/** * Furnace Tracker - multi-system chiptune tracker * Copyright (C) 2021-2024 tildearrow and contributors * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ // thanks LTVA #include "sid2.h" #include "../engine.h" #include "IconsFontAwesome4.h" #include #include "../../ta-log.h" #define rWrite(a,v) if (!skipRegisterWrites) {writes.push(QueuedWrite(a,v)); if (dumpWrites) {addWrite(a,v);} } #define CHIP_FREQBASE 524288 const char* regCheatSheetSID2[]={ "FreqL0", "00", "FreqH0", "01", "PWL0", "02", "PWH0Vol", "03", "Control0", "04", "AtkDcy0", "05", "StnRis0", "06", "FreqL1", "07", "FreqH1", "08", "PWL1", "09", "PWH1Vol", "0A", "Control1", "0B", "AtkDcy1", "0C", "StnRis1", "0D", "FreqL2", "0E", "FreqH2", "0F", "PWL2", "10", "PWH2Vol", "11", "Control2", "12", "AtkDcy2", "13", "StnRis2", "14", "FCL0Ctrl", "15", "FCH0", "16", "FilterRes0", "17", "FCL1Ctrl", "18", "FCH1", "19", "FilterRes1", "1A", "FCL2Ctrl", "1B", "FCH2", "1C", "FilterRes2", "1D", "NoiModeFrMSB01", "1E", "WaveMixModeFrMSB2", "1F", NULL }; const char** DivPlatformSID2::getRegisterSheet() { return regCheatSheetSID2; } void DivPlatformSID2::acquire(short** buf, size_t len) { for (size_t i=0; iwrite(w.addr,w.val); regPool[w.addr&0x1f]=w.val; writes.pop(); } sid2->clock(); buf[0][i]=sid2->output(); if (++writeOscBuf>=16) { writeOscBuf=0; for(int j = 0; j < 3; j++) { oscBuf[j]->data[oscBuf[j]->needle++] = sid2->chan_out[j] / 4; } } } } void DivPlatformSID2::updateFilter(int channel) { rWrite(0x15 + 3 * channel,(chan[channel].filtCut&15) | ((chan[channel].filtControl & 7) << 4) | (chan[channel].filter << 7)); rWrite(0x16 + 3 * channel,(chan[channel].filtCut >> 4)); rWrite(0x17 + 3 * channel,chan[channel].filtRes); } void DivPlatformSID2::tick(bool sysTick) { for (int _i=0; _i<3; _i++) { int i=chanOrder[_i]; bool willUpdateFilter = false; chan[i].std.next(); if(sysTick) { if(chan[i].pw_slide != 0) { chan[i].duty -= chan[i].pw_slide; chan[i].duty = CLAMP(chan[i].duty, 0, 0xfff); rWrite(i*7+2,chan[i].duty&0xff); rWrite(i*7+3,(chan[i].duty>>8) | (chan[i].outVol << 4)); } if(chan[i].cutoff_slide != 0) { chan[i].filtCut += chan[i].cutoff_slide; chan[i].filtCut = CLAMP(chan[i].filtCut, 0, 0xfff); updateFilter(i); } } if (chan[i].std.vol.had) { chan[i].outVol=VOL_SCALE_LINEAR(chan[i].vol&15,MIN(15,chan[i].std.vol.val),15); rWrite(i*7+3,(chan[i].duty>>8) | (chan[i].outVol << 4)); } if (NEW_ARP_STRAT) { chan[i].handleArp(); } else if (chan[i].std.arp.had) { if (!chan[i].inPorta) { chan[i].baseFreq=NOTE_FREQUENCY(parent->calcArp(chan[i].note,chan[i].std.arp.val)); } chan[i].freqChanged=true; } if (chan[i].std.duty.had) { DivInstrument* ins=parent->getIns(chan[i].ins,DIV_INS_SID2); if (ins->c64.dutyIsAbs) { chan[i].duty=chan[i].std.duty.val; } else { chan[i].duty-=chan[i].std.duty.val; } chan[i].duty&=4095; rWrite(i*7+2,chan[i].duty&0xff); rWrite(i*7+3,(chan[i].duty>>8) | (chan[i].outVol << 4)); } if (chan[i].std.wave.had) { chan[i].wave=chan[i].std.wave.val; rWrite(i*7+4,(chan[i].wave<<4)|0|(chan[i].ring<<2)|(chan[i].sync<<1)|(int)(chan[i].active && chan[i].gate)); chan[i].freqChanged=true; //to update freq (if only noise was enabled/disabled) } if (chan[i].std.fms.had) { chan[i].noise_mode=chan[i].std.fms.val; rWrite(0x1e, (chan[0].noise_mode) | (chan[1].noise_mode << 2) | (chan[2].noise_mode << 4) | ((chan[0].freq >> 16) << 6) | ((chan[1].freq >> 16) << 7)); chan[i].freqChanged=true; //to update freq (if only noise was enabled and periodic noise mode is set) } if (chan[i].std.ams.had) { chan[i].mix_mode=chan[i].std.ams.val; rWrite(0x1f, (chan[0].mix_mode) | (chan[1].mix_mode << 2) | (chan[2].mix_mode << 4) | ((chan[2].freq >> 16) << 6)); } if (chan[i].std.pitch.had) { if (chan[i].std.pitch.mode) { chan[i].pitch2+=chan[i].std.pitch.val; CLAMP_VAR(chan[i].pitch2,-65535,65535); } else { chan[i].pitch2=chan[i].std.pitch.val; } chan[i].freqChanged=true; } if (chan[i].std.alg.had) { // new cutoff macro DivInstrument* ins=parent->getIns(chan[i].ins,DIV_INS_SID2); if (ins->c64.filterIsAbs) { chan[i].filtCut=MIN(4095,chan[i].std.alg.val); } else { chan[i].filtCut+=chan[i].std.alg.val; if (chan[i].filtCut > 4095) chan[i].filtCut = 4095; if (chan[i].filtCut<0) chan[i].filtCut=0; } willUpdateFilter=true; } if (chan[i].std.ex1.had) { chan[i].filtControl=chan[i].std.ex1.val&15; willUpdateFilter=true; } if (chan[i].std.ex2.had) { chan[i].filtRes=chan[i].std.ex2.val&255; willUpdateFilter=true; } if (chan[i].std.ex3.had) { chan[i].filter=(chan[i].std.ex3.val&1); willUpdateFilter=true; } if (chan[i].std.ex4.had) { chan[i].gate=chan[i].std.ex4.val&1; chan[i].sync=chan[i].std.ex4.val&2; chan[i].ring=chan[i].std.ex4.val&4; chan[i].freqChanged=true; rWrite(i*7+4,(chan[i].wave<<4)|0|(chan[i].ring<<2)|(chan[i].sync<<1)|(int)(chan[i].active && chan[i].gate)); } if (chan[i].std.phaseReset.had) { chan[i].test=(chan[i].std.phaseReset.val&1); rWrite(i*7+4,(chan[i].wave<<4)|(chan[i].test << 3)|(chan[i].ring<<2)|(chan[i].sync<<1)|(int)(chan[i].active && chan[i].gate)); rWrite(i*7+4,(chan[i].wave<<4)|0|(chan[i].ring<<2)|(chan[i].sync<<1)|(int)(chan[i].active && chan[i].gate)); chan[i].test = false; } if (chan[i].std.ex5.had) { chan[i].attack=chan[i].std.ex5.val&15; rWrite(i*7+5,(chan[i].attack<<4)|(chan[i].decay)); } if (chan[i].std.ex6.had) { chan[i].decay=chan[i].std.ex6.val&15; rWrite(i*7+5,(chan[i].attack<<4)|(chan[i].decay)); } if (chan[i].std.ex7.had) { chan[i].sustain=chan[i].std.ex7.val&15; rWrite(i*7+6,(chan[i].sustain<<4)|(chan[i].release)); } if (chan[i].std.ex8.had) { chan[i].release=chan[i].std.ex8.val&15; rWrite(i*7+6,(chan[i].sustain<<4)|(chan[i].release)); } if (chan[i].freqChanged || chan[i].keyOn || chan[i].keyOff) { chan[i].freq=parent->calcFreq(chan[i].baseFreq,chan[i].pitch,chan[i].fixedArp?chan[i].baseNoteOverride:chan[i].arpOff,chan[i].fixedArp,false,8,chan[i].pitch2,chipClock,CHIP_FREQBASE); if (chan[i].freq<0) chan[i].freq=0; if (chan[i].freq>0x1ffff) chan[i].freq=0x1ffff; if (chan[i].keyOn) { if(!chan[i].resetMask) { chan[i].gate = true; rWrite(i*7+4,(chan[i].wave<<4)|0|(chan[i].ring<<2)|(chan[i].sync<<1)|(0)); rWrite(i*7+4,(chan[i].wave<<4)|0|(chan[i].ring<<2)|(chan[i].sync<<1)|(chan[i].gate?1:0)); rWrite(i*7+5,(chan[i].attack<<4)|(chan[i].decay)); rWrite(i*7+6,(chan[i].sustain<<4)|(chan[i].release)); } rWrite(i*7+3, (chan[i].duty>>8) | (isMuted[i] ? 0 : (chan[i].outVol << 4))); //set volume rWrite(0x1e, (chan[0].noise_mode) | (chan[1].noise_mode << 2) | (chan[2].noise_mode << 4) | ((chan[0].freq >> 16) << 6) | ((chan[1].freq >> 16) << 7)); rWrite(0x1f, (chan[0].mix_mode) | (chan[1].mix_mode << 2) | (chan[2].mix_mode << 4) | ((chan[2].freq >> 16) << 6)); } if (chan[i].keyOff) { chan[i].gate = false; rWrite(i*7+5,(chan[i].attack<<4)|(chan[i].decay)); rWrite(i*7+6,(chan[i].sustain<<4)|(chan[i].release)); rWrite(i*7+4,(chan[i].wave<<4)|0|(chan[i].ring<<2)|(chan[i].sync<<1)|0); } if(chan[i].wave == 0x8) //if we have noise (noise only, since tone frequency would be wrong) { if(chan[i].noise_mode == 1) //1st short noise { chan[i].freq = (int)((double)chan[i].freq * 523.25 / 349.0); //these numbers and later determined by spectrum analyzer peak of looped noise signal at known frequency (frequency known for tone that would play if tone wave was enabled) } if(chan[i].noise_mode == 2) //2nd short noise { chan[i].freq = (int)((double)chan[i].freq * 523.25 / 270.0); } if(chan[i].noise_mode == 3) //3rd short noise { chan[i].freq = (int)((double)chan[i].freq * 523.25 / 133.0); } } if (chan[i].freq<0) chan[i].freq=0; if (chan[i].freq>0x1ffff) chan[i].freq=0x1ffff; rWrite(i*7,chan[i].freq&0xff); rWrite(i*7+1,chan[i].freq>>8); rWrite(0x1e, (chan[0].noise_mode) | (chan[1].noise_mode << 2) | (chan[2].noise_mode << 4) | ((chan[0].freq >> 16) << 6) | ((chan[1].freq >> 16) << 7)); rWrite(0x1f, (chan[0].mix_mode) | (chan[1].mix_mode << 2) | (chan[2].mix_mode << 4) | ((chan[2].freq >> 16) << 6)); if (chan[i].keyOn) chan[i].keyOn=false; if (chan[i].keyOff) chan[i].keyOff=false; chan[i].freqChanged=false; } if (willUpdateFilter) updateFilter(i); } } int DivPlatformSID2::dispatch(DivCommand c) { if (c.chan>2) return 0; switch (c.cmd) { case DIV_CMD_NOTE_ON: { DivInstrument* ins=parent->getIns(chan[c.chan].ins,DIV_INS_SID2); if (c.value!=DIV_NOTE_NULL) { chan[c.chan].baseFreq=NOTE_FREQUENCY(c.value); chan[c.chan].freqChanged=true; chan[c.chan].note=c.value; } chan[c.chan].active=true; chan[c.chan].keyOn=true; chan[c.chan].test=false; if (((chan[c.chan].insChanged || chan[c.chan].resetDuty || ins->std.waveMacro.len>0) && ins->c64.resetDuty) || chan[c.chan].resetDuty) { chan[c.chan].duty=ins->c64.duty; rWrite(c.chan*7+2,chan[c.chan].duty&0xff); rWrite(c.chan*7+3,(chan[c.chan].duty>>8) | (chan[c.chan].outVol << 4)); } if (chan[c.chan].insChanged) { chan[c.chan].wave=(ins->c64.noiseOn<<3)|(ins->c64.pulseOn<<2)|(ins->c64.sawOn<<1)|(int)(ins->c64.triOn); chan[c.chan].attack=ins->c64.a; chan[c.chan].decay=(ins->c64.s==15)?0:ins->c64.d; chan[c.chan].sustain=ins->c64.s; chan[c.chan].release=ins->c64.r; chan[c.chan].ring=ins->c64.ringMod; chan[c.chan].sync=ins->c64.oscSync; chan[c.chan].noise_mode = ins->sid2.noiseMode; chan[c.chan].mix_mode = ins->sid2.mixMode; } if (chan[c.chan].insChanged || chan[c.chan].resetFilter) { chan[c.chan].filter=ins->c64.toFilter; if (ins->c64.initFilter) { chan[c.chan].filtCut=ins->c64.cut; chan[c.chan].filtRes=ins->c64.res; chan[c.chan].filtControl=(int)(ins->c64.lp)|(ins->c64.bp<<1)|(ins->c64.hp<<2); } updateFilter(c.chan); } if (chan[c.chan].insChanged) { chan[c.chan].insChanged=false; } if (keyPriority) { if (chanOrder[1]==c.chan) { chanOrder[1]=chanOrder[2]; chanOrder[2]=c.chan; } else if (chanOrder[0]==c.chan) { chanOrder[0]=chanOrder[1]; chanOrder[1]=chanOrder[2]; chanOrder[2]=c.chan; } } chan[c.chan].macroInit(ins); break; } case DIV_CMD_NOTE_OFF: chan[c.chan].active=false; chan[c.chan].keyOff=true; chan[c.chan].keyOn=false; //chan[c.chan].macroInit(NULL); break; case DIV_CMD_NOTE_OFF_ENV: chan[c.chan].active=false; chan[c.chan].keyOff=true; chan[c.chan].keyOn=false; chan[c.chan].std.release(); break; case DIV_CMD_ENV_RELEASE: chan[c.chan].std.release(); break; case DIV_CMD_INSTRUMENT: if (chan[c.chan].ins!=c.value || c.value2==1) { chan[c.chan].insChanged=true; chan[c.chan].ins=c.value; } break; case DIV_CMD_VOLUME: if (chan[c.chan].vol!=c.value) { chan[c.chan].vol=c.value; if (!chan[c.chan].std.vol.has) { chan[c.chan].outVol=c.value; chan[c.chan].vol=chan[c.chan].outVol; rWrite(c.chan*7+3,(chan[c.chan].duty>>8) | (chan[c.chan].vol << 4)); } } break; case DIV_CMD_GET_VOLUME: if (chan[c.chan].std.vol.has) { return chan[c.chan].vol; } return chan[c.chan].outVol; break; case DIV_CMD_PITCH: chan[c.chan].pitch=c.value; chan[c.chan].freqChanged=true; break; case DIV_CMD_NOTE_PORTA: { int destFreq=NOTE_FREQUENCY(c.value2); bool return2=false; if (destFreq>chan[c.chan].baseFreq) { chan[c.chan].baseFreq+=c.value; if (chan[c.chan].baseFreq>=destFreq) { chan[c.chan].baseFreq=destFreq; return2=true; } } else { chan[c.chan].baseFreq-=c.value; if (chan[c.chan].baseFreq<=destFreq) { chan[c.chan].baseFreq=destFreq; return2=true; } } chan[c.chan].freqChanged=true; if (return2) { chan[c.chan].inPorta=false; return 2; } break; } case DIV_CMD_C64_FINE_DUTY: chan[c.chan].duty=c.value; rWrite(c.chan*7+2,chan[c.chan].duty&0xff); rWrite(c.chan*7+3,(chan[c.chan].duty>>8) | (chan[c.chan].outVol << 4)); break; case DIV_CMD_WAVE: chan[c.chan].wave=c.value; rWrite(c.chan*7+4,(chan[c.chan].wave<<4)|0|(chan[c.chan].ring<<2)|(chan[c.chan].sync<<1)|(int)(chan[c.chan].active && chan[c.chan].gate)); chan[c.chan].freqChanged=true; break; case DIV_CMD_LEGATO: chan[c.chan].baseFreq=NOTE_FREQUENCY(c.value+((HACKY_LEGATO_MESS)?(chan[c.chan].std.arp.val):(0))); chan[c.chan].freqChanged=true; chan[c.chan].note=c.value; break; case DIV_CMD_PRE_PORTA: if (chan[c.chan].active && c.value2) { if (parent->song.resetMacroOnPorta || parent->song.preNoteNoEffect) { chan[c.chan].macroInit(parent->getIns(chan[c.chan].ins,DIV_INS_SID2)); chan[c.chan].keyOn=true; } } if (!chan[c.chan].inPorta && c.value && !parent->song.brokenPortaArp && chan[c.chan].std.arp.will && !NEW_ARP_STRAT) chan[c.chan].baseFreq=NOTE_FREQUENCY(chan[c.chan].note); chan[c.chan].inPorta=c.value; break; case DIV_CMD_GET_VOLMAX: return 15; break; case DIV_CMD_C64_FINE_CUTOFF: chan[c.chan].filtCut=c.value; updateFilter(c.chan); break; case DIV_CMD_C64_RESONANCE: if (c.value>255) c.value=255; chan[c.chan].filtRes=c.value; updateFilter(c.chan); break; case DIV_CMD_C64_FILTER_MODE: chan[c.chan].filtControl=c.value&7; updateFilter(c.chan); break; case DIV_CMD_C64_RESET_MASK: chan[c.chan].resetMask=c.value; break; case DIV_CMD_C64_FILTER_RESET: if (c.value&15) { DivInstrument* ins=parent->getIns(chan[c.chan].ins,DIV_INS_SID2); if (ins->c64.initFilter) { chan[c.chan].filtCut=ins->c64.cut; updateFilter(c.chan); } } chan[c.chan].resetFilter=c.value>>4; break; case DIV_CMD_C64_DUTY_RESET: if (c.value&15) { DivInstrument* ins=parent->getIns(chan[c.chan].ins,DIV_INS_SID2); chan[c.chan].duty=ins->c64.duty; rWrite(c.chan*7+2,chan[c.chan].duty&0xff); rWrite(c.chan*7+3,(chan[c.chan].duty>>8) | (chan[c.chan].outVol << 4)); } chan[c.chan].resetDuty=c.value>>4; break; case DIV_CMD_C64_EXTENDED: switch (c.value>>4) { case 0: chan[c.chan].attack=c.value&15; rWrite(c.chan*7+5,(chan[c.chan].attack<<4)|(chan[c.chan].decay)); break; case 1: chan[c.chan].decay=c.value&15; rWrite(c.chan*7+5,(chan[c.chan].attack<<4)|(chan[c.chan].decay)); break; case 2: chan[c.chan].sustain=c.value&15; rWrite(c.chan*7+6,(chan[c.chan].sustain<<4)|(chan[c.chan].release)); break; case 3: chan[c.chan].release=c.value&15; rWrite(c.chan*7+6,(chan[c.chan].sustain<<4)|(chan[c.chan].release)); break; case 4: chan[c.chan].ring=c.value; rWrite(c.chan*7+4,(chan[c.chan].wave<<4)|0|(chan[c.chan].ring<<2)|(chan[c.chan].sync<<1)|(int)(chan[c.chan].active && chan[c.chan].gate)); break; case 5: chan[c.chan].sync=c.value; rWrite(c.chan*7+4,(chan[c.chan].wave<<4)|0|(chan[c.chan].ring<<2)|(chan[c.chan].sync<<1)|(int)(chan[c.chan].active && chan[c.chan].gate)); break; case 6: chan[c.chan].filtControl = c.value; updateFilter(c.chan); break; case 7: chan[c.chan].mix_mode=(c.value & 3); rWrite(0x1f, (chan[0].mix_mode) | (chan[1].mix_mode << 2) | (chan[2].mix_mode << 4) | ((chan[2].freq >> 16) << 6)); break; case 8: chan[c.chan].noise_mode=(c.value & 3); chan[c.chan].freqChanged = true; rWrite(0x1e, (chan[0].noise_mode) | (chan[1].noise_mode << 2) | (chan[2].noise_mode << 4) | ((chan[0].freq >> 16) << 6) | ((chan[1].freq >> 16) << 7)); break; case 9: //phase reset chan[c.chan].test=true; rWrite(c.chan*7+4,(chan[c.chan].wave<<4)|(chan[c.chan].test << 3)|(chan[c.chan].ring<<2)|(chan[c.chan].sync<<1)|(int)(chan[c.chan].active && chan[c.chan].gate)); rWrite(c.chan*7+4,(chan[c.chan].wave<<4)|0|(chan[c.chan].ring<<2)|(chan[c.chan].sync<<1)|(int)(chan[c.chan].active && chan[c.chan].gate)); chan[c.chan].test = false; break; case 0xa: //envelope on/off chan[c.chan].gate=(c.value & 1); rWrite(c.chan*7+4,(chan[c.chan].wave<<4)|0|(chan[c.chan].ring<<2)|(chan[c.chan].sync<<1)|(int)(chan[c.chan].active && chan[c.chan].gate)); break; case 0xb: //filter on/off chan[c.chan].filter=(c.value & 1); updateFilter(c.chan); break; } break; case DIV_CMD_C64_PW_SLIDE: chan[c.chan].pw_slide = c.value * c.value2; break; case DIV_CMD_C64_CUTOFF_SLIDE: chan[c.chan].cutoff_slide = c.value * c.value2; break; case DIV_CMD_MACRO_OFF: chan[c.chan].std.mask(c.value,true); break; case DIV_CMD_MACRO_ON: chan[c.chan].std.mask(c.value,false); break; case DIV_CMD_MACRO_RESTART: chan[c.chan].std.restart(c.value); break; default: break; } return 1; } void DivPlatformSID2::muteChannel(int ch, bool mute) { isMuted[ch]=mute; sid2->set_is_muted(ch,mute); } void DivPlatformSID2::forceIns() { for (int i=0; i<3; i++) { chan[i].insChanged=true; if (chan[i].active) { chan[i].keyOn=true; chan[i].freqChanged=true; } updateFilter(i); } } void DivPlatformSID2::notifyInsChange(int ins) { for (int i=0; i<3; i++) { if (chan[i].ins==ins) { chan[i].insChanged=true; } } } void DivPlatformSID2::notifyInsDeletion(void* ins) { for (int i=0; i<3; i++) { chan[i].std.notifyInsDeletion((DivInstrument*)ins); } } void* DivPlatformSID2::getChanState(int ch) { return &chan[ch]; } DivMacroInt* DivPlatformSID2::getChanMacroInt(int ch) { return &chan[ch].std; } DivChannelModeHints DivPlatformSID2::getModeHints(int ch) { DivChannelModeHints ret; ret.count=1; ret.hint[0]=ICON_FA_BELL_SLASH_O; ret.type[0]=0; if (ch == 2 && (chan[ch].filtControl & 8)) { ret.type[0] = 7; } else if (!chan[ch].gate) { ret.type[0]=4; } return ret; } DivDispatchOscBuffer* DivPlatformSID2::getOscBuffer(int ch) { return oscBuf[ch]; } unsigned char* DivPlatformSID2::getRegisterPool() { return regPool; } int DivPlatformSID2::getRegisterPoolSize() { return 32; } bool DivPlatformSID2::getDCOffRequired() { return true; } bool DivPlatformSID2::getWantPreNote() { return true; } bool DivPlatformSID2::isVolGlobal() { return true; } float DivPlatformSID2::getPostAmp() { return 1.0f; } void DivPlatformSID2::reset() { while (!writes.empty()) writes.pop(); for (int i=0; i<3; i++) { chan[i]=DivPlatformSID2::Channel(); chan[i].std.setEngine(parent); fakeLow[i]=0; fakeBand[i]=0; chan[i].vol = 15; chan[i].filtControl = 7; chan[i].filtRes = 0; chan[i].filtCut = 4095; chan[i].noise_mode = 0; rWrite(0x3 + 7 * i,0xf0); chan[i].cutoff_slide = 0; chan[i].pw_slide = 0; } sid2->reset(); memset(regPool,0,32); chanOrder[0]=0; chanOrder[1]=1; chanOrder[2]=2; } void DivPlatformSID2::poke(unsigned int addr, unsigned short val) { rWrite(addr,val); } void DivPlatformSID2::poke(std::vector& wlist) { for (DivRegWrite& i: wlist) rWrite(i.addr,i.val); } void DivPlatformSID2::setFlags(const DivConfig& flags) { switch (flags.getInt("clockSel",0)) { case 0x0: // NTSC C64 chipClock=COLOR_NTSC*2.0/7.0; break; case 0x1: // PAL C64 chipClock=COLOR_PAL*2.0/9.0; break; case 0x2: // SSI 2001 default: chipClock=14318180.0/16.0; break; } CHECK_CUSTOM_CLOCK; rate=chipClock; for (int i=0; i<3; i++) { oscBuf[i]->rate=rate/16; } keyPriority=flags.getBool("keyPriority",true); // init fake filter table // taken from dSID double cutRatio=-2.0*3.14*(12500.0/256.0)/(double)oscBuf[0]->rate; for (int i=0; i<4095; i++) { double c=(double)i/16.0+0.2; c=1-exp(c*cutRatio); fakeCutTable[i]=c; } } int DivPlatformSID2::init(DivEngine* p, int channels, int sugRate, const DivConfig& flags) { parent=p; dumpWrites=false; skipRegisterWrites=false; needInitTables=true; writeOscBuf=0; for (int i=0; i<3; i++) { isMuted[i]=false; oscBuf[i]=new DivDispatchOscBuffer; } sid2=new SID2; sid2->set_chip_model(MOS8580_2); setFlags(flags); reset(); return 3; } void DivPlatformSID2::quit() { for (int i=0; i<3; i++) { delete oscBuf[i]; } if (sid2!=NULL) delete sid2; } DivPlatformSID2::~DivPlatformSID2() { }