/** * Furnace Tracker - multi-system chiptune tracker * Copyright (C) 2021-2025 tildearrow and contributors * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #define _USE_MATH_DEFINES #include "amiga.h" #include "../engine.h" #include "../../ta-log.h" #include #define AMIGA_DIVIDER 8 #define AMIGA_VPMASK 7 #define CHIP_DIVIDER 16 #define chWrite(c,a,v) rWrite(((c)<<4)+0xa0+(a),(v)); const char* regCheatSheetAmiga[]={ "DMACON", "96", "INTENA", "9A", "ADKCON", "9E", "AUD0LCH", "A0", "AUD0LCL", "A2", "AUD0LEN", "A4", "AUD0PER", "A6", "AUD0VOL", "A8", "AUD0DAT", "AA", "AUD1LCH", "B0", "AUD1LCL", "B2", "AUD1LEN", "B4", "AUD1PER", "B6", "AUD1VOL", "B8", "AUD1DAT", "BA", "AUD2LCH", "C0", "AUD2LCL", "C2", "AUD2LEN", "C4", "AUD2PER", "C6", "AUD2VOL", "C8", "AUD2DAT", "CA", "AUD3LCH", "D0", "AUD3LCL", "D2", "AUD3LEN", "D4", "AUD3PER", "D6", "AUD3VOL", "D8", "AUD3DAT", "DA", NULL }; const char** DivPlatformAmiga::getRegisterSheet() { return regCheatSheetAmiga; } #define writeAudDat(x) \ chan[i].audDat=x; \ if (i<3 && chan[i].useV) { \ chan[i+1].outVol=(unsigned char)chan[i].audDat^0x80; \ if (chan[i+1].outVol>64) chan[i+1].outVol=64; \ } \ if (i<3 && chan[i].useP) { \ chan[i+1].freq=(unsigned char)chan[i].audDat^0x80; \ if (chan[i+1].freqbegin(len); } int runCount=1; for (size_t h=0; h0) { h+=runCount-1; } else { runCount=1; } delay-=runCount; if (delay<0) delay=0; if (!writes.empty() && delay<=0) { QueuedWrite w=writes.front(); //logV("THE WRITE %x = %x",w.addr,w.val); if (w.addr==0x96 && !(w.val&0x8000)) delay=6144; amiga.write(w.addr,w.val); writes.pop(); } bool hsync=bypassLimits; outL=0; outR=0; // TODO: // - improve DMA overrun behavior // - does V/P mod really work like that? if (!bypassLimits) { amiga.hPos+=runCount; if (amiga.hPos>=228) { amiga.hPos-=228; hsync=true; } } for (int i=0; i<4; i++) { // run DMA if (amiga.audEn[i]) amiga.mustDMA[i]=true; if (amiga.dmaEn && amiga.mustDMA[i] && !amiga.audIr[i]) { amiga.audTick[i]-=runCount; if (amiga.audTick[i]<0) { amiga.audTick[i]+=MAX(runCount,amiga.audPer[i]); if (amiga.audByte[i]) { // read next samples if (!amiga.incLoc[i]) { amiga.audDat[0][i]=sampleMem[(amiga.dmaLoc[i])&chipMask]; amiga.audDat[1][i]=sampleMem[(amiga.dmaLoc[i]+1)&chipMask]; amiga.incLoc[i]=true; } amiga.audWord[i]=!amiga.audWord[i]; } amiga.mustDMA[i]=amiga.audEn[i]; amiga.audByte[i]=!amiga.audByte[i]; if (!amiga.audByte[i] && (amiga.useV[i] || amiga.useP[i])) { amiga.nextOut2[i]=((unsigned char)amiga.audDat[0][i])<<8|((unsigned char)amiga.audDat[1][i]); if (i<3) { if (amiga.useV[i] && amiga.useP[i]) { if (amiga.audWord[i]) { amiga.audPer[i+1]=amiga.nextOut2[i]; } else { amiga.audVol[i+1]=amiga.nextOut2[i]; } } else if (amiga.useV[i]) { amiga.audVol[i+1]=amiga.nextOut2[i]; } else { amiga.audPer[i+1]=amiga.nextOut2[i]; } } } else if (!amiga.useV[i] && !amiga.useP[i]) { amiga.nextOut[i]=amiga.audDat[amiga.audByte[i]][i]; } } if (hsync) { if (amiga.incLoc[i]) { amiga.incLoc[i]=false; amiga.dmaLoc[i]+=2; // check for length if ((--amiga.dmaLen[i])==0) { if (amiga.audInt[i]) { amiga.audIr[i]=true; irq(i); } amiga.dmaLoc[i]=amiga.audLoc[i]; amiga.dmaLen[i]=amiga.audLen[i]; } } } } // output if (!isMuted[i]) { if ((amiga.audVol[i]&127)>=64) { output=amiga.nextOut[i]<<6; } else if ((amiga.audVol[i]&127)==0) { output=0; } else { output=amiga.nextOut[i]*amiga.audVol[i]; } if (i==0 || i==3) { outL+=(output*sep1)>>7; outR+=(output*sep2)>>7; } else { outL+=(output*sep2)>>7; outR+=(output*sep1)>>7; } oscBuf[i]->putSample(h,(amiga.nextOut[i]*MIN(64,amiga.audVol[i]&127))<<1); } else { // TODO: we can remove this! oscBuf[i]->putSample(h,0); } } if (outL!=oldOut[0]) { blip_add_delta(bb[0],h,outL-oldOut[0]); oldOut[0]=outL; } if (outR!=oldOut[1]) { blip_add_delta(bb[1],h,outR-oldOut[1]); oldOut[1]=outR; } } for (int i=0; i<4; i++) { oscBuf[i]->end(len); } } void DivPlatformAmiga::postProcess(short* buf, int outIndex, size_t len, int sampleRate) { // filtering double filtFreq=100000.0; if (filterOn) { if (amigaModel) { filtFreq=8000.0; } else { filtFreq=5500.0; } } else { if (!amigaModel) filtFreq=16000.0; } if (filtFreq>=(sampleRate/2)) return; filtConst=sin(M_PI*filtFreq/((double)sampleRate*2.0))*4096.0; for (size_t i=0; i>12; filter[outIndex][1]+=(filtConst*(filter[outIndex][0]-filter[outIndex][1]))>>12; buf[i]=filter[outIndex][1]; } } void DivPlatformAmiga::irq(int ch) { // disable interrupt rWrite(0x9a,128<=0xa0 && addr<0xe0) { const unsigned char ch=((addr-0xa0)>>4)&3; bool updateDMA=false; switch (addr&15) { case 0: // LCH audLoc[ch]&=0xffff; audLoc[ch]|=val<<16; updateDMA=true; break; case 2: // LCL audLoc[ch]&=0xffff0000; audLoc[ch]|=val&0xfffe; updateDMA=true; break; case 4: // LEN audLen[ch]=val; updateDMA=true; break; case 6: // PER audPer[ch]=val; break; case 8: // VOL audVol[ch]=val; break; case 10: // DAT audDat[0][ch]=val&0xff; audDat[1][ch]=val>>8; break; } if (updateDMA && !mustDMA[ch]) { UPDATE_DMA(ch); } } break; } } } void DivPlatformAmiga::rWrite(unsigned short addr, unsigned short val) { if (addr&1) return; //logV("%.3x = %.4x",addr,val); if (!skipRegisterWrites) { writes.push(QueuedWrite(addr,val)); regPool[addr>>1]=val; if (dumpWrites) { addWrite(addr,val); } } } void DivPlatformAmiga::updateWave(int ch) { for (int i=0; i>6; chan[i].writeVol=true; } if (NEW_ARP_STRAT) { chan[i].handleArp(); } else if (chan[i].std.arp.had) { chan[i].baseFreq=round(NOTE_PERIODIC_NOROUND(parent->calcArp(chan[i].note,chan[i].std.arp.val))); chan[i].freqChanged=true; } if (chan[i].useWave && chan[i].std.wave.had) { if (chan[i].wave!=chan[i].std.wave.val || chan[i].ws.activeChanged()) { chan[i].wave=chan[i].std.wave.val; chan[i].ws.changeWave1(chan[i].wave); chan[i].updateWave=true; } } if (chan[i].useWave && chan[i].active) { if (chan[i].ws.tick()) { chan[i].updateWave=true; } } if (chan[i].std.pitch.had) { if (chan[i].std.pitch.mode) { chan[i].pitch2+=chan[i].std.pitch.val; CLAMP_VAR(chan[i].pitch2,-32768,32767); } else { chan[i].pitch2=chan[i].std.pitch.val; } chan[i].freqChanged=true; } if (chan[i].std.phaseReset.had) { if (chan[i].std.phaseReset.val==1 && chan[i].active) { chan[i].keyOn=true; } } } unsigned short dmaOff=0; unsigned short dmaOn=0; for (int i=0; i<4; i++) { if (chan[i].keyOn || chan[i].keyOff) { chWrite(i,6,1); dmaOff|=1<=0 && chan[i].samplesong.sampleLen) { DivSample* s=parent->getSample(chan[i].sample); if (s->centerRate<1) { off=1.0; } else { off=parent->getCenterRate()/(double)s->centerRate; } } if (chan[i].freqChanged || chan[i].keyOn || chan[i].keyOff) { //DivInstrument* ins=parent->getIns(chan[i].ins,DIV_INS_AMIGA); chan[i].freq=off*parent->calcFreq(chan[i].baseFreq,chan[i].pitch,chan[i].fixedArp?chan[i].baseNoteOverride:chan[i].arpOff,chan[i].fixedArp,true,0,chan[i].pitch2,chipClock,CHIP_DIVIDER); if (chan[i].freq>4095) chan[i].freq=4095; if (chan[i].freq<0) chan[i].freq=0; chWrite(i,6,chan[i].freq); if (chan[i].keyOn) { if (chan[i].useWave) { rWrite(0x9a,(128<=0 && chan[i].samplesong.sampleLen) { DivSample* s=parent->getSample(chan[i].sample); int start=chan[i].audPos&(~1); if (start>s->getLoopEndPosition(DIV_SAMPLE_DEPTH_8BIT)) start=s->getLoopEndPosition(DIV_SAMPLE_DEPTH_8BIT); int len=s->getLoopEndPosition(DIV_SAMPLE_DEPTH_8BIT)-start; if (len<0) len=0; if (len>131070) len=131070; len>>=1; start+=sampleOff[chan[i].sample]; if (len<1) { chWrite(i,0,0); chWrite(i,2,0x400); chWrite(i,4,1); if (dumpWrites) { addWrite(0x200+i,0x400); addWrite(0x204+i,1); } } else { chWrite(i,0,start>>16); chWrite(i,2,start); chWrite(i,4,len); if (dumpWrites) { addWrite(0x200+i,start); addWrite(0x204+i,len); } } dmaOn|=1<isLoopable()) { int loopPos=(sampleOff[chan[i].sample]+s->getLoopStartPosition(DIV_SAMPLE_DEPTH_8BIT))&(~1); int loopEnd=(s->getLoopEndPosition(DIV_SAMPLE_DEPTH_8BIT)-s->getLoopStartPosition(DIV_SAMPLE_DEPTH_8BIT))>>1; chan[i].irLocH=loopPos>>16; chan[i].irLocL=loopPos; chan[i].irLen=MIN(65535,loopEnd); } else { chan[i].irLocH=0; chan[i].irLocL=0x400; chan[i].irLen=1; } rWrite(0x9a,0x8000|(128<getIns(chan[c.chan].ins,DIV_INS_AMIGA); if (ins->amiga.useWave) { if (!chan[c.chan].useWave) chan[c.chan].updateWave=true; chan[c.chan].useWave=true; chan[c.chan].audLen=(ins->amiga.waveLen+1)>>1; if (chan[c.chan].insChanged) { if (chan[c.chan].wave<0) { chan[c.chan].wave=0; chan[c.chan].ws.setWidth(chan[c.chan].audLen<<1); chan[c.chan].ws.changeWave1(chan[c.chan].wave); chan[c.chan].updateWave=true; } } chan[c.chan].sampleNote=DIV_NOTE_NULL; chan[c.chan].sampleNoteDelta=0; } else { if (c.value!=DIV_NOTE_NULL) { chan[c.chan].sample=ins->amiga.getSample(c.value); chan[c.chan].sampleNote=c.value; c.value=ins->amiga.getFreq(c.value); chan[c.chan].sampleNoteDelta=c.value-chan[c.chan].sampleNote; } chan[c.chan].useWave=false; } if (c.value!=DIV_NOTE_NULL) { chan[c.chan].baseFreq=round(NOTE_PERIODIC_NOROUND(c.value)); } if (chan[c.chan].useWave || chan[c.chan].sample<0 || chan[c.chan].sample>=parent->song.sampleLen) { chan[c.chan].sample=-1; } if (chan[c.chan].setPos) { chan[c.chan].setPos=false; } else { chan[c.chan].audPos=0; } chan[c.chan].audSub=0; if (c.value!=DIV_NOTE_NULL) { chan[c.chan].freqChanged=true; chan[c.chan].note=c.value; } chan[c.chan].active=true; chan[c.chan].keyOn=true; chan[c.chan].macroInit(ins); if (!parent->song.brokenOutVol && !chan[c.chan].std.vol.will) { chan[c.chan].outVol=chan[c.chan].vol; chan[c.chan].writeVol=true; } if (chan[c.chan].useWave) { chan[c.chan].ws.init(ins,chan[c.chan].audLen<<1,255,chan[c.chan].insChanged); chan[c.chan].updateWave=true; } chan[c.chan].insChanged=false; break; } case DIV_CMD_NOTE_OFF: chan[c.chan].sample=-1; chan[c.chan].active=false; chan[c.chan].keyOff=true; chan[c.chan].macroInit(NULL); break; case DIV_CMD_NOTE_OFF_ENV: case DIV_CMD_ENV_RELEASE: chan[c.chan].std.release(); break; case DIV_CMD_INSTRUMENT: if (chan[c.chan].ins!=c.value || c.value2==1) { chan[c.chan].ins=c.value; chan[c.chan].insChanged=true; } break; case DIV_CMD_VOLUME: if (chan[c.chan].vol!=c.value) { chan[c.chan].vol=c.value; if (!chan[c.chan].std.vol.has) { chan[c.chan].outVol=c.value; chan[c.chan].writeVol=true; } } break; case DIV_CMD_GET_VOLUME: if (chan[c.chan].std.vol.has) { return chan[c.chan].vol; } return chan[c.chan].outVol; break; case DIV_CMD_PITCH: chan[c.chan].pitch=c.value; chan[c.chan].freqChanged=true; break; case DIV_CMD_WAVE: if (!chan[c.chan].useWave) break; chan[c.chan].wave=c.value; chan[c.chan].keyOn=true; chan[c.chan].ws.changeWave1(chan[c.chan].wave); chan[c.chan].updateWave=true; break; case DIV_CMD_NOTE_PORTA: { int destFreq=round(NOTE_PERIODIC_NOROUND(c.value2+chan[c.chan].sampleNoteDelta)); bool return2=false; if (destFreq>chan[c.chan].baseFreq) { chan[c.chan].baseFreq+=c.value; if (chan[c.chan].baseFreq>=destFreq) { chan[c.chan].baseFreq=destFreq; return2=true; } } else { chan[c.chan].baseFreq-=c.value; if (chan[c.chan].baseFreq<=destFreq) { chan[c.chan].baseFreq=destFreq; return2=true; } } chan[c.chan].freqChanged=true; if (return2) { chan[c.chan].inPorta=false; return 2; } break; } case DIV_CMD_LEGATO: { chan[c.chan].baseFreq=round(NOTE_PERIODIC_NOROUND(c.value+chan[c.chan].sampleNoteDelta+((HACKY_LEGATO_MESS)?(chan[c.chan].std.arp.val):(0)))); chan[c.chan].freqChanged=true; chan[c.chan].note=c.value; break; } case DIV_CMD_PRE_PORTA: if (chan[c.chan].active && c.value2) { if (parent->song.resetMacroOnPorta) chan[c.chan].macroInit(parent->getIns(chan[c.chan].ins,DIV_INS_AMIGA)); } if (!chan[c.chan].inPorta && c.value && !parent->song.brokenPortaArp && chan[c.chan].std.arp.will && !NEW_ARP_STRAT) chan[c.chan].baseFreq=NOTE_PERIODIC(chan[c.chan].note); chan[c.chan].inPorta=c.value; break; case DIV_CMD_SAMPLE_POS: if (chan[c.chan].useWave) break; chan[c.chan].audPos=c.value; if (chan[c.chan].active) chan[c.chan].keyOn=true; chan[c.chan].setPos=true; break; case DIV_CMD_AMIGA_FILTER: filterOn=c.value; filtConst=filterOn?filtConstOn:filtConstOff; break; case DIV_CMD_AMIGA_AM: chan[c.chan].useV=c.value; updateADKCon=true; break; case DIV_CMD_AMIGA_PM: chan[c.chan].useP=c.value; updateADKCon=true; break; case DIV_CMD_GET_VOLMAX: return 64; break; case DIV_CMD_MACRO_OFF: chan[c.chan].std.mask(c.value,true); break; case DIV_CMD_MACRO_ON: chan[c.chan].std.mask(c.value,false); break; case DIV_CMD_MACRO_RESTART: chan[c.chan].std.restart(c.value); break; default: break; } return 1; } void DivPlatformAmiga::muteChannel(int ch, bool mute) { isMuted[ch]=mute; } void DivPlatformAmiga::forceIns() { for (int i=0; i<4; i++) { chan[i].insChanged=true; chan[i].freqChanged=true; chan[i].writeVol=true; /*chan[i].keyOn=false; chan[i].keyOff=false; chan[i].sample=-1;*/ if (!chan[i].useWave) { rWrite(0x96,1<=4) return DivSamplePos(); if (chan[ch].sample<0 || chan[ch].sample>=parent->song.sampleLen) return DivSamplePos(); int audPer=amiga.audPer[ch]; if (audPer<1) audPer=1; return DivSamplePos( chan[ch].sample, amiga.dmaLoc[ch]-sampleOff[chan[ch].sample], chipClock/audPer ); } void DivPlatformAmiga::notifyInsChange(int ins) { for (int i=0; i<4; i++) { if (chan[i].ins==ins) { chan[i].insChanged=true; } } } void DivPlatformAmiga::notifyWaveChange(int wave) { for (int i=0; i<4; i++) { if (chan[i].useWave && chan[i].wave==wave) { chan[i].ws.changeWave1(wave); chan[i].updateWave=true; } } } void DivPlatformAmiga::notifyInsDeletion(void* ins) { for (int i=0; i<4; i++) { chan[i].std.notifyInsDeletion((DivInstrument*)ins); } } void DivPlatformAmiga::setFlags(const DivConfig& flags) { if (flags.getInt("clockSel",0)) { chipClock=COLOR_PAL*4.0/5.0; } else { chipClock=COLOR_NTSC; } CHECK_CUSTOM_CLOCK; rate=chipClock; for (int i=0; i<4; i++) { oscBuf[i]->setRate(rate); } int sep=flags.getInt("stereoSep",0)&127; sep1=sep+127; sep2=127-sep; amigaModel=flags.getInt("chipType",0); chipMem=flags.getInt("chipMem",21); if (chipMem<18) chipMem=18; if (chipMem>21) chipMem=21; chipMask=(1<& wlist) { for (DivRegWrite& i: wlist) rWrite(i.addr,i.val); } unsigned char* DivPlatformAmiga::getRegisterPool() { // update DMACONR regPool[1]=( (amiga.audEn[0]?1:0)| (amiga.audEn[1]?2:0)| (amiga.audEn[2]?4:0)| (amiga.audEn[3]?8:0)| (amiga.dmaEn?512:0) ); // update ADKCONR regPool[0x10>>1]=( (amiga.useV[0]?1:0)| (amiga.useV[1]?2:0)| (amiga.useV[2]?4:0)| (amiga.useV[3]?8:0)| (amiga.useP[0]?16:0)| (amiga.useP[1]?32:0)| (amiga.useP[2]?64:0)| (amiga.useP[3]?128:0) ); // update INTENAR regPool[0x1c>>1]=( (amiga.audInt[0]?128:0)| (amiga.audInt[1]?256:0)| (amiga.audInt[2]?512:0)| (amiga.audInt[3]?1024:0)| 16384 // INTEN ); // update INTREQR regPool[0x1e>>1]=( (amiga.audIr[0]?128:0)| (amiga.audIr[1]?256:0)| (amiga.audIr[2]?512:0)| (amiga.audIr[3]?1024:0) ); return (unsigned char*)regPool; } int DivPlatformAmiga::getRegisterPoolSize() { return 128; } int DivPlatformAmiga::getRegisterPoolDepth() { return 16; } const void* DivPlatformAmiga::getSampleMem(int index) { return index == 0 ? sampleMem : NULL; } size_t DivPlatformAmiga::getSampleMemCapacity(int index) { return index == 0 ? (1<255) return false; return sampleLoaded[sample]; } const DivMemoryComposition* DivPlatformAmiga::getMemCompo(int index) { if (index!=0) return NULL; return &memCompo; } void DivPlatformAmiga::renderSamples(int sysID) { memset(sampleMem,0,2097152); memset(sampleOff,0,256*sizeof(unsigned int)); memset(sampleLoaded,0,256*sizeof(bool)); memCompo=DivMemoryComposition(); memCompo.name="Chip Memory"; memCompo.entries.push_back(DivMemoryEntry(DIV_MEMORY_WAVE_RAM,"Wave RAM",-1,0,1024)); memCompo.entries.push_back(DivMemoryEntry(DIV_MEMORY_RESERVED,"End of Sample",-1,1024,1026)); // first 1024 bytes reserved for wavetable // the next 2 bytes are reserved for end of sample size_t memPos=1026; for (int i=0; isong.sampleLen; i++) { DivSample* s=parent->song.sample[i]; if (!s->renderOn[0][sysID]) { sampleOff[i]=0; continue; } if (memPos>=getSampleMemCapacity()) { logW("out of Amiga memory for sample %d!",i); break; } int length=s->getLoopEndPosition(DIV_SAMPLE_DEPTH_8BIT); int actualLength=MIN((int)(getSampleMemCapacity()-memPos),length); if (actualLength>0) { sampleOff[i]=memPos; memcpy(&sampleMem[memPos],s->data8,actualLength); memCompo.entries.push_back(DivMemoryEntry(DIV_MEMORY_SAMPLE,"Sample",i,memPos,memPos+actualLength)); memPos+=actualLength; } // align memPos to short if (memPos&1) memPos++; sampleLoaded[i]=true; } sampleMemLen=memPos; memCompo.capacity=1<