second attempt at MinGW backtrace

This commit is contained in:
tildearrow 2024-02-03 02:57:48 -05:00
parent fca5ee26c3
commit 3f4c7dc46c
6 changed files with 1801 additions and 0 deletions

View file

@ -0,0 +1,813 @@
// ep128emu -- portable Enterprise 128 emulator
// Copyright (C) 2003-2016 Istvan Varga <istvanv@users.sourceforge.net>
// https://github.com/istvan-v/ep128emu/
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include "dave.hpp"
#include <cmath>
#define EP128EMU_UNLIKELY(x) x
// Generate polynomial counter of log2(m0) + 1 bits length, and store
// (m0 * 2 - 1) samples at 'tabptr' in reverse order.
// log2(m1) is the second bit to be used in the XOR operation when
// calculating the next bit of output.
static void calculate_polycnt(uint8_t *tabptr, uint32_t m0, uint32_t m1)
{
uint32_t sr = 0xFFFFFFFFU;
int n = int(m0 << 1) - 1;
while (--n >= 0) {
uint8_t b0 = uint8_t(bool(sr & m0));
uint8_t b1 = uint8_t(bool(sr & m1));
tabptr[n] = b0;
sr = (sr << 1) | uint32_t(b0 ^ b1);
}
}
namespace Ep128 {
DaveTables::DaveTables()
{
static const uint32_t polycnt_params[14] = {
0x00000008U, 0x00000004U, // 4-bit: poly = 11001
0x00000010U, 0x00000004U, // 5-bit: poly = 101001
0x00000040U, 0x00000020U, // 7-bit: poly = 11000001
0x00000100U, 0x00000010U, // 9-bit: poly = 1000100001
0x00000400U, 0x00000100U, // 11-bit: poly = 101000000001
0x00004000U, 0x00002000U, // 15-bit: poly = 1100000000000001
0x00010000U, 0x00002000U // 17-bit: poly = 100100000000000001
};
polycnt4_table = new uint8_t[15 + 31 + 127 + 511 + 2047 + 32767 + 131071];
polycnt5_table = &(polycnt4_table[15]);
polycnt7_table = &(polycnt5_table[31]);
polycnt9_table = &(polycnt7_table[127]);
polycnt11_table = &(polycnt9_table[511]);
polycnt15_table = &(polycnt11_table[2047]);
polycnt17_table = &(polycnt15_table[32767]);
uint8_t *bufp = polycnt4_table;
for (int i = 0; i < 14; i += 2) {
calculate_polycnt(bufp, polycnt_params[i], polycnt_params[i + 1]);
bufp = bufp + ((polycnt_params[i] << 1) - 1U);
}
}
DaveTables::~DaveTables()
{
delete[] polycnt4_table;
}
// handle timer interrupts
inline void Dave::triggerIntSnd()
{
// trigger interrupt on edge only
if (int_snd_active)
return;
// mark as active
int_snd_active = 1;
interruptRequest();
}
inline void Dave::triggerInt1Hz()
{
// trigger interrupt on edge only
if (int_1hz_active)
return;
// mark as active
int_1hz_active = 1;
interruptRequest();
}
// run DAVE emulation, and also trigger any sound or timer interrupts
uint32_t Dave::runOneCycle_()
{
// update polynomial counters
if (--polycnt4_phase < 0) // 4-bit
polycnt4_phase = 14;
polycnt4_state = (int) t.polycnt4_table[polycnt4_phase];
if (--polycnt5_phase < 0) // 5-bit
polycnt5_phase = 30;
polycnt5_state = (int) t.polycnt5_table[polycnt5_phase];
if (!noise_polycnt_is_7bit) {
// channel 3 uses the variable length polynomial counter
if (--polycnt7_phase < 0) // 7-bit
polycnt7_phase = 126;
polycnt7_state = (int) t.polycnt7_table[polycnt7_phase];
// channel 3 polynomial counter: updated on negative edge
if (*chn3_clk_source < chn3_clk_source_prv) {
if (--polycntVL_phase < 0) // variable length
polycntVL_phase = polycntVL_maxphase;
polycntVL_state = (int) polycntVL_table[polycntVL_phase];
chn3_state1 = polycntVL_state; // input signal to channel 3
if (!chn3_lp_2)
chn3_state2 = polycntVL_state;
}
chn3_clk_source_prv = *chn3_clk_source;
}
else {
// channel 3 uses the 7-bit polynomial counter
if (*chn3_clk_source < chn3_clk_source_prv) {
// update on negative edge
if (--polycnt7_phase < 0) // 7-bit
polycnt7_phase = 126;
polycnt7_state = (int) t.polycnt7_table[polycnt7_phase];
chn3_state1 = polycnt7_state; // input signal to channel 3
if (!chn3_lp_2)
chn3_state2 = polycnt7_state;
}
chn3_clk_source_prv = *chn3_clk_source;
if (--polycntVL_phase < 0) // variable length
polycntVL_phase = polycntVL_maxphase;
polycntVL_state = (int) polycntVL_table[polycntVL_phase];
}
// update the phase of all oscillators
clk_62500_phase--;
clk_1000_phase--;
chn0_phase -= chn0_run;
chn1_phase -= chn1_run;
chn2_phase -= chn2_run;
// reload phase counters if necessary
if (EP128EMU_UNLIKELY(clk_1000_phase < 0)) {
clk_50_phase--;
// trigger interrupts if enabled
if ((*int_snd_phase) < 0) {
// will reload counter later
int_snd_state = (int_snd_state & 1) ^ 1; // invert state
if (enable_int_snd)
triggerIntSnd();
}
clk_1000_phase = clk_1000_frq;
if (EP128EMU_UNLIKELY(clk_50_phase < 0)) {
clk_50_phase = clk_50_frq;
clk_1_phase--;
if (EP128EMU_UNLIKELY(clk_1_phase < 0)) {
clk_1_phase = clk_1_frq; // reload counter
int_1hz_state = (int_1hz_state & 1) ^ 1; // invert state
if (enable_int_1hz)
triggerInt1Hz();
}
}
}
else if (EP128EMU_UNLIKELY((*int_snd_phase) < 0)) {
// trigger interrupt if enabled
int_snd_state = (int_snd_state & 1) ^ 1; // invert state
if (enable_int_snd)
triggerIntSnd();
}
// calculate oscillator outputs
if (clk_62500_phase < 0) {
// simple 31250 Hz oscillator
clk_62500_phase = clk_62500_frq; // reload counter
clk_62500_state = (clk_62500_state & 1) ^ 1; // invert state
}
// ---- channel 3 ----
chn3_prv = chn3_state; // save previous output
if (chn3_lp_2 && (chn2_state < chn2_prv)) {
// lowpass filter holds signal until negative edge in channel 2
chn3_state2 = chn3_state1;
}
if (chn3_hp_0 && (chn0_state < chn0_prv)) {
// highpass filter: sets level to 0 on negative edge in channel 0
chn3_state2 = 0;
}
// store final output signal in chn3_state
chn3_state = chn3_state2;
if (chn3_rm_1) {
// ring modulation: XNOR by channel 1
chn3_state ^= (chn1_state ^ 1);
}
// ---- channel 2 ----
chn2_prv = chn2_state; // save previous output
if (chn2_phase < 0) {
chn2_phase = chn2_frqcode; // reload counter
if (chn2_input_polycnt == NULL) {
// square wave
chn2_state1 = (chn2_state1 & 1) ^ 1;
}
else {
// get input from polynomial counter
chn2_state1 = *chn2_input_polycnt;
}
}
if (chn2_hp_3 && (chn3_state < chn3_prv)) {
// highpass filter: sets level to 0 on negative edge in channel 3
chn2_state1 = 0;
}
// store final output signal in chn2_state
chn2_state = chn2_state1;
if (chn2_rm_0) {
// ring modulation: XNOR by channel 0
chn2_state ^= (chn0_state ^ 1);
}
// ---- channel 1 ----
chn1_prv = chn1_state; // save previous output
if (chn1_phase < 0) {
chn1_phase = chn1_frqcode; // reload counter
if (chn1_input_polycnt == NULL) {
// square wave
chn1_state1 = (chn1_state1 & 1) ^ 1;
}
else {
// get input from polynomial counter
chn1_state1 = *chn1_input_polycnt;
}
}
if (chn1_hp_2 && (chn2_state < chn2_prv)) {
// highpass filter: sets level to 0 on negative edge in channel 2
chn1_state1 = 0;
}
// store final output signal in chn1_state
chn1_state = chn1_state1;
if (chn1_rm_3) {
// ring modulation: XNOR by channel 3
chn1_state ^= (chn3_state ^ 1);
}
// ---- channel 0 ----
chn0_prv = chn0_state; // save previous output
if (chn0_phase < 0) {
chn0_phase = chn0_frqcode; // reload counter
if (chn0_input_polycnt == NULL) {
// square wave
chn0_state1 = (chn0_state1 & 1) ^ 1;
}
else {
// get input from polynomial counter
chn0_state1 = *chn0_input_polycnt;
}
}
if (chn0_hp_1 && (chn1_state < chn1_prv)) {
// highpass filter: sets level to 0 on negative edge in channel 1
chn0_state1 = 0;
}
// store final output signal in chn0_state
chn0_state = chn0_state1;
if (chn0_rm_2) {
// ring modulation: XNOR by channel 2
chn0_state ^= (chn2_state ^ 1);
}
// and now the final DAC output (left/right) values
// total output range (not including tape feedback): 0 to 252
unsigned int lval =
((tape_feedback & tape_input) == 0 ? 0U : 0x3FU); // tape feedback
unsigned int rval = lval;
if (dac_mode_left) {
lval += (chn0_left << 2);
if (dac_mode_right) {
// simplest case: both channels in DAC mode
rval += (chn0_right << 2);
}
else {
// left channel is in DAC mode, but right is not
if (chn0_state)
rval += chn0_right;
if (chn1_state)
rval += chn1_right;
if (chn2_state)
rval += chn2_right;
if (chn3_state)
rval += chn3_right;
}
}
else if (dac_mode_right) {
// right channel is in DAC mode, but left is not
rval += (chn0_right << 2);
if (chn0_state)
lval += chn0_left;
if (chn1_state)
lval += chn1_left;
if (chn2_state)
lval += chn2_left;
if (chn3_state)
lval += chn3_left;
}
else {
// neither channel is in DAC mode
if (chn0_state) {
lval += chn0_left;
rval += chn0_right;
}
if (chn1_state) {
lval += chn1_left;
rval += chn1_right;
}
if (chn2_state) {
lval += chn2_left;
rval += chn2_right;
}
if (chn3_state) {
lval += chn3_left;
rval += chn3_right;
}
}
audioOutput = uint32_t(lval + (rval << 16)) << 7;
return audioOutput;
}
// returns pointer to the polynomial counter for channels 0, 1, and 2
// selected by 'n' (allowed values for 'n' are 0x00, 0x10, 0x20, and 0x30)
int * Dave::findPolycntForToneChannel(int n)
{
switch (n) {
case 0x10:
return (&polycnt4_state); // 4-bit
case 0x20:
return (&polycnt5_state); // 5-bit
case 0x30:
if (!noise_polycnt_is_7bit) {
return (&polycnt7_state); // 7-bit
}
else {
return (&polycntVL_state); // variable length
}
}
// default to square wave
return (int*) NULL;
}
// write to DAVE registers
void Dave::writePort(uint16_t addr, uint8_t value)
{
switch (uint8_t(addr & 0x1F)) {
case 0x00:
// channel 0 frequency
chn0_frqcode = (chn0_frqcode & 0x0F00) | (int) value;
break;
case 0x01:
// channel 0 frequency and mode
chn0_frqcode = (chn0_frqcode & 0x00FF) | (((int) value & 0x0F) << 8);
// select distortion mode
chn0_input_polycnt = findPolycntForToneChannel((int) value & 0x30);
chn0_hp_1 = ((int) value & 0x40 ? 1 : 0); // highpass
chn0_rm_2 = ((int) value & 0x80 ? 1 : 0); // ringmod
break;
case 0x02:
// channel 1 frequency
chn1_frqcode = (chn1_frqcode & 0x0F00) | (int) value;
break;
case 0x03:
// channel 1 frequency and mode
chn1_frqcode = (chn1_frqcode & 0x00FF) | (((int) value & 0x0F) << 8);
// select distortion mode
chn1_input_polycnt = findPolycntForToneChannel((int) value & 0x30);
chn1_hp_2 = ((int) value & 0x40 ? 1 : 0); // highpass
chn1_rm_3 = ((int) value & 0x80 ? 1 : 0); // ringmod
break;
case 0x04:
// channel 2 frequency
chn2_frqcode = (chn2_frqcode & 0x0F00) | (int) value;
break;
case 0x05:
// channel 2 frequency and mode
chn2_frqcode = (chn2_frqcode & 0x00FF) | (((int) value & 0x0F) << 8);
// select distortion mode
chn2_input_polycnt = findPolycntForToneChannel((int) value & 0x30);
chn2_hp_3 = ((int) value & 0x40 ? 1 : 0); // highpass
chn2_rm_0 = ((int) value & 0x80 ? 1 : 0); // ringmod
break;
case 0x06:
// channel 3 parameters
switch ((int) value & 0x03) {
// polynomial counter clock source
case 0x00: chn3_clk_source = &clk_62500_state; break;
case 0x01: chn3_clk_source = &chn0_state; break;
case 0x02: chn3_clk_source = &chn1_state; break;
case 0x03: chn3_clk_source = &chn2_state; break;
}
// select variable length polynomial counter
switch ((int) value & 0x0C) {
case 0x00:
polycntVL_table = t.polycnt17_table; // 17-bit
polycntVL_maxphase = 131070;
break;
case 0x04:
polycntVL_table = t.polycnt15_table; // 15-bit
polycntVL_maxphase = 32766;
break;
case 0x08:
polycntVL_table = t.polycnt11_table; // 11-bit
polycntVL_maxphase = 2046;
break;
case 0x0C:
polycntVL_table = t.polycnt9_table; // 9-bit
polycntVL_maxphase = 510;
break;
}
// wrap the phase of variable length polynomial counter to table length
polycntVL_phase = polycntVL_phase % (polycntVL_maxphase + 1);
// bit 4: swap 7-bit and variable length polynomial counters if set
if ((int) value & 0x10) {
noise_polycnt_is_7bit = 1;
chn3_input_polycnt = &polycnt7_state;
if (chn0_input_polycnt == &polycnt7_state)
chn0_input_polycnt = &polycntVL_state;
if (chn1_input_polycnt == &polycnt7_state)
chn1_input_polycnt = &polycntVL_state;
if (chn2_input_polycnt == &polycnt7_state)
chn2_input_polycnt = &polycntVL_state;
}
else {
noise_polycnt_is_7bit = 0;
chn3_input_polycnt = &polycntVL_state;
if (chn0_input_polycnt == &polycntVL_state)
chn0_input_polycnt = &polycnt7_state;
if (chn1_input_polycnt == &polycntVL_state)
chn1_input_polycnt = &polycnt7_state;
if (chn2_input_polycnt == &polycntVL_state)
chn2_input_polycnt = &polycnt7_state;
}
chn3_lp_2 = ((int) value & 0x20 ? 1 : 0); // lowpass with channel 2
chn3_hp_0 = ((int) value & 0x40 ? 1 : 0); // highpass with channel 0
chn3_rm_1 = ((int) value & 0x80 ? 1 : 0); // ring mod. with channel 1
break;
case 0x07:
// sound/interrupt control register
if ((int) value & 0x01) {
chn0_run = 0; // channel 0 sync
chn0_state1 = 0;
}
else if (!chn0_run) {
chn0_phase = chn0_frqcode; // reset phase
chn0_run = 1;
}
if ((int) value & 0x02) {
chn1_run = 0; // channel 1 sync
chn1_state1 = 0;
}
else if (!chn1_run) {
chn1_phase = chn1_frqcode; // reset phase
chn1_run = 1;
}
if ((int) value & 0x04) {
chn2_run = 0; // channel 2 sync
chn2_state1 = 0;
}
else if (!chn2_run) {
chn2_phase = chn2_frqcode; // reset phase
chn2_run = 1;
}
dac_mode_left = ((int) value & 0x08 ? 1 : 0); // analogue mode
dac_mode_right = ((int) value & 0x10 ? 1 : 0);
switch ((int) value & 0x60) {
// sound interrupt mode
case 0x00:
int_snd_phase = &clk_1000_phase;
break;
case 0x20:
int_snd_phase = &clk_50_phase;
break;
case 0x40:
int_snd_phase = &chn0_phase;
break;
case 0x60:
int_snd_phase = &chn1_phase;
break;
}
break;
case 0x08:
// channel 0 left volume
chn0_left = int(value & 0x3F);
break;
case 0x09:
// channel 1 left volume
chn1_left = int(value & 0x3F);
break;
case 0x0A:
// channel 2 left volume
chn2_left = int(value & 0x3F);
break;
case 0x0B:
// channel 3 left volume
chn3_left = int(value & 0x3F);
break;
case 0x0C:
// channel 0 right volume
chn0_right = int(value & 0x3F);
break;
case 0x0D:
// channel 1 right volume
chn1_right = int(value & 0x3F);
break;
case 0x0E:
// channel 2 right volume
chn2_right = int(value & 0x3F);
break;
case 0x0F:
// channel 3 right volume
chn3_right = int(value & 0x3F);
break;
case 0x10:
// memory page 0
page0Segment = value;
setMemoryPage(0, value);
break;
case 0x11:
// memory page 1
page1Segment = value;
setMemoryPage(1, value);
break;
case 0x12:
// memory page 2
page2Segment = value;
setMemoryPage(2, value);
break;
case 0x13:
// memory page 3
page3Segment = value;
setMemoryPage(3, value);
break;
case 0x14:
// interrupt control register
{
int prv = (int_snd_active | int_1hz_active
| int_1_active | int_2_active);
uint8_t tmp = (uint8_t) value ^ (uint8_t) 0x55;
// sound/timer interrupt
enable_int_snd = (tmp & (uint8_t) 0x01 ? 0 : 1);
if (tmp & (uint8_t) 0x03)
int_snd_active = 0;
// 1 Hz interrupt
enable_int_1hz = (tmp & (uint8_t) 0x04 ? 0 : 1);
if (tmp & (uint8_t) 0x0C)
int_1hz_active = 0;
// INT 1 (video interrupt)
enable_int_1 = (tmp & (uint8_t) 0x10 ? 0 : 1);
if (tmp & (uint8_t) 0x30)
int_1_active = 0;
// INT 2
enable_int_2 = (tmp & (uint8_t) 0x40 ? 0 : 1);
if (tmp & (uint8_t) 0xC0)
int_2_active = 0;
if (prv && !(int_snd_active | int_1hz_active
| int_1_active | int_2_active)) {
// no more active interrupts: clear request to CPU
clearInterruptRequest();
}
}
break;
case 0x15:
// select keyboard row
keyboardRow = int(value & 0x0F);
tape_feedback = int(!(value & 0x20)); // tape control
setRemote1State(value & 0x40 ? 1 : 0);
setRemote2State(value & 0x80 ? 1 : 0);
break;
case 0x1F: // system configuration register
{
// CPU wait cycle control
setMemoryWaitMode(int(value & 0x0C) >> 2);
// input clock frequency (note: the frequency is always 8 MHz,
// this bit sets the assumed value)
// 0: 8 MHz, dave_clock_freq = input_freq / 32
// 1: 12 MHz, dave_clock_freq = input_freq / 48
clockDiv = ((value & 0x02) == 0 ? 2 : 3);
}
break;
}
}
// read from DAVE registers
uint8_t Dave::readPort(uint16_t addr) const
{
switch (uint8_t(addr & 0x1F)) {
case 0x10:
return page0Segment;
case 0x11:
return page1Segment;
case 0x12:
return page2Segment;
case 0x13:
return page3Segment;
case 0x14:
{
// interrupt state
return uint8_t((int_snd_state | (int_snd_active << 1))
| ((int_1hz_state | (int_1hz_active << 1)) << 2)
| ((int_1_state | (int_1_active << 1)) << 4)
| ((int_2_state | (int_2_active << 1)) << 6));
}
break;
case 0x15:
// read currently selected keyboard row
return (keyboardRow < 10 ? keyboardState[keyboardRow] : 0xFF);
case 0x16:
{
// tape input
uint8_t n =
uint8_t(((tape_input_level - 1) & 0x40) | ((tape_input - 1) & 0x80)
| 0x0F);
if (keyboardRow < 5) {
if (keyboardRow == 0) {
// EnterMice buttons (left and right)
n &= uint8_t(0xF9 | (mouseInput >> 3));
// EXT1 joystick fire buttons
n &= uint8_t(0xF8 | (keyboardState[14] >> 4));
}
else {
if (!(mouseInput & 0x80)) // EnterMice data input on column K
n &= uint8_t(0xFD | ((mouseInput << 1) >> (keyboardRow - 1)));
// EXT1 joystick (mapped to row 14)
n &= uint8_t(0xFE | (keyboardState[14] >> (4 - keyboardRow)));
}
}
else if (keyboardRow < 10) {
// external joystick 2 (mapped to keyboard row 15)
if (keyboardRow == 5) // fire buttons
n &= uint8_t(0xF8 | (keyboardState[15] >> 4));
else
n &= uint8_t(0xFE | (keyboardState[15] >> (9 - keyboardRow)));
}
return n;
}
}
// anything else is either handled elsewhere, or is write-only
return 0xFF;
}
// set hardware interrupt 1 state, and (possibly) trigger interrupt
void Dave::setInt1State(int new_state)
{
int prv = int_1_state;
// set new state
int_1_state = (new_state ? 1 : 0);
// on negative edge, trigger CPU interrupt
// (assuming it is enabled, and not active already)
if (!enable_int_1)
return; // disabled
if (int_1_state || !prv)
return; // not on negative edge
if (int_1_active)
return; // already active
// now active
int_1_active = 1;
// send request to CPU
interruptRequest();
}
// set hardware interrupt 2 state, and (possibly) trigger interrupt
void Dave::setInt2State(int new_state)
{
int prv = int_2_state;
// set new state
int_2_state = (new_state ? 1 : 0);
// on negative edge, trigger CPU interrupt
// (assuming it is enabled, and not active already)
if (!enable_int_2)
return; // disabled
if (int_2_state || !prv)
return; // not on negative edge
if (int_2_active)
return; // already active
// now active
int_2_active = 1;
// send request to CPU
interruptRequest();
}
Dave::Dave()
{
clockDiv = 2;
clockCnt = 1;
polycnt4_state = 0;
polycnt5_state = 0;
polycnt7_state = 0;
polycntVL_state = 0;
clk_62500_state = 0;
chn0_state = 0;
chn0_prv = 0;
chn0_state1 = 0;
chn0_frqcode = 0;
chn0_run = 1;
chn1_state = 0;
chn1_prv = 0;
chn1_state1 = 0;
chn1_frqcode = 0;
chn1_run = 1;
chn2_state = 0;
chn2_prv = 0;
chn2_state1 = 0;
chn2_frqcode = 0;
chn2_run = 1;
chn3_state = 0;
chn3_prv = 0;
chn3_state1 = 0;
chn3_state2 = 0;
chn3_clk_source_prv = 0;
int_snd_state = 0;
int_1hz_state = 0;
int_1_state = 1;
int_2_state = 1;
int_snd_active = 0;
int_1hz_active = 0;
int_1_active = 0;
int_2_active = 0;
audioOutput = 0;
tape_input = 0;
tape_input_level = 0;
this->reset(true);
}
Dave::~Dave()
{
}
void Dave::reset(bool isColdReset)
{
polycnt4_phase = 0;
polycnt5_phase = 0;
polycnt7_phase = 0;
polycntVL_phase = 0;
chn0_phase = 0;
chn1_phase = 0;
chn2_phase = 0;
clk_62500_phase = 0;
clk_1000_phase = 0;
clk_50_phase = 0;
clk_1_phase = 0;
// initialize registers
// this will also reset many variables to the default value
for (uint16_t i = 0x00; i < 0x20; i++)
writePort(i, 0);
// clear all interrupts
writePort(0x14, 0xAA);
if (isColdReset) {
// reset keyboard state
for (int i = 0; i < 16; i++)
keyboardState[i] = 0xFF;
}
mouseInput = 0xFF;
}
void Dave::setTapeInput(int state, int level)
{
tape_input = (state ? 1 : 0);
tape_input_level = (level > 0 ? 1 : 0);
}
void Dave::setKeyboardState(int keyCode, int state)
{
int row = (keyCode & 0x78) >> 3;
uint8_t mask = uint8_t(1 << (keyCode & 0x07));
if (!state)
keyboardState[row] |= mask;
else
keyboardState[row] &= (~mask);
}
// --------------------------------------------------------------------------
void Dave::setMemoryPage(uint8_t page, uint8_t segment)
{
(void) page;
(void) segment;
}
void Dave::setMemoryWaitMode(int mode)
{
(void) mode;
}
void Dave::setRemote1State(int state)
{
(void) state;
}
void Dave::setRemote2State(int state)
{
(void) state;
}
void Dave::interruptRequest()
{
}
void Dave::clearInterruptRequest()
{
}
} // namespace Ep128

View file

@ -0,0 +1,251 @@
// ep128emu -- portable Enterprise 128 emulator
// Copyright (C) 2003-2016 Istvan Varga <istvanv@users.sourceforge.net>
// https://github.com/istvan-v/ep128emu/
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#ifndef EP128EMU_DAVE_HPP
#define EP128EMU_DAVE_HPP
#include <stdint.h>
namespace Ep128 {
class DaveTables {
public:
// tables for polynomial counters
// (note: the table data is stored in reverse order)
uint8_t *polycnt4_table; // length = 15, poly = 0x0000000C
uint8_t *polycnt5_table; // length = 31, poly = 0x00000014
uint8_t *polycnt7_table; // length = 127, poly = 0x00000060
uint8_t *polycnt9_table; // length = 511, poly = 0x00000110
uint8_t *polycnt11_table; // length = 2047, poly = 0x00000500
uint8_t *polycnt15_table; // length = 32767, poly = 0x00006000
uint8_t *polycnt17_table; // length = 131071, poly = 0x00012000
// ----------------
DaveTables();
~DaveTables();
};
class Dave {
private:
DaveTables t;
int clockDiv; // 2 if bit 1 of port 0xBF is 0, 3 otherwise
int clockCnt; // counts from 'clockDiv' towards zero
// variable length counter uses one of the 9, 11, 15, and 17 bit tables
uint8_t *polycntVL_table;
// polynomial counters
int polycnt4_phase; // 4-bit counter phase (14 -> 0)
int polycnt5_phase; // 5-bit counter phase (30 -> 0)
int polycnt7_phase; // 7-bit counter phase (126 -> 0)
int polycntVL_phase; // variable length counter phase ...
int polycntVL_maxphase; // ... counts from this value to zero
int polycnt4_state; // 4-bit counter output
int polycnt5_state; // 5-bit counter output
int polycnt7_state; // 7-bit counter output
int polycntVL_state; // variable length counter output
// fixed frequency counters (f = 250000 / (n + 1))
static const int clk_62500_frq = 3;
static const int clk_1000_frq = 249;
static const int clk_50_frq = 19; // clocked by the 1 kHz counter
static const int clk_1_frq = 49; // clocked by the 50 Hz counter
int clk_62500_phase;
int clk_1000_phase;
int clk_50_phase;
int clk_1_phase;
int clk_62500_state;
// channel 0 parameters
int chn0_state; // current output state
int chn0_prv; // previous output state
int chn0_state1; // oscillator output
int chn0_phase; // phase (frqcode -> 0)
int chn0_frqcode; // frequency code (0 - 4095)
int *chn0_input_polycnt; // polynomial counter
int chn0_hp_1; // enable highpass filter
int chn0_rm_2; // enable ring modulation
int chn0_run; // 1: oscillator is running
int chn0_left; // left volume (0 - 63)
int chn0_right; // right volume (0 - 63)
// channel 1 parameters
int chn1_state; // current output state
int chn1_prv; // previous output state
int chn1_state1; // oscillator output
int chn1_phase; // phase (frqcode -> 0)
int chn1_frqcode; // frequency code (0 - 4095)
int *chn1_input_polycnt; // polynomial counter
int chn1_hp_2; // enable highpass filter
int chn1_rm_3; // enable ring modulation
int chn1_run; // 1: oscillator is running
int chn1_left; // left volume (0 - 63)
int chn1_right; // right volume (0 - 63)
// channel 2 parameters
int chn2_state; // current output state
int chn2_prv; // previous output state
int chn2_state1; // oscillator output
int chn2_phase; // phase (frqcode -> 0)
int chn2_frqcode; // frequency code (0 - 4095)
int *chn2_input_polycnt; // polynomial counter
int chn2_hp_3; // enable highpass filter
int chn2_rm_0; // enable ring modulation
int chn2_run; // 1: oscillator is running
int chn2_left; // left volume (0 - 63)
int chn2_right; // right volume (0 - 63)
// channel 3 (noise) parameters
int chn3_state; // current output state
int chn3_prv; // previous output state
int chn3_state1; // polynomial counter output
int chn3_state2; // lowpass filter output
int *chn3_clk_source; // clock input signal
int chn3_clk_source_prv; // previous clock input
int noise_polycnt_is_7bit; // 0xA6 port bit 4
int *chn3_input_polycnt; // polynomial counter
int chn3_lp_2; // enable lowpass filter
int chn3_hp_0; // enable highpass filter
int chn3_rm_1; // enable ring modulation
int chn3_left; // left volume (0 - 63)
int chn3_right; // right volume (0 - 63)
// enable DAC mode for left/right channel
int dac_mode_left;
int dac_mode_right;
// interrupts
int *int_snd_phase;
int enable_int_snd;
int enable_int_1hz;
int enable_int_1;
int enable_int_2;
int int_snd_state;
int int_1hz_state;
int int_1_state;
int int_2_state;
int int_snd_active;
int int_1hz_active;
int int_1_active;
int int_2_active;
uint32_t audioOutput;
uint8_t page0Segment;
uint8_t page1Segment;
uint8_t page2Segment;
uint8_t page3Segment;
int tape_feedback;
int tape_input;
int tape_input_level;
int keyboardRow;
uint8_t keyboardState[16];
// b0..b3 = current nibble
// b4 = button 1 (left) state (0 = pressed)
// b5 = button 2 (right) state
uint8_t mouseInput; // b7 == 1: mouse data bits inactive
// ----------------
inline void triggerIntSnd();
inline void triggerInt1Hz();
int * findPolycntForToneChannel(int n);
uint32_t runOneCycle_();
public:
Dave();
virtual ~Dave();
protected:
virtual void setMemoryPage(uint8_t page, uint8_t segment);
virtual void setMemoryWaitMode(int mode);
virtual void setRemote1State(int state);
virtual void setRemote2State(int state);
virtual void interruptRequest();
virtual void clearInterruptRequest();
public:
/*!
* Run DAVE emulation for 2 us (clock frequency = 500 kHz).
* Return value is audio output in left_channel + (right_channel << 16)
* format, where the range for a single channel is 0 to 40320 (sum of 4
* sound generators and tape feedback, 0 to 8064 each).
*/
inline uint32_t runOneCycle()
{
if (--clockCnt > 0)
return audioOutput;
clockCnt = clockDiv;
return runOneCycle_();
}
/*!
* Write to a DAVE register.
*/
void writePort(uint16_t addr, uint8_t value);
/*!
* Read from a DAVE register.
*/
uint8_t readPort(uint16_t addr) const;
/*!
* Set hardware interrupt 1 state, and (possibly) trigger interrupt.
*/
void setInt1State(int new_state);
/*!
* Set hardware interrupt 2 state, and (possibly) trigger interrupt.
*/
void setInt2State(int new_state);
/*!
* Set tape input state, and level (0: low, 1: high).
*/
void setTapeInput(int state, int level);
/*!
* Set state of key 'keyCode' (0 to 127, see table below) to pressed
* (state != 0) or released (state == 0).
* +-------+-------+-------+-------+-------+-------+-------+-------+
* | 0x00 | 0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 |
* | 0x08 | 0x09 | 0x0A | 0x0B | 0x0C | 0x0D | 0x0E | 0x0F |
* +------+-------+-------+-------+-------+-------+-------+-------+-------+
* | 0x00 | N | \ | B | C | V | X | Z | SHF_L |
* +------+-------+-------+-------+-------+-------+-------+-------+-------+
* | 0x08 | H | LOCK | G | D | F | S | A | CTRL |
* +------+-------+-------+-------+-------+-------+-------+-------+-------+
* | 0x10 | U | Q | Y | R | T | E | W | TAB |
* +------+-------+-------+-------+-------+-------+-------+-------+-------+
* | 0x18 | 7 | 1 | 6 | 4 | 5 | 3 | 2 | ESC |
* +------+-------+-------+-------+-------+-------+-------+-------+-------+
* | 0x20 | F4 | F8 | F3 | F6 | F5 | F7 | F2 | F1 |
* +------+-------+-------+-------+-------+-------+-------+-------+-------+
* | 0x28 | 8 | | 9 | - | 0 | ^ | ERASE | |
* +------+-------+-------+-------+-------+-------+-------+-------+-------+
* | 0x30 | J | | K | ; | L | : | ] | |
* +------+-------+-------+-------+-------+-------+-------+-------+-------+
* | 0x38 | STOP | DOWN | RIGHT | UP | HOLD | LEFT | ENTER | ALT |
* +------+-------+-------+-------+-------+-------+-------+-------+-------+
* | 0x40 | M | DEL | , | / | . | SHF_R | SPACE | INS |
* +------+-------+-------+-------+-------+-------+-------+-------+-------+
* | 0x48 | I | | O | @ | P | [ | | |
* +------+-------+-------+-------+-------+-------+-------+-------+-------+
* | 0x70 | JOY1R | JOY1L | JOY1D | JOY1U | JOY1F | JOY1F2| JOY1F3| |
* +------+-------+-------+-------+-------+-------+-------+-------+-------+
* | 0x78 | JOY2R | JOY2L | JOY2D | JOY2U | JOY2F | JOY2F2| JOY2F3| |
* +------+-------+-------+-------+-------+-------+-------+-------+-------+
*/
void setKeyboardState(int keyCode, int state);
inline void setMouseInput(uint8_t value)
{
mouseInput = value;
}
inline void clearMouseInput()
{
// clear data bits, but not the buttons
mouseInput = mouseInput | 0xCF;
}
/*!
* Reset DAVE.
*/
void reset(bool isColdReset = false);
};
} // namespace Ep128
#endif // EP128EMU_DAVE_HPP