/* Capcom DL-1425 QSound emulator ============================== by superctr (Ian Karlsson) with thanks to Valley Bell 2018-05-12 - 2018-05-15 */ #include #include #include #include #include "qsound.h" #define CLAMP(x, low, high) (((x) > (high)) ? (high) : (((x) < (low)) ? (low) : (x))) // ============================================================================ static const int16_t qsound_dry_mix_table[33] = { -16384,-16384,-16384,-16384,-16384,-16384,-16384,-16384, -16384,-16384,-16384,-16384,-16384,-16384,-16384,-16384, -16384,-14746,-13107,-11633,-10486,-9175,-8520,-7209, -6226,-5226,-4588,-3768,-3277,-2703,-2130,-1802, 0 }; static const int16_t qsound_wet_mix_table[33] = { 0,-1638,-1966,-2458,-2949,-3441,-4096,-4669, -4915,-5120,-5489,-6144,-7537,-8831,-9339,-9830, -10240,-10322,-10486,-10568,-10650,-11796,-12288,-12288, -12534,-12648,-12780,-12829,-12943,-13107,-13418,-14090, -16384 }; static const int16_t qsound_linear_mix_table[33] = { -16379,-16338,-16257,-16135,-15973,-15772,-15531,-15251, -14934,-14580,-14189,-13763,-13303,-12810,-12284,-11729, -11729,-11144,-10531,-9893,-9229,-8543,-7836,-7109, -6364,-5604,-4829,-4043,-3246,-2442,-1631,-817, 0 }; static const int16_t qsound_filter_data[5][95] = { { // d53 - 0 0,0,0,6,44,-24,-53,-10,59,-40,-27,1,39,-27,56,127,174,36,-13,49, 212,142,143,-73,-20,66,-108,-117,-399,-265,-392,-569,-473,-71,95,-319,-218,-230,331,638, 449,477,-180,532,1107,750,9899,3828,-2418,1071,-176,191,-431,64,117,-150,-274,-97,-238,165, 166,250,-19,4,37,204,186,-6,140,-77,-1,1,18,-10,-151,-149,-103,-9,55,23, -102,-97,-11,13,-48,-27,5,18,-61,-30,64,72,0,0,0, }, { // db2 - 1 - default left filter 0,0,0,85,24,-76,-123,-86,-29,-14,-20,-7,6,-28,-87,-89,-5,100,154,160, 150,118,41,-48,-78,-23,59,83,-2,-176,-333,-344,-203,-66,-39,2,224,495,495,280, 432,1340,2483,5377,1905,658,0,97,347,285,35,-95,-78,-82,-151,-192,-171,-149,-147,-113, -22,71,118,129,127,110,71,31,20,36,46,23,-27,-63,-53,-21,-19,-60,-92,-69, -12,25,29,30,40,41,29,30,46,39,-15,-74,0,0,0, }, { // e11 - 2 - default right filter 0,0,0,23,42,47,29,10,2,-14,-54,-92,-93,-70,-64,-77,-57,18,94,113, 87,69,67,50,25,29,58,62,24,-39,-131,-256,-325,-234,-45,58,78,223,485,496, 127,6,857,2283,2683,4928,1328,132,79,314,189,-80,-90,35,-21,-186,-195,-99,-136,-258, -189,82,257,185,53,41,84,68,38,63,77,14,-60,-71,-71,-120,-151,-84,14,29, -8,7,66,69,12,-3,54,92,52,-6,-15,-2,0,0,0, }, { // e70 - 3 0,0,0,2,-28,-37,-17,0,-9,-22,-3,35,52,39,20,7,-6,2,55,121, 129,67,8,1,9,-6,-16,16,66,96,118,130,75,-47,-92,43,223,239,151,219, 440,475,226,206,940,2100,2663,4980,865,49,-33,186,231,103,42,114,191,184,116,29, -47,-72,-21,60,96,68,31,32,63,87,76,39,7,14,55,85,67,18,-12,-3, 21,34,29,6,-27,-49,-37,-2,16,0,-21,-16,0,0,0, }, { // ecf - 4 0,0,0,48,7,-22,-29,-10,24,54,59,29,-36,-117,-185,-213,-185,-99,13,90, 83,24,-5,23,53,47,38,56,67,57,75,107,16,-242,-440,-355,-120,-33,-47,152, 501,472,-57,-292,544,1937,2277,6145,1240,153,47,200,152,36,64,134,74,-82,-208,-266, -268,-188,-42,65,74,56,89,133,114,44,-3,-1,17,29,29,-2,-76,-156,-187,-151, -85,-31,-5,7,20,32,24,-5,-20,6,48,62,0,0,0, } }; static const int16_t qsound_filter_data2[209] = { // f2e - following 95 values used for "disable output" filter 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0, // f73 - following 45 values used for "mode 2" filter (overlaps with f2e) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0, -371,-196,-268,-512,-303,-315,-184,-76,276,-256,298,196,990,236,1114,-126,4377,6549,791, // fa0 - filtering disabled (for 95-taps) (use fa3 or fa4 for mode2 filters) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,-16384,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; static const int16_t adpcm_step_table[16] = { 154, 154, 128, 102, 77, 58, 58, 58, 58, 58, 58, 58, 77, 102, 128, 154 }; // DSP states enum { STATE_INIT1 = 0x288, STATE_INIT2 = 0x61a, STATE_REFRESH1 = 0x039, STATE_REFRESH2 = 0x04f, STATE_NORMAL1 = 0x314, STATE_NORMAL2 = 0x6b2, }; enum { PANTBL_LEFT = 0, PANTBL_RIGHT = 1, PANTBL_DRY = 0, PANTBL_WET = 1, }; static void init_pan_tables(struct qsound_chip *chip); static void init_register_map(struct qsound_chip *chip); static void state_init(struct qsound_chip *chip); static void state_refresh_filter_1(struct qsound_chip *chip); static void state_refresh_filter_2(struct qsound_chip *chip); static void state_normal_update(struct qsound_chip *chip); static inline int16_t get_sample(struct qsound_chip *chip, uint16_t bank,uint16_t address); static inline int16_t* get_filter_table(struct qsound_chip *chip, uint16_t offset); static inline int16_t pcm_update(struct qsound_chip *chip, int voice_no, int32_t *echo_out); static inline void adpcm_update(struct qsound_chip *chip, int voice_no, int nibble); static inline int16_t echo(struct qsound_echo *r,int32_t input); static inline int32_t fir(struct qsound_fir *f, int16_t input); static inline int32_t delay(struct qsound_delay *d, int32_t input); static inline void delay_update(struct qsound_delay *d); // ============================================================================ long qsound_start(struct qsound_chip *chip, int clock) { memset(chip,0,sizeof(*chip)); init_pan_tables(chip); init_register_map(chip); return clock / 2 / 1248; // DSP program uses 1248 machine cycles per iteration } void qsound_reset(struct qsound_chip *chip) { chip->ready_flag = 0; chip->out[0] = chip->out[1] = 0; chip->state = 0; chip->state_counter = 0; } void qsound_stream_update(struct qsound_chip *chip, int16_t **outputs, int samples) { // Clear the buffers memset(outputs[0], 0, samples * sizeof(*outputs[0])); memset(outputs[1], 0, samples * sizeof(*outputs[1])); for (int i = 0; i < samples; i ++) { qsound_update(chip); outputs[0][i] = chip->out[0]; outputs[1][i] = chip->out[1]; } } void qsound_w(struct qsound_chip *chip, uint8_t offset, uint8_t data) { switch (offset) { case 0: chip->data_latch = (chip->data_latch & 0x00ff) | (data << 8); break; case 1: chip->data_latch = (chip->data_latch & 0xff00) | data; break; case 2: qsound_write_data(chip, data, chip->data_latch); break; default: break; } } uint8_t qsound_r(struct qsound_chip *chip) { // ready bit (0x00 = busy, 0x80 == ready) return chip->ready_flag; } void qsound_write_data(struct qsound_chip *chip, uint8_t address, uint16_t data) { uint16_t *destination = chip->register_map[address]; if(destination) *destination = data; chip->ready_flag = 0; } uint16_t qsound_read_data(struct qsound_chip *chip, uint8_t address) { uint16_t data = 0; uint16_t *source = chip->register_map[address]; if(source) data = *source; return data; } // ============================================================================ static void init_pan_tables(struct qsound_chip *chip) { int i; for(i=0;i<33;i++) { // dry mixing levels chip->pan_tables[PANTBL_LEFT][PANTBL_DRY][i] = qsound_dry_mix_table[i]; chip->pan_tables[PANTBL_RIGHT][PANTBL_DRY][i] = qsound_dry_mix_table[32-i]; // wet mixing levels chip->pan_tables[PANTBL_LEFT][PANTBL_WET][i] = qsound_wet_mix_table[i]; chip->pan_tables[PANTBL_RIGHT][PANTBL_WET][i] = qsound_wet_mix_table[32-i]; // linear panning, only for dry component. wet component is muted. chip->pan_tables[PANTBL_LEFT][PANTBL_DRY][i+0x30] = qsound_linear_mix_table[i]; chip->pan_tables[PANTBL_RIGHT][PANTBL_DRY][i+0x30] = qsound_linear_mix_table[32-i]; } } static void init_register_map(struct qsound_chip *chip) { int i; // unused registers for(i=0;i<256;i++) chip->register_map[i] = NULL; // PCM registers for(i=0;i<16;i++) // PCM voices { chip->register_map[(i<<3)+0] = (uint16_t*)&chip->voice[(i+1)%16].bank; // Bank applies to the next channel chip->register_map[(i<<3)+1] = (uint16_t*)&chip->voice[i].addr; // Current sample position and start position. chip->register_map[(i<<3)+2] = (uint16_t*)&chip->voice[i].rate; // 4.12 fixed point decimal. chip->register_map[(i<<3)+3] = (uint16_t*)&chip->voice[i].phase; chip->register_map[(i<<3)+4] = (uint16_t*)&chip->voice[i].loop_len; chip->register_map[(i<<3)+5] = (uint16_t*)&chip->voice[i].end_addr; chip->register_map[(i<<3)+6] = (uint16_t*)&chip->voice[i].volume; chip->register_map[(i<<3)+7] = NULL; // unused chip->register_map[i+0x80] = (uint16_t*)&chip->voice_pan[i]; chip->register_map[i+0xba] = (uint16_t*)&chip->voice[i].echo; } // ADPCM registers for(i=0;i<3;i++) // ADPCM voices { // ADPCM sample rate is fixed to 8khz. (one channel is updated every third sample) chip->register_map[(i<<2)+0xca] = (uint16_t*)&chip->adpcm[i].start_addr; chip->register_map[(i<<2)+0xcb] = (uint16_t*)&chip->adpcm[i].end_addr; chip->register_map[(i<<2)+0xcc] = (uint16_t*)&chip->adpcm[i].bank; chip->register_map[(i<<2)+0xcd] = (uint16_t*)&chip->adpcm[i].volume; chip->register_map[i+0xd6] = (uint16_t*)&chip->adpcm[i].flag; // non-zero to start ADPCM playback chip->register_map[i+0x90] = (uint16_t*)&chip->voice_pan[16+i]; } // QSound registers chip->register_map[0x93] = (uint16_t*)&chip->echo.feedback; chip->register_map[0xd9] = (uint16_t*)&chip->echo.end_pos; chip->register_map[0xe2] = (uint16_t*)&chip->delay_update; // non-zero to update delays chip->register_map[0xe3] = (uint16_t*)&chip->next_state; for(i=0;i<2;i++) // left, right { // Wet chip->register_map[(i<<1)+0xda] = (uint16_t*)&chip->filter[i].table_pos; chip->register_map[(i<<1)+0xde] = (uint16_t*)&chip->wet[i].delay; chip->register_map[(i<<1)+0xe4] = (uint16_t*)&chip->wet[i].volume; // Dry chip->register_map[(i<<1)+0xdb] = (uint16_t*)&chip->alt_filter[i].table_pos; chip->register_map[(i<<1)+0xdf] = (uint16_t*)&chip->dry[i].delay; chip->register_map[(i<<1)+0xe5] = (uint16_t*)&chip->dry[i].volume; } } static inline int16_t get_sample(struct qsound_chip *chip, uint16_t bank,uint16_t address) { uint32_t rom_addr; uint8_t sample_data; if (! chip->rom_mask) return 0; // no ROM loaded if (! (bank & 0x8000)) return 0; // ignore attempts to read from DSP program ROM bank &= 0x7FFF; rom_addr = (bank << 16) | (address << 0); sample_data = chip->rom_data[rom_addr]; return (int16_t)((sample_data << 8) | (sample_data << 0)); // MAME currently expands the 8 bit ROM data to 16 bits this way. } static inline int16_t* get_filter_table(struct qsound_chip *chip, uint16_t offset) { int index; if (offset >= 0xf2e && offset < 0xfff) return (int16_t*)&qsound_filter_data2[offset-0xf2e]; // overlapping filter data index = (offset-0xd53)/95; if(index >= 0 && index < 5) return (int16_t*)&qsound_filter_data[index]; // normal tables return NULL; // no filter found. } /********************************************************************/ // updates one DSP sample void qsound_update(struct qsound_chip *chip) { switch(chip->state) { default: case STATE_INIT1: case STATE_INIT2: state_init(chip); return; case STATE_REFRESH1: state_refresh_filter_1(chip); return; case STATE_REFRESH2: state_refresh_filter_2(chip); return; case STATE_NORMAL1: case STATE_NORMAL2: state_normal_update(chip); return; } } // Initialization routine static void state_init(struct qsound_chip *chip) { int mode = (chip->state == STATE_INIT2) ? 1 : 0; int i; // we're busy for 4 samples, including the filter refresh. if(chip->state_counter >= 2) { chip->state_counter = 0; chip->state = chip->next_state; return; } else if(chip->state_counter == 1) { chip->state_counter++; return; } memset(chip->voice, 0, sizeof(chip->voice)); memset(chip->adpcm, 0, sizeof(chip->adpcm)); memset(chip->filter, 0, sizeof(chip->filter)); memset(chip->alt_filter, 0, sizeof(chip->alt_filter)); memset(chip->wet, 0, sizeof(chip->wet)); memset(chip->dry, 0, sizeof(chip->dry)); memset(&chip->echo, 0, sizeof(chip->echo)); for(i=0;i<19;i++) { chip->voice_pan[i] = 0x120; chip->voice_output[i] = 0; } for(i=0;i<16;i++) chip->voice[i].bank = 0x8000; for(i=0;i<3;i++) chip->adpcm[i].bank = 0x8000; if(mode == 0) { // mode 1 chip->wet[0].delay = 0; chip->dry[0].delay = 46; chip->wet[1].delay = 0; chip->dry[1].delay = 48; chip->filter[0].table_pos = 0xdb2; chip->filter[1].table_pos = 0xe11; chip->echo.end_pos = 0x554 + 6; chip->next_state = STATE_REFRESH1; } else { // mode 2 chip->wet[0].delay = 1; chip->dry[0].delay = 0; chip->wet[1].delay = 0; chip->dry[1].delay = 0; chip->filter[0].table_pos = 0xf73; chip->filter[1].table_pos = 0xfa4; chip->alt_filter[0].table_pos = 0xf73; chip->alt_filter[1].table_pos = 0xfa4; chip->echo.end_pos = 0x53c + 6; chip->next_state = STATE_REFRESH2; } chip->wet[0].volume = 0x3fff; chip->dry[0].volume = 0x3fff; chip->wet[1].volume = 0x3fff; chip->dry[1].volume = 0x3fff; chip->delay_update = 1; chip->ready_flag = 0; chip->state_counter = 1; } // Updates filter parameters for mode 1 static void state_refresh_filter_1(struct qsound_chip *chip) { const int16_t *table; for(int ch=0; ch<2; ch++) { chip->filter[ch].delay_pos = 0; chip->filter[ch].tap_count = 95; table = get_filter_table(chip,chip->filter[ch].table_pos); if (table != NULL) memcpy(chip->filter[ch].taps, table, 95 * sizeof(int16_t)); } chip->state = chip->next_state = STATE_NORMAL1; } // Updates filter parameters for mode 2 static void state_refresh_filter_2(struct qsound_chip *chip) { const int16_t *table; for(int ch=0; ch<2; ch++) { chip->filter[ch].delay_pos = 0; chip->filter[ch].tap_count = 45; table = get_filter_table(chip,chip->filter[ch].table_pos); if (table != NULL) memcpy(chip->filter[ch].taps, table, 45 * sizeof(int16_t)); chip->alt_filter[ch].delay_pos = 0; chip->alt_filter[ch].tap_count = 44; table = get_filter_table(chip,chip->alt_filter[ch].table_pos); if (table != NULL) memcpy(chip->alt_filter[ch].taps, table, 44 * sizeof(int16_t)); } chip->state = chip->next_state = STATE_NORMAL2; } // Updates a PCM voice. There are 16 voices, each are updated every sample // with full rate and volume control. static inline int16_t pcm_update(struct qsound_chip *chip, int voice_no, int32_t *echo_out) { struct qsound_voice* v = &chip->voice[voice_no]; int32_t new_phase; int16_t output = 0; if(!(chip->mute_mask & (1<volume * get_sample(chip, v->bank, v->addr))>>14; *echo_out += (output * v->echo)<<2; } // Add delta to the phase and loop back if required new_phase = v->rate + ((v->addr<<12) | (v->phase>>4)); if((new_phase>>12) >= v->end_addr) new_phase -= (v->loop_len<<12); new_phase = CLAMP(new_phase, -0x8000000, 0x7FFFFFF); v->addr = new_phase>>12; v->phase = (new_phase<<4)&0xffff; return output; } // Updates an ADPCM voice. There are 3 voices, one is updated every sample // (effectively making the ADPCM rate 1/3 of the master sample rate), and // volume is set when starting samples only. // The ADPCM algorithm is supposedly similar to Yamaha ADPCM. It also seems // like Capcom never used it, so this was not emulated in the earlier QSound // emulators. static inline void adpcm_update(struct qsound_chip *chip, int voice_no, int nibble) { struct qsound_adpcm *v = &chip->adpcm[voice_no]; int32_t delta; int8_t step; if(!nibble) { // Mute voice when it reaches the end address. if(v->cur_addr == v->end_addr) v->cur_vol = 0; // Playback start flag if(v->flag) { chip->voice_output[16+voice_no] = 0; v->flag = 0; v->step_size = 10; v->cur_vol = v->volume; v->cur_addr = v->start_addr; } // get top nibble step = get_sample(chip, v->bank, v->cur_addr) >> 8; } else { // get bottom nibble step = get_sample(chip, v->bank, v->cur_addr++) >> 4; } // shift with sign extend step >>= 4; // delta = (0.5 + abs(v->step)) * v->step_size delta = ((1+abs(step<<1)) * v->step_size)>>1; if(step <= 0) delta = -delta; delta += chip->voice_output[16+voice_no]; delta = CLAMP(delta,-32768,32767); if(chip->mute_mask & (1<<(16+voice_no))) chip->voice_output[16+voice_no] = 0; else chip->voice_output[16+voice_no] = (delta * v->cur_vol)>>16; v->step_size = (adpcm_step_table[8+step] * v->step_size) >> 6; v->step_size = CLAMP(v->step_size, 1, 2000); } // The echo effect is pretty simple. A moving average filter is used on // the output from the delay line to smooth samples over time. static inline int16_t echo(struct qsound_echo *r,int32_t input) { // get average of last 2 samples from the delay line int32_t new_sample; int32_t old_sample = r->delay_line[r->delay_pos]; int32_t last_sample = r->last_sample; r->last_sample = old_sample; old_sample = (old_sample+last_sample) >> 1; // add current sample to the delay line new_sample = input + ((old_sample * r->feedback)<<2); r->delay_line[r->delay_pos++] = new_sample>>16; if(r->delay_pos >= r->length) r->delay_pos = 0; return old_sample; } // Process a sample update static void state_normal_update(struct qsound_chip *chip) { int v, ch; int32_t echo_input = 0; int16_t echo_output; chip->ready_flag = 0x80; // recalculate echo length if(chip->state == STATE_NORMAL2) chip->echo.length = chip->echo.end_pos - 0x53c; else chip->echo.length = chip->echo.end_pos - 0x554; chip->echo.length = CLAMP(chip->echo.length, 0, 1024); // update PCM voices for(v=0; v<16; v++) { chip->voice_output[v] = pcm_update(chip, v, &echo_input); } // update ADPCM voices (one every third sample) adpcm_update(chip, chip->state_counter % 3, chip->state_counter / 3); echo_output = echo(&chip->echo,echo_input); // now, we do the magic stuff for(ch=0; ch<2; ch++) { // Echo is output on the unfiltered component of the left channel and // the filtered component of the right channel. int32_t wet = (ch == 1) ? echo_output<<14 : 0; int32_t dry = (ch == 0) ? echo_output<<14 : 0; int32_t output = 0; for(int v=0; v<19; v++) { uint16_t pan_index = chip->voice_pan[v]-0x110; if(pan_index > 97) pan_index = 97; // Apply different volume tables on the dry and wet inputs. dry -= (chip->voice_output[v] * chip->pan_tables[ch][PANTBL_DRY][pan_index]); wet -= (chip->voice_output[v] * chip->pan_tables[ch][PANTBL_WET][pan_index]); } // Saturate accumulated voices dry = CLAMP(dry, -0x1fffffff, 0x1fffffff) << 2; wet = CLAMP(wet, -0x1fffffff, 0x1fffffff) << 2; // Apply FIR filter on 'wet' input wet = fir(&chip->filter[ch], wet >> 16); // in mode 2, we do this on the 'dry' input too if(chip->state == STATE_NORMAL2) dry = fir(&chip->alt_filter[ch], dry >> 16); // output goes through a delay line and attenuation output = (delay(&chip->wet[ch], wet) + delay(&chip->dry[ch], dry)); // DSP round function output = (output + 0x2000) >> 14; chip->out[ch] = CLAMP(output, -0x7fff, 0x7fff); if(chip->delay_update) { delay_update(&chip->wet[ch]); delay_update(&chip->dry[ch]); } } chip->delay_update = 0; // after 6 samples, the next state is executed. chip->state_counter++; if(chip->state_counter > 5) { chip->state_counter = 0; chip->state = chip->next_state; } } // Apply the FIR filter used as the Q1 transfer function static inline int32_t fir(struct qsound_fir *f, int16_t input) { int32_t output = 0, tap = 0; for(; tap < (f->tap_count-1); tap++) { output -= (f->taps[tap] * f->delay_line[f->delay_pos++])<<2; if(f->delay_pos >= f->tap_count-1) f->delay_pos = 0; } output -= (f->taps[tap] * input)<<2; f->delay_line[f->delay_pos++] = input; if(f->delay_pos >= f->tap_count-1) f->delay_pos = 0; return output; } // Apply delay line and component volume static inline int32_t delay(struct qsound_delay *d, int32_t input) { int32_t output; d->delay_line[d->write_pos++] = input>>16; if(d->write_pos >= 51) d->write_pos = 0; output = d->delay_line[d->read_pos++]*d->volume; if(d->read_pos >= 51) d->read_pos = 0; return output; } // Update the delay read position to match new delay length static inline void delay_update(struct qsound_delay *d) { int16_t new_read_pos = (d->write_pos - d->delay) % 51; if(new_read_pos < 0) new_read_pos += 51; d->read_pos = new_read_pos; }