/* * This file is part of libsidplayfp, a SID player engine. * * Copyright 2011-2022 Leandro Nini * Copyright 2007-2010 Antti Lankila * Copyright 2004, 2010 Dag Lem * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef INTEGRATOR8580_H #define INTEGRATOR8580_H #include "FilterModelConfig8580.h" #include #include #include "siddefs-fp.h" namespace reSIDfp { /** * 8580 integrator * * +---C---+ * | | * vi -----Rfc---o--[A>--o-- vo * vx * * IRfc + ICr = 0 * IRfc + C*(vc - vc0)/dt = 0 * dt/C*(IRfc) + vc - vc0 = 0 * vc = vc0 - n*(IRfc(vi,vx)) * vc = vc0 - n*(IRfc(vi,g(vc))) * * IRfc = K*W/L*(Vgst^2 - Vgdt^2) = n*((Vddt - vx)^2 - (Vddt - vi)^2) * * Rfc gate voltage is generated by an OP Amp and depends on chip temperature. */ class Integrator8580 { private: mutable int vx; mutable int vc; unsigned short nVgt; unsigned short n_dac; const FilterModelConfig8580* fmc; public: Integrator8580(const FilterModelConfig8580* fmc) : vx(0), vc(0), fmc(fmc) { setV(1.5); } /** * Set Filter Cutoff resistor ratio. */ void setFc(double wl) { // Normalized current factor, 1 cycle at 1MHz. // Fit in 5 bits. n_dac = fmc->getNormalizedCurrentFactor(wl); } /** * Set FC gate voltage multiplier. */ void setV(double v) { // Gate voltage is controlled by the switched capacitor voltage divider // Ua = Ue * v = 4.76v 1 1.0 && v < 2.0); const double Vg = fmc->getVoiceDCVoltage() * v; const double Vgt = Vg - fmc->getVth(); // Vg - Vth, normalized so that translated values can be subtracted: // Vgt - x = (Vgt - t) - (x - t) nVgt = fmc->getNormalizedValue(Vgt); } int solve(int vi) const; }; } // namespace reSIDfp #if RESID_INLINING || defined(INTEGRATOR8580_CPP) namespace reSIDfp { RESID_INLINE int Integrator8580::solve(int vi) const { // Make sure we're not in subthreshold mode assert(vx < nVgt); // DAC voltages const unsigned int Vgst = nVgt - vx; const unsigned int Vgdt = (vi < nVgt) ? nVgt - vi : 0; // triode/saturation mode const unsigned int Vgst_2 = Vgst * Vgst; const unsigned int Vgdt_2 = Vgdt * Vgdt; // DAC current, scaled by (1/m)*2^13*m*2^16*m*2^16*2^-15 = m*2^30 const int n_I_dac = n_dac * (static_cast(Vgst_2 - Vgdt_2) >> 15); // Change in capacitor charge. vc += n_I_dac; // vx = g(vc) const int tmp = (vc >> 15) + (1 << 15); assert(tmp < (1 << 16)); vx = fmc->getOpampRev(tmp); // Return vo. return vx - (vc >> 14); } } // namespace reSIDfp #endif #endif