/** * Furnace Tracker - multi-system chiptune tracker * Copyright (C) 2021-2024 tildearrow and contributors * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "sid3.h" #include "../engine.h" #include "IconsFontAwesome4.h" #include #include "../../ta-log.h" #define rWrite(a,v) if (!skipRegisterWrites) {writes.push(QueuedWrite(a,v)); if (dumpWrites) {addWrite(a,v);} } #define CHIP_FREQBASE 524288 #define CHIP_DIVIDER 1 const char* regCheatSheetSID3[]={ "FreqL0", "00", "FreqH0", "01", "PWL0", "02", "PWH0Vol", "03", "Control0", "04", "AtkDcy0", "05", "StnRis0", "06", "FreqL1", "07", "FreqH1", "08", "PWL1", "09", "PWH1Vol", "0A", "Control1", "0B", "AtkDcy1", "0C", "StnRis1", "0D", "FreqL2", "0E", "FreqH2", "0F", "PWL2", "10", "PWH2Vol", "11", "Control2", "12", "AtkDcy2", "13", "StnRis2", "14", "FCL0Ctrl", "15", "FCH0", "16", "FilterRes0", "17", "FCL1Ctrl", "18", "FCH1", "19", "FilterRes1", "1A", "FCL2Ctrl", "1B", "FCH2", "1C", "FilterRes2", "1D", "NoiModeFrMSB01", "1E", "WaveMixModeFrMSB2", "1F", NULL }; const char** DivPlatformSID3::getRegisterSheet() { return regCheatSheetSID3; } void DivPlatformSID3::acquire(short** buf, size_t len) { for (size_t i=0; irate) { DivSample* s=parent->getSample(chan[SID3_NUM_CHANNELS - 1].dacSample); if (s->samples<=0 || chan[SID3_NUM_CHANNELS - 1].dacPos>=s->samples) { chan[SID3_NUM_CHANNELS - 1].dacSample=-1; continue; } int dacData=s->data16[chan[SID3_NUM_CHANNELS - 1].dacPos] + 32767; chan[SID3_NUM_CHANNELS - 1].dacOut=CLAMP(dacData,0,65535); updateSample = true; sampleTick = 0; chan[SID3_NUM_CHANNELS - 1].dacPos++; if (s->isLoopable() && chan[SID3_NUM_CHANNELS - 1].dacPos>=(unsigned int)s->loopEnd) { chan[SID3_NUM_CHANNELS - 1].dacPos=s->loopStart; } else if (chan[SID3_NUM_CHANNELS - 1].dacPos>=s->samples) { chan[SID3_NUM_CHANNELS - 1].dacSample=-1; } chan[SID3_NUM_CHANNELS - 1].dacPeriod-=rate; } } sampleTick++; if(chan[SID3_NUM_CHANNELS - 1].pcm) { if(sampleTick == 2 && updateSample) { if (!isMuted[SID3_NUM_CHANNELS - 1]) { sid3_write(sid3, SID3_REGISTER_STREAMED_SAMPLE_HIGH + (SID3_NUM_CHANNELS - 1) * SID3_REGISTERS_PER_CHANNEL, chan[SID3_NUM_CHANNELS - 1].dacOut >> 8); regPool[SID3_REGISTER_STREAMED_SAMPLE_HIGH + (SID3_NUM_CHANNELS - 1) * SID3_REGISTERS_PER_CHANNEL]=chan[SID3_NUM_CHANNELS - 1].dacOut >> 8; } else { sid3_write(sid3, SID3_REGISTER_STREAMED_SAMPLE_HIGH + (SID3_NUM_CHANNELS - 1) * SID3_REGISTERS_PER_CHANNEL, 32768 >> 8); regPool[SID3_REGISTER_STREAMED_SAMPLE_HIGH + (SID3_NUM_CHANNELS - 1) * SID3_REGISTERS_PER_CHANNEL]=32768 >> 8; } } else if(sampleTick == 3 && updateSample) { if (!isMuted[SID3_NUM_CHANNELS - 1]) { sid3_write(sid3, SID3_REGISTER_STREAMED_SAMPLE_LOW + (SID3_NUM_CHANNELS - 1) * SID3_REGISTERS_PER_CHANNEL, chan[SID3_NUM_CHANNELS - 1].dacOut & 0xff); regPool[SID3_REGISTER_STREAMED_SAMPLE_LOW + (SID3_NUM_CHANNELS - 1) * SID3_REGISTERS_PER_CHANNEL]=chan[SID3_NUM_CHANNELS - 1].dacOut & 0xff; } else { sid3_write(sid3, SID3_REGISTER_STREAMED_SAMPLE_LOW + (SID3_NUM_CHANNELS - 1) * SID3_REGISTERS_PER_CHANNEL, 32768 & 0xff); regPool[SID3_REGISTER_STREAMED_SAMPLE_LOW + (SID3_NUM_CHANNELS - 1) * SID3_REGISTERS_PER_CHANNEL]=32768 & 0xff; } sampleTick = 0; updateSample = false; } else { if (!writes.empty()) { QueuedWrite w=writes.front(); sid3_write(sid3, w.addr, w.val); regPool[w.addr % SID3_NUM_REGISTERS]=w.val; writes.pop(); } } } else { if (!writes.empty()) { QueuedWrite w=writes.front(); sid3_write(sid3, w.addr, w.val); regPool[w.addr % SID3_NUM_REGISTERS]=w.val; writes.pop(); } } sid3_clock(sid3); buf[0][i]=sid3->output_l; buf[1][i]=sid3->output_r; if (++writeOscBuf>=8) { writeOscBuf=0; for(int j = 0; j < SID3_NUM_CHANNELS - 1; j++) { oscBuf[j]->data[oscBuf[j]->needle++] = sid3->muted[j] ? 0 : (sid3->channel_output[j] / 4); } oscBuf[SID3_NUM_CHANNELS - 1]->data[oscBuf[SID3_NUM_CHANNELS - 1]->needle++] = sid3->muted[SID3_NUM_CHANNELS - 1] ? 0 : (sid3->wave_channel_output / 4); } } } void DivPlatformSID3::updateFlags(int channel, bool gate) { rWrite(SID3_REGISTER_FLAGS + channel * SID3_REGISTERS_PER_CHANNEL, (gate ? 1 : 0) | (chan[channel].ring ? SID3_CHAN_ENABLE_RING_MOD : 0) | (chan[channel].sync ? SID3_CHAN_ENABLE_HARD_SYNC : 0) | (chan[channel].phase ? SID3_CHAN_ENABLE_PHASE_MOD : 0) | (chan[channel].phaseReset ? SID3_CHAN_PHASE_RESET : 0) | (chan[channel].envReset ? SID3_CHAN_ENV_RESET : 0) | (chan[channel].phaseResetNoise ? SID3_CHAN_NOISE_PHASE_RESET : 0) | (chan[channel].oneBitNoise ? SID3_CHAN_1_BIT_NOISE : 0)); } void DivPlatformSID3::updateFilter(int channel, int filter) { rWrite(SID3_REGISTER_FILT_MODE + filter * SID3_REGISTERS_PER_FILTER + channel*SID3_REGISTERS_PER_CHANNEL, chan[channel].filt[filter].mode | (chan[channel].filt[filter].enabled ? SID3_FILTER_ENABLE : 0)); rWrite(SID3_REGISTER_FILT_CUTOFF_HIGH + filter * SID3_REGISTERS_PER_FILTER + channel*SID3_REGISTERS_PER_CHANNEL, chan[channel].filt[filter].cutoff >> 8); rWrite(SID3_REGISTER_FILT_CUTOFF_LOW + filter * SID3_REGISTERS_PER_FILTER + channel*SID3_REGISTERS_PER_CHANNEL, chan[channel].filt[filter].cutoff & 0xff); rWrite(SID3_REGISTER_FILT_RESONANCE + filter * SID3_REGISTERS_PER_FILTER + channel*SID3_REGISTERS_PER_CHANNEL, chan[channel].filt[filter].resonance); rWrite(SID3_REGISTER_FILT_DISTORTION + filter * SID3_REGISTERS_PER_FILTER + channel*SID3_REGISTERS_PER_CHANNEL, chan[channel].filt[filter].distortion_level); rWrite(SID3_REGISTER_FILT_CONNECTION + filter * SID3_REGISTERS_PER_FILTER + channel*SID3_REGISTERS_PER_CHANNEL, chan[channel].filt[filter].filter_matrix); rWrite(SID3_REGISTER_FILT_OUTPUT_VOLUME + filter * SID3_REGISTERS_PER_FILTER + channel*SID3_REGISTERS_PER_CHANNEL, chan[channel].filt[filter].output_volume); } void DivPlatformSID3::updateFreq(int channel) { rWrite(SID3_REGISTER_FREQ_HIGH + channel*SID3_REGISTERS_PER_CHANNEL,(chan[channel].freq >> 16) & 0xff); rWrite(SID3_REGISTER_FREQ_MID + channel*SID3_REGISTERS_PER_CHANNEL,(chan[channel].freq >> 8) & 0xff); rWrite(SID3_REGISTER_FREQ_LOW + channel*SID3_REGISTERS_PER_CHANNEL,chan[channel].freq & 0xff); } void DivPlatformSID3::updateNoiseFreq(int channel) { rWrite(SID3_REGISTER_NOISE_FREQ_HIGH + channel*SID3_REGISTERS_PER_CHANNEL,(chan[channel].noiseFreq >> 16) & 0xff); rWrite(SID3_REGISTER_NOISE_FREQ_MID + channel*SID3_REGISTERS_PER_CHANNEL,(chan[channel].noiseFreq >> 8) & 0xff); rWrite(SID3_REGISTER_NOISE_FREQ_LOW + channel*SID3_REGISTERS_PER_CHANNEL,chan[channel].noiseFreq & 0xff); } void DivPlatformSID3::updateNoiseLFSRMask(int channel) { rWrite(SID3_REGISTER_NOISE_LFSR_HIGHEST + channel*SID3_REGISTERS_PER_CHANNEL,(chan[channel].noiseLFSRMask >> 24) & 0xff); rWrite(SID3_REGISTER_NOISE_LFSR_HIGH + channel*SID3_REGISTERS_PER_CHANNEL,(chan[channel].noiseLFSRMask >> 16) & 0xff); rWrite(SID3_REGISTER_NOISE_LFSR_MID + channel*SID3_REGISTERS_PER_CHANNEL,(chan[channel].noiseLFSRMask >> 8) & 0xff); rWrite(SID3_REGISTER_NOISE_LFSR_LOW + channel*SID3_REGISTERS_PER_CHANNEL,chan[channel].noiseLFSRMask & 0xff); } void DivPlatformSID3::updateDuty(int channel) { rWrite(SID3_REGISTER_PW_HIGH + channel*SID3_REGISTERS_PER_CHANNEL,(chan[channel].duty >> 8) & 0xff); rWrite(SID3_REGISTER_PW_LOW + channel*SID3_REGISTERS_PER_CHANNEL,chan[channel].duty & 0xff); } void DivPlatformSID3::updateEnvelope(int channel) { rWrite(SID3_REGISTER_ADSR_A + channel * SID3_REGISTERS_PER_CHANNEL, chan[channel].attack); //attack rWrite(SID3_REGISTER_ADSR_D + channel * SID3_REGISTERS_PER_CHANNEL, chan[channel].decay); //decay rWrite(SID3_REGISTER_ADSR_S + channel * SID3_REGISTERS_PER_CHANNEL, chan[channel].sustain); //sustain rWrite(SID3_REGISTER_ADSR_SR + channel * SID3_REGISTERS_PER_CHANNEL, chan[channel].sr); //sr rWrite(SID3_REGISTER_ADSR_R + channel * SID3_REGISTERS_PER_CHANNEL, chan[channel].release); //release } void DivPlatformSID3::updatePanning(int channel) { rWrite(SID3_REGISTER_PAN_LEFT + channel*SID3_REGISTERS_PER_CHANNEL,chan[channel].panLeft); rWrite(SID3_REGISTER_PAN_RIGHT + channel*SID3_REGISTERS_PER_CHANNEL,chan[channel].panRight); } void DivPlatformSID3::updateWave() { int channel = SID3_NUM_CHANNELS - 1; for(int i = 0; i < 256; i++) { uint8_t val = ws.output[i & 255]; rWrite(SID3_REGISTER_PW_HIGH + channel*SID3_REGISTERS_PER_CHANNEL,i); rWrite(SID3_REGISTER_PW_LOW + channel*SID3_REGISTERS_PER_CHANNEL,val); } } void DivPlatformSID3::tick(bool sysTick) { bool doUpdateWave = false; for (int i=0; i= 0) { if(chan[i].phase_reset_counter == 0) { chan[i].phaseReset = true; flagsChanged = true; } chan[i].phase_reset_counter--; } if(chan[i].noise_phase_reset_counter >= 0) { if(chan[i].noise_phase_reset_counter == 0) { chan[i].phaseResetNoise = true; flagsChanged = true; } chan[i].noise_phase_reset_counter--; } if(chan[i].envelope_reset_counter >= 0) { if(chan[i].envelope_reset_counter == 0) { chan[i].envReset = true; flagsChanged = true; } chan[i].envelope_reset_counter--; } } if (chan[i].std.vol.had) { chan[i].outVol=VOL_SCALE_LINEAR(chan[i].vol&255,MIN(255,chan[i].std.vol.val),255); rWrite(13 + i * SID3_REGISTERS_PER_CHANNEL, chan[i].outVol); } if (NEW_ARP_STRAT) { chan[i].handleArp(); } else if (chan[i].std.arp.had) { if (!chan[i].inPorta) { chan[i].baseFreq=NOTE_FREQUENCY(parent->calcArp(chan[i].note,chan[i].std.arp.val)); } chan[i].freqChanged=true; } if (chan[i].std.pitch.had) { if (chan[i].std.pitch.mode) { chan[i].pitch2+=chan[i].std.pitch.val; CLAMP_VAR(chan[i].pitch2,-65535,65535); } else { chan[i].pitch2=chan[i].std.pitch.val; } chan[i].freqChanged=true; } if (chan[i].std.duty.had) { DivInstrument* ins=parent->getIns(chan[i].ins,DIV_INS_SID3); if (ins->c64.dutyIsAbs) { chan[i].duty=chan[i].std.duty.val; } else { chan[i].duty-=chan[i].std.duty.val; } chan[i].duty&=65535; updateDuty(i); } if (chan[i].std.wave.had) { DivInstrument* ins=parent->getIns(chan[i].ins,DIV_INS_SID3); if(i == SID3_NUM_CHANNELS - 1 && ins->sid3.doWavetable) { chan[i].wavetable = chan[i].std.wave.val & 0xff; ws.changeWave1(chan[i].wavetable, true); doUpdateWave = true; } else { chan[i].wave = chan[i].std.wave.val & 0xff; rWrite(SID3_REGISTER_WAVEFORM + i * SID3_REGISTERS_PER_CHANNEL, chan[i].wave); } } if (chan[i].std.alg.had) { //special wave chan[i].special_wave = chan[i].std.alg.val & 0xff; rWrite(SID3_REGISTER_SPECIAL_WAVE + i * SID3_REGISTERS_PER_CHANNEL, chan[i].special_wave); } if (chan[i].std.op[3].am.had) { //noise arpeggio //chan[i].handleArpNoise(0); chan[i].noiseFreqChanged = true; } chan[i].handleArpNoise(0); chan[i].handlePitchNoise(); if (chan[i].std.op[0].ar.had) { //noise pitch //chan[i].handlePitchNoise(); chan[i].noiseFreqChanged = true; } if (chan[i].std.panL.had) { panChanged = true; chan[i].panLeft = chan[i].std.panL.val & 0xff; } if (chan[i].std.panR.had) { panChanged = true; chan[i].panRight = chan[i].std.panR.val & 0xff; } if (chan[i].std.op[2].ar.had) { //channel signal inversion chan[i].phaseInv = chan[i].std.op[2].ar.val & 3; rWrite(SID3_REGISTER_PHASE_INVERSION + i * SID3_REGISTERS_PER_CHANNEL, chan[i].phaseInv); } if (chan[i].std.op[0].am.had) { //key on/off chan[i].gate = chan[i].std.op[0].am.val & 1; flagsChanged = true; } if (chan[i].std.ex1.had) { //ring mod, hard sync, phase mod chan[i].phase = chan[i].std.ex1.val & 1; chan[i].sync = chan[i].std.ex1.val & 2; chan[i].ring = chan[i].std.ex1.val & 4; flagsChanged = true; } if (chan[i].std.ams.had) { //hard sync source chan[i].syncSrc = chan[i].std.ams.val & 0xff; rWrite(SID3_REGISTER_SYNC_SRC + i * SID3_REGISTERS_PER_CHANNEL, chan[i].syncSrc); } if (chan[i].std.fms.had) { //ring mod source chan[i].ringSrc = chan[i].std.fms.val & 0xff; rWrite(SID3_REGISTER_RING_MOD_SRC + i * SID3_REGISTERS_PER_CHANNEL, chan[i].ringSrc); } if (chan[i].std.fb.had) { //phase mod source chan[i].phaseSrc = chan[i].std.fb.val & 0xff; rWrite(SID3_REGISTER_PHASE_MOD_SRC + i * SID3_REGISTERS_PER_CHANNEL, chan[i].phaseSrc); } if (chan[i].std.op[3].ar.had) { //feedback chan[i].feedback = chan[i].std.op[3].ar.val & 0xff; rWrite(SID3_REGISTER_FEEDBACK + i * SID3_REGISTERS_PER_CHANNEL, chan[i].feedback); } if (chan[i].std.phaseReset.had) { chan[i].phaseReset = chan[i].std.phaseReset.val & 1; if(chan[i].phaseReset) { flagsChanged = true; } if (chan[i].pcm) { if (chan[i].active && chan[i].dacSample>=0 && chan[i].dacSamplesong.sampleLen) { chan[i].dacPos=0; chan[i].dacPeriod=0; } } } if (chan[i].std.op[1].am.had) { //noise phase reset chan[i].phaseResetNoise = chan[i].std.op[1].am.val & 1; if(chan[i].phaseResetNoise) { flagsChanged = true; } } if (chan[i].std.op[2].am.had) { //envelope reset chan[i].envReset = chan[i].std.op[2].am.val & 1; if(chan[i].envReset) { flagsChanged = true; } } if (chan[i].std.ex2.had) { //attack chan[i].attack = chan[i].std.ex2.val & 0xff; envChanged = true; } if (chan[i].std.ex3.had) { //decay chan[i].decay = chan[i].std.ex3.val & 0xff; envChanged = true; } if (chan[i].std.ex4.had) { //sustain chan[i].sustain = chan[i].std.ex4.val & 0xff; envChanged = true; } if (chan[i].std.ex5.had) { //sustain rate chan[i].sr = chan[i].std.ex5.val & 0xff; envChanged = true; } if (chan[i].std.ex6.had) { //release chan[i].release = chan[i].std.ex6.val & 0xff; envChanged = true; } if (chan[i].std.ex7.had) { //noise LFSR feedback bits chan[i].noiseLFSRMask = chan[i].std.ex7.val & 0x3fffffff; updateNoiseLFSRMask(i); } if (chan[i].std.op[1].ar.had) { //1-bit noise / PCM mode for wavetable chan if(i == SID3_NUM_CHANNELS - 1) //wave chan { rWrite(SID3_REGISTER_WAVEFORM + i * SID3_REGISTERS_PER_CHANNEL, chan[i].std.op[1].ar.val & 1); } else { if((uint32_t)chan[i].oneBitNoise != (chan[i].std.op[1].ar.val & 1)) { chan[i].oneBitNoise = chan[i].std.op[1].ar.val & 1; flagsChanged = true; } } } if (chan[i].std.ex8.had) { //wave mix mode chan[i].mix_mode = chan[i].std.ex8.val & 0xff; rWrite(SID3_REGISTER_MIXMODE + i * SID3_REGISTERS_PER_CHANNEL, chan[i].mix_mode); //mixmode } for(int j = 0; j < SID3_NUM_FILTERS; j++) //filter macros { DivMacroInt::IntOp* op = &chan[i].std.op[j]; DivInstrument* ins=parent->getIns(chan[i].ins,DIV_INS_SID3); DivPlatformSID3::Channel::Filter* ch_filt = &chan[i].filt[j]; DivInstrumentSID3::Filter* ins_filt = &ins->sid3.filt[j]; bool doUpdateFilter = false; if (op->d2r.had) { //cutoff if (ins_filt->absoluteCutoff) { ch_filt->cutoff=op->d2r.val; } else { ch_filt->cutoff+=op->d2r.val; } ch_filt->cutoff&=65535; doUpdateFilter = true; } if (op->dam.had) { //resonance ch_filt->resonance=op->dam.val & 0xff; doUpdateFilter = true; } if (op->dr.had) { //filter toggle ch_filt->enabled=op->dr.val & 1; doUpdateFilter = true; } if (op->dt2.had) { //distortion level ch_filt->distortion_level=op->dt2.val & 0xff; doUpdateFilter = true; } if (op->dt.had) { //output volume ch_filt->output_volume=op->dt.val & 0xff; doUpdateFilter = true; } if (op->dvb.had) { //connect to channel input ch_filt->mode &= ~SID3_FILTER_CHANNEL_INPUT; ch_filt->mode |= (op->dvb.val & 1) ? SID3_FILTER_CHANNEL_INPUT : 0; doUpdateFilter = true; } if (op->egt.had) { //connect to channel output ch_filt->mode &= ~SID3_FILTER_OUTPUT; ch_filt->mode |= (op->egt.val & 1) ? SID3_FILTER_OUTPUT : 0; doUpdateFilter = true; } if (op->ksl.had) { //connection matrix row ch_filt->filter_matrix=op->ksl.val & 0xf; doUpdateFilter = true; } if (op->ksr.had) { //filter mode ch_filt->mode &= ~(SID3_FILTER_LP | SID3_FILTER_HP | SID3_FILTER_BP); if(op->ksr.val & 1) ch_filt->mode |= SID3_FILTER_LP; if(op->ksr.val & 2) ch_filt->mode |= SID3_FILTER_BP; if(op->ksr.val & 4) ch_filt->mode |= SID3_FILTER_HP; doUpdateFilter = true; } if(doUpdateFilter) { updateFilter(i, j); } } if(panChanged) { updatePanning(i); } if(flagsChanged) { updateFlags(i, chan[i].gate); chan[i].phaseReset = false; chan[i].phaseResetNoise = false; chan[i].envReset = false; } if(envChanged) { updateEnvelope(i); } if (chan[i].freqChanged || chan[i].keyOn || chan[i].keyOff) { chan[i].freq=parent->calcFreq(chan[i].baseFreq,chan[i].pitch,chan[i].fixedArp?chan[i].baseNoteOverride:chan[i].arpOff,chan[i].fixedArp,false,2,chan[i].pitch2,chipClock,CHIP_FREQBASE * 64); if (chan[i].keyOn) { DivInstrument* ins=parent->getIns(chan[i].ins,DIV_INS_SID3); if(i == SID3_NUM_CHANNELS - 1) { if(ins->sid3.doWavetable && !ins->amiga.useSample) { rWrite(SID3_REGISTER_WAVEFORM + i * SID3_REGISTERS_PER_CHANNEL, 0); //wave channel mode } else { rWrite(SID3_REGISTER_WAVEFORM + i * SID3_REGISTERS_PER_CHANNEL, 1); //wave channel mode } } else { rWrite(SID3_REGISTER_WAVEFORM + i * SID3_REGISTERS_PER_CHANNEL, chan[i].wave); } rWrite(SID3_REGISTER_SPECIAL_WAVE + i * SID3_REGISTERS_PER_CHANNEL, chan[i].special_wave); //special wave rWrite(SID3_REGISTER_ADSR_VOL + i * SID3_REGISTERS_PER_CHANNEL, chan[i].outVol); //set volume rWrite(SID3_REGISTER_MIXMODE + i * SID3_REGISTERS_PER_CHANNEL, chan[i].mix_mode); //mixmode rWrite(SID3_REGISTER_RING_MOD_SRC + i * SID3_REGISTERS_PER_CHANNEL, chan[i].ringSrc); //ring mod source rWrite(SID3_REGISTER_SYNC_SRC + i * SID3_REGISTERS_PER_CHANNEL, chan[i].syncSrc); //hard sync source rWrite(SID3_REGISTER_PHASE_MOD_SRC + i * SID3_REGISTERS_PER_CHANNEL, chan[i].phaseSrc); //phase mod source rWrite(SID3_REGISTER_PHASE_INVERSION + i * SID3_REGISTERS_PER_CHANNEL, chan[i].phaseInv); //signal inversion rWrite(SID3_REGISTER_FEEDBACK + i * SID3_REGISTERS_PER_CHANNEL, chan[i].feedback); //feedback updateEnvelope(i); updateFlags(i, false); //gate off TODO: make it properly? updateFlags(i, true); //gate on chan[i].gate = true; } if (chan[i].keyOff) { updateFlags(i, false); //gate off chan[i].gate = false; } if (chan[i].freq<0) chan[i].freq=0; if (chan[i].freq>0xffffff) chan[i].freq=0xffffff; updateFreq(i); if (chan[i].pcm && i == SID3_NUM_CHANNELS - 1) { double off=1.0; if (chan[i].dacSample>=0 && chan[i].dacSamplesong.sampleLen) { DivSample* s=parent->getSample(chan[i].dacSample); if (s->centerRate<1) { off=1.0; } else { off=(double)s->centerRate/8363.0; } } chan[i].dacRate=chan[i].freq*(off / 32.0); } chan[i].noiseFreqChanged = true; if(chan[i].independentNoiseFreq) { chan[i].noise_pitch2 = chan[i].pitch2; } if (chan[i].keyOn) chan[i].keyOn=false; if (chan[i].keyOff) chan[i].keyOff=false; chan[i].freqChanged=false; } if(chan[i].noiseFreqChanged) { if(chan[i].independentNoiseFreq) { chan[i].noiseFreq=parent->calcFreq(chan[i].baseFreq,chan[i].pitch,chan[i].noise_fixedArp?chan[i].noise_baseNoteOverride:chan[i].noise_arpOff,chan[i].noise_fixedArp,false,2,chan[i].noise_pitch2,chipClock,CHIP_FREQBASE * 64); if (chan[i].noiseFreq<0) chan[i].noiseFreq=0; if (chan[i].noiseFreq>0xffffff) chan[i].noiseFreq=0xffffff; } else { chan[i].noiseFreq = chan[i].freq; } updateNoiseFreq(i); chan[i].noiseFreqChanged = false; } } if (chan[SID3_NUM_CHANNELS - 1].active && !chan[SID3_NUM_CHANNELS - 1].pcm) { if (ws.tick()) { doUpdateWave = true; } } if(doUpdateWave) { updateWave(); doUpdateWave = false; } } int DivPlatformSID3::dispatch(DivCommand c) { if (c.chan>SID3_NUM_CHANNELS - 1) return 0; bool updEnv = false; DivInstrument* ins=parent->getIns(chan[c.chan].ins,DIV_INS_SID3); int filter = 0; switch (c.cmd) { case DIV_CMD_NOTE_ON: { DivInstrument* ins=parent->getIns(chan[c.chan].ins,DIV_INS_SID3); if (c.value!=DIV_NOTE_NULL) { chan[c.chan].baseFreq=NOTE_FREQUENCY(c.value); chan[c.chan].freqChanged=true; chan[c.chan].note=c.value; } chan[c.chan].active=true; chan[c.chan].keyOn=true; if (ins->amiga.useSample) { chan[c.chan].pcm=true; } else { chan[c.chan].pcm=false; } if (chan[c.chan].pcm && c.chan == SID3_NUM_CHANNELS - 1) { if (ins->amiga.useSample) { if (skipRegisterWrites) break; if (c.value!=DIV_NOTE_NULL) { chan[c.chan].dacSample=ins->amiga.getSample(c.value); chan[c.chan].sampleNote=c.value; c.value=ins->amiga.getFreq(c.value); chan[c.chan].sampleNoteDelta=c.value-chan[c.chan].sampleNote; } else if (chan[c.chan].sampleNote!=DIV_NOTE_NULL) { chan[c.chan].dacSample=ins->amiga.getSample(chan[c.chan].sampleNote); c.value=ins->amiga.getFreq(chan[c.chan].sampleNote); } if (chan[c.chan].dacSample<0 || chan[c.chan].dacSample>=parent->song.sampleLen) { chan[c.chan].dacSample=-1; break; } chan[c.chan].dacPos=0; chan[c.chan].dacPeriod=0; if (c.value!=DIV_NOTE_NULL) { chan[c.chan].baseFreq=NOTE_PERIODIC(c.value); chan[c.chan].freqChanged=true; chan[c.chan].note=c.value; } chan[c.chan].active=true; chan[c.chan].macroInit(ins); if (!parent->song.brokenOutVol && !chan[c.chan].std.vol.will) { chan[c.chan].outVol=chan[c.chan].vol; } //chan[c.chan].keyOn=true; } } if (chan[c.chan].insChanged) { chan[c.chan].wave = (ins->c64.triOn ? SID3_WAVE_TRIANGLE : 0) | (ins->c64.sawOn ? SID3_WAVE_SAW : 0) | (ins->c64.pulseOn ? SID3_WAVE_PULSE : 0) | (ins->c64.noiseOn ? SID3_WAVE_NOISE : 0) | (ins->sid3.specialWaveOn ? SID3_WAVE_SPECIAL : 0); //waveform chan[c.chan].special_wave = ins->sid3.special_wave; //special wave chan[c.chan].attack=ins->c64.a; chan[c.chan].decay=ins->c64.d; chan[c.chan].sustain=ins->c64.s; chan[c.chan].sr=ins->sid3.sr; chan[c.chan].release=ins->c64.r; if(ins->c64.resetDuty) { chan[c.chan].duty=ins->c64.duty; updateDuty(c.chan); } chan[c.chan].sync = ins->c64.oscSync; chan[c.chan].ring = ins->c64.ringMod; chan[c.chan].phase = ins->sid3.phase_mod; chan[c.chan].oneBitNoise = ins->sid3.oneBitNoise; chan[c.chan].mix_mode = ins->sid2.mixMode; chan[c.chan].ringSrc = ins->sid3.ring_mod_source; chan[c.chan].syncSrc = ins->sid3.sync_source; chan[c.chan].phaseSrc = ins->sid3.phase_mod_source; chan[c.chan].independentNoiseFreq = ins->sid3.separateNoisePitch; chan[c.chan].phaseInv = ins->sid3.phaseInv; chan[c.chan].feedback = ins->sid3.feedback; for(int j = 0; j < SID3_NUM_FILTERS; j++) { if(ins->sid3.filt[j].init) { chan[c.chan].filt[j].cutoff = ins->sid3.filt[j].cutoff; chan[c.chan].filt[j].resonance = ins->sid3.filt[j].resonance; chan[c.chan].filt[j].distortion_level = ins->sid3.filt[j].distortion_level; chan[c.chan].filt[j].enabled = ins->sid3.filt[j].enabled; chan[c.chan].filt[j].filter_matrix = ins->sid3.filt[j].filter_matrix; chan[c.chan].filt[j].mode = ins->sid3.filt[j].mode; chan[c.chan].filt[j].output_volume = ins->sid3.filt[j].output_volume; updateFilter(c.chan, j); } } if(c.chan == SID3_NUM_CHANNELS - 1) { if(!chan[c.chan].pcm) { ws.changeWave1(chan[c.chan].wavetable, false); ws.init(ins,256,255,chan[c.chan].insChanged); } } } if (chan[c.chan].insChanged) { chan[c.chan].insChanged=false; } chan[c.chan].macroInit(ins); break; } case DIV_CMD_NOTE_OFF: chan[c.chan].active=false; chan[c.chan].keyOff=true; chan[c.chan].keyOn=false; //chan[c.chan].macroInit(NULL); break; case DIV_CMD_NOTE_OFF_ENV: chan[c.chan].active=false; chan[c.chan].keyOff=true; chan[c.chan].keyOn=false; chan[c.chan].std.release(); break; case DIV_CMD_ENV_RELEASE: chan[c.chan].std.release(); break; case DIV_CMD_INSTRUMENT: if (chan[c.chan].ins!=c.value || c.value2==1) { chan[c.chan].insChanged=true; chan[c.chan].ins=c.value; } break; case DIV_CMD_VOLUME: if (chan[c.chan].vol!=c.value) { chan[c.chan].vol=c.value; if (!chan[c.chan].std.vol.has) { chan[c.chan].outVol=c.value; chan[c.chan].vol=chan[c.chan].outVol; rWrite(c.chan*7+3,(chan[c.chan].duty>>8) | (chan[c.chan].vol << 4)); } } break; case DIV_CMD_GET_VOLUME: if (chan[c.chan].std.vol.has) { return chan[c.chan].vol; } return chan[c.chan].outVol; break; case DIV_CMD_PITCH: chan[c.chan].pitch=c.value; chan[c.chan].freqChanged=true; break; case DIV_CMD_NOTE_PORTA: { int destFreq=NOTE_FREQUENCY(c.value2); bool return2=false; if (destFreq>chan[c.chan].baseFreq) { chan[c.chan].baseFreq+=c.value; if (chan[c.chan].baseFreq>=destFreq) { chan[c.chan].baseFreq=destFreq; return2=true; } } else { chan[c.chan].baseFreq-=c.value; if (chan[c.chan].baseFreq<=destFreq) { chan[c.chan].baseFreq=destFreq; return2=true; } } chan[c.chan].freqChanged=true; if (return2) { chan[c.chan].inPorta=false; return 2; } break; } case DIV_CMD_LEGATO: chan[c.chan].baseFreq=NOTE_FREQUENCY(c.value+((HACKY_LEGATO_MESS)?(chan[c.chan].std.arp.val):(0))); chan[c.chan].freqChanged=true; chan[c.chan].note=c.value; break; case DIV_CMD_PRE_PORTA: if (chan[c.chan].active && c.value2) { if (parent->song.resetMacroOnPorta || parent->song.preNoteNoEffect) { chan[c.chan].macroInit(parent->getIns(chan[c.chan].ins,DIV_INS_SID3)); chan[c.chan].keyOn=true; } } if (!chan[c.chan].inPorta && c.value && !parent->song.brokenPortaArp && chan[c.chan].std.arp.will && !NEW_ARP_STRAT) chan[c.chan].baseFreq=NOTE_FREQUENCY(chan[c.chan].note); chan[c.chan].inPorta=c.value; break; case DIV_CMD_PANNING: { bool updPan = false; if (!chan[c.chan].std.panL.has) { chan[c.chan].panLeft = c.value; updPan = true; } if (!chan[c.chan].std.panR.has) { chan[c.chan].panRight = c.value2; updPan = true; } if(updPan) { updatePanning(c.chan); } break; } case DIV_CMD_GET_VOLMAX: return SID3_MAX_VOL; break; case DIV_CMD_WAVE: if(c.chan == SID3_NUM_CHANNELS - 1 && ins->sid3.doWavetable) { chan[c.chan].wavetable = c.value & 0xff; ws.changeWave1(chan[c.chan].wave); } else { chan[c.chan].wave = c.value & 0xff; rWrite(SID3_REGISTER_WAVEFORM + c.chan * SID3_REGISTERS_PER_CHANNEL, chan[c.chan].wave); } break; case DIV_CMD_SID3_SPECIAL_WAVE: chan[c.chan].special_wave = c.value % SID3_NUM_SPECIAL_WAVES; rWrite(SID3_REGISTER_SPECIAL_WAVE + c.chan * SID3_REGISTERS_PER_CHANNEL, chan[c.chan].special_wave); break; case DIV_CMD_C64_EXTENDED: chan[c.chan].ring = c.value & 1; chan[c.chan].sync = c.value & 2; chan[c.chan].phase = c.value & 4; updateFlags(c.chan, chan[c.chan].gate); break; case DIV_CMD_C64_DUTY_RESET: if (c.value&15) { DivInstrument* ins=parent->getIns(chan[c.chan].ins,DIV_INS_SID3); chan[c.chan].duty=ins->c64.duty; updateDuty(c.chan); } chan[c.chan].resetDuty=c.value>>4; break; case DIV_CMD_SID3_RING_MOD_SRC: chan[c.chan].ringSrc = c.value % (SID3_NUM_CHANNELS + 1); rWrite(SID3_REGISTER_RING_MOD_SRC + c.chan * SID3_REGISTERS_PER_CHANNEL, chan[c.chan].ringSrc); break; case DIV_CMD_SID3_HARD_SYNC_SRC: chan[c.chan].syncSrc = c.value % SID3_NUM_CHANNELS; rWrite(SID3_REGISTER_SYNC_SRC + c.chan * SID3_REGISTERS_PER_CHANNEL, chan[c.chan].syncSrc); break; case DIV_CMD_SID3_PHASE_MOD_SRC: chan[c.chan].phaseSrc = c.value % SID3_NUM_CHANNELS; rWrite(SID3_REGISTER_PHASE_MOD_SRC + c.chan * SID3_REGISTERS_PER_CHANNEL, chan[c.chan].phaseSrc); break; case DIV_CMD_FM_AR: chan[c.chan].attack = c.value & 0xff; updEnv = true; break; case DIV_CMD_FM_DR: chan[c.chan].decay = c.value & 0xff; updEnv = true; break; case DIV_CMD_FM_SL: chan[c.chan].sustain = c.value & 0xff; updEnv = true; break; case DIV_CMD_FM_D2R: chan[c.chan].sr = c.value & 0xff; updEnv = true; break; case DIV_CMD_FM_RR: chan[c.chan].release = c.value & 0xff; updEnv = true; break; case DIV_CMD_SID3_WAVE_MIX: chan[c.chan].mix_mode = c.value % 5; rWrite(SID3_REGISTER_MIXMODE + c.chan * SID3_REGISTERS_PER_CHANNEL, chan[c.chan].mix_mode); break; case DIV_CMD_SID3_LFSR_FEEDBACK_BITS: chan[c.chan].noiseLFSRMask &= ~(0xffU << (8 * c.value2)); chan[c.chan].noiseLFSRMask |= ((c.value & (c.value2 == 3 ? 0x3f : 0xff)) << (8 * c.value2)); updateNoiseLFSRMask(c.chan); break; case DIV_CMD_SID3_1_BIT_NOISE: if(c.chan == SID3_NUM_CHANNELS - 1) //wave chan { rWrite(SID3_REGISTER_WAVEFORM + c.chan * SID3_REGISTERS_PER_CHANNEL, c.value & 1); //PCM mode } else { if((uint32_t)chan[c.chan].oneBitNoise != (c.value & 1)) { chan[c.chan].oneBitNoise = c.value & 1; updateFlags(c.chan, chan[c.chan].gate); } } break; case DIV_CMD_C64_FINE_DUTY: chan[c.chan].duty = (c.value & 0xfff) << 4; updateDuty(c.chan); break; case DIV_CMD_FM_FB: chan[c.chan].feedback = c.value & 0xff; rWrite(SID3_REGISTER_FEEDBACK + c.chan * SID3_REGISTERS_PER_CHANNEL, chan[c.chan].feedback); break; case DIV_CMD_SID3_CHANNEL_INVERSION: chan[c.chan].phaseInv = c.value & 3; rWrite(SID3_REGISTER_PHASE_INVERSION + c.chan * SID3_REGISTERS_PER_CHANNEL, chan[c.chan].phaseInv); break; case DIV_CMD_C64_FINE_CUTOFF: chan[c.chan].filt[c.value2].cutoff = (c.value & 0xfff) << 4; updateFilter(c.chan, c.value2); break; case DIV_CMD_C64_RESONANCE: chan[c.chan].filt[c.value2].resonance = c.value & 0xff; updateFilter(c.chan, c.value2); break; case DIV_CMD_SID3_FILTER_OUTPUT_VOLUME: chan[c.chan].filt[c.value2].output_volume = c.value & 0xff; updateFilter(c.chan, c.value2); break; case DIV_CMD_SID3_FILTER_DISTORTION: chan[c.chan].filt[c.value2].distortion_level = c.value & 0xff; updateFilter(c.chan, c.value2); break; case DIV_CMD_C64_FILTER_MODE: chan[c.chan].filt[(c.value >> 4) & 3].mode &= ~(SID3_FILTER_LP | SID3_FILTER_HP | SID3_FILTER_BP); if(c.value & 1) chan[c.chan].filt[(c.value >> 4) & 3].mode |= SID3_FILTER_LP; if(c.value & 2) chan[c.chan].filt[(c.value >> 4) & 3].mode |= SID3_FILTER_BP; if(c.value & 4) chan[c.chan].filt[(c.value >> 4) & 3].mode |= SID3_FILTER_HP; updateFilter(c.chan, (c.value >> 4) & 3); break; case DIV_CMD_SID3_FILTER_CONNECTION: chan[c.chan].filt[(c.value >> 4) & 3].mode &= ~(SID3_FILTER_CHANNEL_INPUT | SID3_FILTER_OUTPUT); if(c.value & 1) chan[c.chan].filt[(c.value >> 4) & 3].mode |= SID3_FILTER_CHANNEL_INPUT; if(c.value & 2) chan[c.chan].filt[(c.value >> 4) & 3].mode |= SID3_FILTER_OUTPUT; updateFilter(c.chan, (c.value >> 4) & 3); break; case DIV_CMD_SID3_FILTER_MATRIX: chan[c.chan].filt[(c.value >> 4) & 3].filter_matrix = c.value & 0xf; updateFilter(c.chan, (c.value >> 4) & 3); break; case DIV_CMD_SID3_FILTER_ENABLE: chan[c.chan].filt[(c.value >> 4) & 3].enabled = c.value & 1; updateFilter(c.chan, (c.value >> 4) & 3); break; case DIV_CMD_C64_PW_SLIDE: chan[c.chan].pw_slide = c.value * c.value2 * 16; break; case DIV_CMD_C64_CUTOFF_SLIDE: filter = abs(c.value2) - 1; chan[c.chan].filt[filter].cutoff_slide = c.value * (c.value2 > 0 ? 1 : -1) * 16; break; case DIV_CMD_SID3_PHASE_RESET: chan[c.chan].phase_reset_counter = c.value; break; case DIV_CMD_SID3_NOISE_PHASE_RESET: chan[c.chan].noise_phase_reset_counter = c.value; break; case DIV_CMD_SID3_ENVELOPE_RESET: chan[c.chan].envelope_reset_counter = c.value; break; case DIV_CMD_SAMPLE_POS: chan[c.chan].dacPos=c.value; break; case DIV_CMD_MACRO_OFF: chan[c.chan].std.mask(c.value,true); break; case DIV_CMD_MACRO_ON: chan[c.chan].std.mask(c.value,false); break; case DIV_CMD_MACRO_RESTART: chan[c.chan].std.restart(c.value); break; default: break; } if(updEnv) { updateEnvelope(c.chan); } return 1; } void DivPlatformSID3::muteChannel(int ch, bool mute) { isMuted[ch]=mute; sid3_set_is_muted(sid3,ch,mute); } void DivPlatformSID3::forceIns() { for (int i=0; i& wlist) { for (DivRegWrite& i: wlist) rWrite(i.addr,i.val); } void DivPlatformSID3::setFlags(const DivConfig& flags) { chipClock=1000000; CHECK_CUSTOM_CLOCK; quarterClock=flags.getBool("quarterClock",false); if(quarterClock && chipClock >= 1000000 && !parent->isExporting()) { chipClock /= 4; } rate=chipClock; sid3_set_clock_rate(sid3, chipClock); for (int i=0; irate=rate/8; } } DivChannelPair DivPlatformSID3::getPaired(int ch) { if(chan[ch].phase) { return DivChannelPair("phase", chan[ch].phaseSrc); } if(chan[ch].ring) { if(chan[ch].ringSrc == SID3_NUM_CHANNELS) { return DivChannelPair("ring", ch); } return DivChannelPair("ring", chan[ch].ringSrc); } if(chan[ch].sync) { return DivChannelPair("sync", chan[ch].syncSrc); } return DivChannelPair(); } int DivPlatformSID3::init(DivEngine* p, int channels, int sugRate, const DivConfig& flags) { parent=p; dumpWrites=false; skipRegisterWrites=false; writeOscBuf=0; for (int i=0; i