chan[c.chan].inPorta=false; return 2; } break; } case DIV_CMD_STD_NOISE_MODE: if (c.chan>2) break; chan[c.chan].duty=(c.value*4095)/100; rWrite(c.chan*7+2,chan[c.chan].duty&0xff); rWrite(c.chan*7+3,chan[c.chan].duty>>8); break; case DIV_CMD_C64_FINE_DUTY: if (c.chan>2) break; chan[c.chan].duty=c.value; rWrite(c.chan*7+2,chan[c.chan].duty&0xff); rWrite(c.chan*7+3,chan[c.chan].duty>>8); break; case DIV_CMD_WAVE: if (c.chan>2) break; chan[c.chan].wave=c.value; rWrite(c.chan*7+4,(chan[c.chan].wave<<4)|(chan[c.chan].test<<3)|(chan[c.chan].ring<<2)|(chan[c.chan].sync<<1)|(int)(chan[c.chan].active && chan[c.chan].gate)); break; case DIV_CMD_LEGATO: if (c.chan>2 || chan[c.chan].pcm) { chan[c.chan].baseFreq=parent->calcBaseFreq(2,1,c.value+chan[c.chan].sampleNoteDelta+((HACKY_LEGATO_MESS)?(chan[c.chan].std.arp.val):(0)),false); } else { chan[c.chan].baseFreq=NOTE_FREQUENCY(c.value+((HACKY_LEGATO_MESS)?(chan[c.chan].std.arp.val):(0))); } chan[c.chan].freqChanged=true; chan[c.chan].note=c.value; break; case DIV_CMD_PRE_PORTA: if (chan[c.chan].active && c.value2) { if (parent->song.resetMacroOnPorta || parent->song.preNoteNoEffect) { chan[c.chan].macroInit(parent->getIns(chan[c.chan].ins,DIV_INS_C64)); chan[c.chan].keyOn=true; } } if (!chan[c.chan].inPorta && c.value && !parent->song.brokenPortaArp && chan[c.chan].std.arp.will && !NEW_ARP_STRAT) chan[c.chan].baseFreq=NOTE_FREQUENCY(chan[c.chan].note); chan[c.chan].inPorta=c.value; break; case DIV_CMD_PRE_NOTE: if (c.chan>2) break; if (resetTime) chan[c.chan].testWhen=c.value-resetTime+1; break; case DIV_CMD_GET_VOLMAX: return 15; break; case DIV_CMD_C64_CUTOFF: if (c.chan>2) break; if (c.value>100) c.value=100; filtCut=(c.value+2)*2047/102; updateFilter(); break; case DIV_CMD_C64_FINE_CUTOFF: if (c.chan>2) break; filtCut=c.value; updateFilter(); break; case DIV_CMD_C64_RESONANCE: if (c.chan>2) break; if (c.value>15) c.value=15; filtRes=c.value; updateFilter(); break; case DIV_CMD_C64_FILTER_MODE: if (c.chan>2) break; filtControl=c.value&7; updateFilter(); break; case DIV_CMD_C64_RESET_TIME: if (c.chan>2) break; resetTime=c.value; break; case DIV_CMD_C64_RESET_MASK: if (c.chan>2) break; chan[c.chan].resetMask=c.value; break; case DIV_CMD_C64_FILTER_RESET: if (c.chan>2) break; if (c.value&15) { DivInstrument* ins=parent->getIns(chan[c.chan].ins,DIV_INS_C64); if (ins->c64.initFilter) { filtCut=ins->c64.cut; updateFilter(); } } chan[c.chan].resetFilter=c.value>>4; break; case DIV_CMD_C64_DUTY_RESET: if (c.chan>2) break; if (c.value&15) { DivInstrument* ins=parent->getIns(chan[c.chan].ins,DIV_INS_C64); chan[c.chan].duty=ins->c64.duty; rWrite(c.chan*7+2,chan[c.chan].duty&0xff); rWrite(c.chan*7+3,chan[c.chan].duty>>8); } chan[c.chan].resetDuty=c.value>>4; break; case DIV_CMD_C64_EXTENDED: if (c.chan>2) break; switch (c.value>>4) { case 0: chan[c.chan].attack=c.value&15; if (!no1EUpdate) { rWrite(c.chan*7+5,(chan[c.chan].attack<<4)|(chan[c.chan].decay)); } break; case 1: chan[c.chan].decay=c.value&15; if (!no1EUpdate) { rWrite(c.chan*7+5,(chan[c.chan].attack<<4)|(chan[c.chan].decay)); } break; case 2: chan[c.chan].sustain=c.value&15; if (!no1EUpdate) { rWrite(c.chan*7+6,(chan[c.chan].sustain<<4)|(chan[c.chan].release)); } break; case 3: chan[c.chan].release=c.value&15; if (!no1EUpdate) { rWrite(c.chan*7+6,(chan[c.chan].sustain<<4)|(chan[c.chan].release)); } break; case 4: chan[c.chan].ring=c.value; rWrite(c.chan*7+4,(chan[c.chan].wave<<4)|(chan[c.chan].test<<3)|(chan[c.chan].ring<<2)|(chan[c.chan].sync<<1)|(int)(chan[c.chan].active && chan[c.chan].gate)); break; case 5: chan[c.chan].sync=c.value; rWrite(c.chan*7+4,(chan[c.chan].wave<<4)|(chan[c.chan].test<<3)|(chan[c.chan].ring<<2)|(chan[c.chan].sync<<1)|(int)(chan[c.chan].active && chan[c.chan].gate)); break; case 6: filtControl&=7; filtControl|=(!!c.value)<<3; break; } break; case DIV_CMD_C64_AD: if (c.chan>2) break; chan[c.chan].attack=c.value>>4; chan[c.chan].decay=c.value&15; rWrite(c.chan*7+5,(chan[c.chan].attack<<4)|(chan[c.chan].decay)); break; case DIV_CMD_C64_SR: if (c.chan>2) break; chan[c.chan].sustain=c.value>>4; chan[c.chan].release=c.value&15; rWrite(c.chan*7+6,(chan[c.chan].sustain<<4)|(chan[c.chan].release)); break; case DIV_CMD_C64_PW_SLIDE: if (c.chan>2) break; chan[c.chan].pw_slide=c.value*c.value2; break; case DIV_CMD_C64_CUTOFF_SLIDE: if (c.chan>2) break; cutoff_slide=c.value*c.value2; break; case DIV_CMD_MACRO_OFF: chan[c.chan].std.mask(c.value,true); break; case DIV_CMD_MACRO_ON: chan[c.chan].std.mask(c.value,false); break; case DIV_CMD_MACRO_RESTART: chan[c.chan].std.restart(c.value); break; default: break; } return 1; } void DivPlatformC64::muteChannel(int ch, bool mute) { isMuted[ch]=mute; if (sidCore==2) { dSID_setMuteMask( sid_d, (isMuted[0]?0:1)| (isMuted[1]?0:2)| (isMuted[2]?0:4) ); } else if (sidCore==1) { sid_fp->mute(ch,mute); } else { sid->set_is_muted(ch,mute); } if (ch==3) updateVolume(); } void DivPlatformC64::forceIns() { for (int i=0; i<4; i++) { chan[i].insChanged=true; chan[i].testWhen=0; if (chan[i].active) { chan[i].keyOn=true; chan[i].freqChanged=true; } } updateFilter(); } void DivPlatformC64::notifyInsChange(int ins) { for (int i=0; i<4; i++) { if (chan[i].ins==ins) { chan[i].insChanged=true; } } } void DivPlatformC64::notifyInsDeletion(void* ins) { for (int i=0; i<4; i++) { chan[i].std.notifyInsDeletion((DivInstrument*)ins); } } void* DivPlatformC64::getChanState(int ch) { return &chan[ch]; } DivMacroInt* DivPlatformC64::getChanMacroInt(int ch) { return &chan[ch].std; } void DivPlatformC64::getPaired(int ch, std::vector& ret) { if (chan[ch].ring) { if (ch==0){ ret.push_back(DivChannelPair(_("ring"),2)); } else { ret.push_back(DivChannelPair(_("ring"),(ch-1)%3)); } } if (chan[ch].sync) { if (ch==0) { ret.push_back(DivChannelPair(_("sync"),2)); } else { ret.push_back(DivChannelPair(_("sync"),(ch-1)%3)); } } } DivChannelModeHints DivPlatformC64::getModeHints(int ch) { DivChannelModeHints ret; ret.count=1; ret.hint[0]=ICON_FA_BELL_SLASH_O; ret.type[0]=0; if (ch==2 && (filtControl&8)) { ret.type[0]=7; } else if (chan[ch].test && !chan[ch].gate) { ret.type[0]=5; } else if (chan[ch].test) { ret.type[0]=6; } else if (!chan[ch].gate) { ret.type[0]=4; } return ret; } DivDispatchOscBuffer* DivPlatformC64::getOscBuffer(int ch) { return oscBuf[ch]; } unsigned char* DivPlatformC64::getRegisterPool() { return regPool; } int DivPlatformC64::getRegisterPoolSize() { return 32; } bool DivPlatformC64::getDCOffRequired() { return true; } bool DivPlatformC64::getWantPreNote() { return true; } bool DivPlatformC64::isVolGlobal() { return true; } float DivPlatformC64::getPostAmp() { return (sidCore==1)?3.0f:1.0f; } void DivPlatformC64::reset() { while (!writes.empty()) writes.pop(); for (int i=0; i<4; i++) { chan[i]=DivPlatformC64::Channel(); chan[i].std.setEngine(parent); fakeLow[i]=0; fakeBand[i]=0; chan[i].pw_slide=0; } cutoff_slide=0; pcmCycle=0; if (sidCore==2) { dSID_init(sid_d,chipClock,rate,sidIs6581?6581:8580,needInitTables); dSID_setMuteMask( sid_d, (isMuted[0]?0:1)| (isMuted[1]?0:2)| (isMuted[2]?0:4) ); needInitTables=false; } else if (sidCore==1) { sid_fp->reset(); for (int i=0; i<3; i++) { sid_fp->write(i*7+5,testAD); sid_fp->write(i*7+6,testSR); sid_fp->write(i*7+4,8); } sid_fp->clockSilent(30000); for (int i=0; i<3; i++) { sid_fp->write(i*7+5,testAD); sid_fp->write(i*7+6,testSR); sid_fp->write(i*7+4,0); } sid_fp->clockSilent(30000); } else { sid->reset(); } memset(regPool,0,32); rWrite(0x18,0x0f); filtControl=7; filtRes=0; filtCut=2047; resetTime=initResetTime; vol=15; chanOrder[0]=0; chanOrder[1]=1; chanOrder[2]=2; } void DivPlatformC64::poke(unsigned int addr, unsigned short val) { rWrite(addr,val); } void DivPlatformC64::poke(std::vector& wlist) { for (DivRegWrite& i: wlist) rWrite(i.addr,i.val); } void DivPlatformC64::setChipModel(bool is6581) { sidIs6581=is6581; } void DivPlatformC64::setCore(unsigned char which) { sidCore=which; } void DivPlatformC64::setFlags(const DivConfig& flags) { switch (flags.getInt("clockSel",0)) { case 0x0: // NTSC C64 chipClock=COLOR_NTSC*2.0/7.0; lineRate=15734; break; case 0x1: // PAL C64 chipClock=COLOR_PAL*2.0/9.0; lineRate=15625; break; case 0x2: // SSI 2001 default: chipClock=14318180.0/16.0; lineRate=15734; break; } CHECK_CUSTOM_CLOCK; rate=chipClock; if (sidCore>0) { rate/=(sidCore==2)?coreQuality:4; if (sidCore==1) sid_fp->setSamplingParameters(chipClock,reSIDfp::DECIMATE,rate,0); } for (int i=0; i<4; i++) { oscBuf[i]->setRate(rate); } keyPriority=flags.getBool("keyPriority",true); no1EUpdate=flags.getBool("no1EUpdate",false); multiplyRel=flags.getBool("multiplyRel",false); macroRace=flags.getBool("macroRace",false); testAD=((flags.getInt("testAttack",0)&15)<<4)|(flags.getInt("testDecay",0)&15); testSR=((flags.getInt("testSustain",0)&15)<<4)|(flags.getInt("testRelease",0)&15); initResetTime=flags.getInt("initResetTime",2); if (initResetTime<0) initResetTime=1; // init fake filter table // taken from dSID double oscBufRate=(double)rate/((sidCore==0)?16.0:4.0); double cutRatio=-2.0*3.14*(sidIs6581?((oscBufRate/44100.0)*(20000.0/256.0)):(12500.0/256.0))/oscBufRate; for (int i=0; i<2048; i++) { double c=(double)i/8.0+0.2; if (sidIs6581) { if (c<24) { c=2.0*sin(771.78/oscBufRate); } else { c=(44100.0/oscBufRate)-1.263*(44100.0/oscBufRate)*exp(c*cutRatio); } } else { c=1-exp(c*cutRatio); } fakeCutTable[i]=c; } } void DivPlatformC64::setCoreQuality(unsigned char q) { switch (q) { case 0: coreQuality=32; break; case 1: coreQuality=16; break; case 2: coreQuality=8; break; case 3: coreQuality=4; break; case 4: coreQuality=2; break; case 5: coreQuality=1; break; default: coreQuality=4; break; } } void DivPlatformC64::setSoftPCM(bool isSoft) { noSoftPCM=!isSoft; } int DivPlatformC64::init(DivEngine* p, int channels, int sugRate, const DivConfig& flags) { parent=p; dumpWrites=false; skipRegisterWrites=false; needInitTables=true; writeOscBuf=0; for (int i=0; i<4; i++) { isMuted[i]=false; oscBuf[i]=new DivDispatchOscBuffer; } if (sidCore==2) { sid=NULL; sid_fp=NULL; sid_d=new struct SID_chip; } else if (sidCore==1) { sid=NULL; sid_fp=new reSIDfp::SID; sid_d=NULL; } else { sid=new SID; sid_fp=NULL; sid_d=NULL; } if (sidIs6581) { if (sidCore==2) { // do nothing } else if (sidCore==1) { sid_fp->setChipModel(reSIDfp::MOS6581); } else { sid->set_chip_model(MOS6581); } } else { if (sidCore==2) { // do nothing } else if (sidCore==1) { sid_fp->setChipModel(reSIDfp::MOS8580); } else { sid->set_chip_model(MOS8580); } } setFlags(flags); reset(); return 3; } void DivPlatformC64::quit() { for (int i=0; i<4; i++) { delete oscBuf[i]; } if (sid!=NULL) delete sid; if (sid_fp!=NULL) delete sid_fp; if (sid_d!=NULL) delete sid_d; } DivPlatformC64::~DivPlatformC64() { }