swan let's go

Add WonderSwan support and flatten second chip checks in VGM export into variables
This commit is contained in:
tildearrow 2022-03-07 23:05:32 -05:00 committed by GitHub
commit 0210548291
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
19 changed files with 1317 additions and 77 deletions

View file

@ -109,6 +109,9 @@ enum DivDispatchCmds {
DIV_CMD_QSOUND_ECHO_DELAY,
DIV_CMD_QSOUND_ECHO_LEVEL,
DIV_CMD_WS_SWEEP_TIME,
DIV_CMD_WS_SWEEP_AMOUNT,
DIV_ALWAYS_SET_VOLUME,
DIV_CMD_MAX

View file

@ -41,6 +41,7 @@
#include "platform/pcspkr.h"
#include "platform/segapcm.h"
#include "platform/qsound.h"
#include "platform/swan.h"
#include "platform/dummy.h"
#include "platform/lynx.h"
#include "../ta-log.h"
@ -255,6 +256,9 @@ void DivDispatchContainer::init(DivSystem sys, DivEngine* eng, int chanCount, do
case DIV_SYSTEM_SEGAPCM_COMPAT:
dispatch=new DivPlatformSegaPCM;
break;
case DIV_SYSTEM_SWAN:
dispatch=new DivPlatformSwan;
break;
default:
logW("this system is not supported yet! using dummy platform.\n");
dispatch=new DivPlatformDummy;

View file

@ -0,0 +1,412 @@
/******************************************************************************/
/* Mednafen - Multi-system Emulator */
/******************************************************************************/
/* sound.cpp - WonderSwan Sound Emulation
** Copyright (C) 2007-2017 Mednafen Team
** Copyright (C) 2016 Alex 'trap15' Marshall - http://daifukkat.su/
**
** This program is free software; you can redistribute it and/or
** modify it under the terms of the GNU General Public License
** as published by the Free Software Foundation; either version 2
** of the License, or (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software Foundation, Inc.,
** 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "swan.h"
#include <string.h>
#define MK_SAMPLE_CACHE \
{ \
int sample; \
sample = (((wsRAM[(/*(SampleRAMPos << 6) + */(sample_pos[ch] >> 1) + (ch << 4)) ] >> ((sample_pos[ch] & 1) ? 4 : 0)) & 0x0F)); \
sample_cache[ch][0] = sample * ((volume[ch] >> 4) & 0x0F); \
sample_cache[ch][1] = sample * ((volume[ch] >> 0) & 0x0F); \
}
#define MK_SAMPLE_CACHE_NOISE \
{ \
int sample; \
sample = ((nreg & 1) ? 0xF : 0x0); \
sample_cache[ch][0] = sample * ((volume[ch] >> 4) & 0x0F); \
sample_cache[ch][1] = sample * ((volume[ch] >> 0) & 0x0F); \
}
#define MK_SAMPLE_CACHE_VOICE \
{ \
int sample, half; \
sample = volume[ch]; \
half = sample >> 1; \
sample_cache[ch][0] = (voice_volume & 4) ? sample : (voice_volume & 8) ? half : 0; \
sample_cache[ch][1] = (voice_volume & 1) ? sample : (voice_volume & 2) ? half : 0; \
}
#define SYNCSAMPLE(wt) /* \
{ \
int32_t left = sample_cache[ch][0], right = sample_cache[ch][1]; \
WaveSynth.offset_inline(wt, left - last_val[ch][0], sbuf[0]); \
WaveSynth.offset_inline(wt, right - last_val[ch][1], sbuf[1]); \
last_val[ch][0] = left; \
last_val[ch][1] = right; \
} */
#define SYNCSAMPLE_NOISE(wt) SYNCSAMPLE(wt)
void WSwan::SoundUpdate(uint32_t v30mz_timestamp)
{
int32_t run_time;
//printf("%d\n", v30mz_timestamp);
//printf("%02x %02x\n", control, noise_control);
run_time = v30mz_timestamp - last_ts;
for(int y = 0; y < 2; y++)
sbuf[y] = 0;
for(unsigned int ch = 0; ch < 4; ch++)
{
// Channel is disabled?
if(!(control & (1 << ch)))
continue;
if(ch == 1 && (control & 0x20)) // Direct D/A mode?
{
MK_SAMPLE_CACHE_VOICE;
SYNCSAMPLE(v30mz_timestamp);
}
else if(ch == 2 && (control & 0x40) && sweep_value) // Sweep
{
uint32_t tmp_pt = 2048 - period[ch];
uint32_t meow_timestamp = v30mz_timestamp - run_time;
uint32_t tmp_run_time = run_time;
while(tmp_run_time)
{
int32_t sub_run_time = tmp_run_time;
if(sub_run_time > sweep_8192_divider)
sub_run_time = sweep_8192_divider;
sweep_8192_divider -= sub_run_time;
if(sweep_8192_divider <= 0)
{
sweep_8192_divider += 8192;
sweep_counter--;
if(sweep_counter <= 0)
{
sweep_counter = sweep_step + 1;
period[ch] = (period[ch] + (int8_t)sweep_value) & 0x7FF;
}
}
meow_timestamp += sub_run_time;
if(tmp_pt > 4)
{
period_counter[ch] -= sub_run_time;
while(period_counter[ch] <= 0)
{
sample_pos[ch] = (sample_pos[ch] + 1) & 0x1F;
MK_SAMPLE_CACHE;
SYNCSAMPLE(meow_timestamp + period_counter[ch]);
period_counter[ch] += tmp_pt;
}
}
tmp_run_time -= sub_run_time;
}
}
else if(ch == 3 && (control & 0x80) && (noise_control & 0x10)) // Noise
{
uint32_t tmp_pt = 2048 - period[ch];
period_counter[ch] -= run_time;
while(period_counter[ch] <= 0)
{
static const uint8_t stab[8] = { 14, 10, 13, 4, 8, 6, 9, 11 };
nreg = ((nreg << 1) | ((1 ^ (nreg >> 7) ^ (nreg >> stab[noise_control & 0x7])) & 1)) & 0x7FFF;
if(control & 0x80)
{
MK_SAMPLE_CACHE_NOISE;
SYNCSAMPLE_NOISE(v30mz_timestamp + period_counter[ch]);
}
else if(tmp_pt > 4)
{
sample_pos[ch] = (sample_pos[ch] + 1) & 0x1F;
MK_SAMPLE_CACHE;
SYNCSAMPLE(v30mz_timestamp + period_counter[ch]);
}
period_counter[ch] += tmp_pt;
}
}
else
{
uint32_t tmp_pt = 2048 - period[ch];
if(tmp_pt > 4)
{
period_counter[ch] -= run_time;
while(period_counter[ch] <= 0)
{
sample_pos[ch] = (sample_pos[ch] + 1) & 0x1F;
MK_SAMPLE_CACHE;
SYNCSAMPLE(v30mz_timestamp + period_counter[ch]); // - period_counter[ch]);
period_counter[ch] += tmp_pt;
}
}
}
sbuf[0] += sample_cache[ch][0];
sbuf[1] += sample_cache[ch][1];
}
if(HVoiceCtrl & 0x80)
{
int16_t sample = (uint8_t)HyperVoice;
switch(HVoiceCtrl & 0xC)
{
case 0x0: sample = (uint16_t)sample << (8 - (HVoiceCtrl & 3)); break;
case 0x4: sample = (uint16_t)(sample | -0x100) << (8 - (HVoiceCtrl & 3)); break;
case 0x8: sample = (uint16_t)((int8_t)sample) << (8 - (HVoiceCtrl & 3)); break;
case 0xC: sample = (uint16_t)sample << 8; break;
}
// bring back to 11bit, keeping signedness
sample >>= 5;
int32_t left, right;
left = (HVoiceChanCtrl & 0x40) ? sample : 0;
right = (HVoiceChanCtrl & 0x20) ? sample : 0;
// WaveSynth.offset_inline(v30mz_timestamp, left - last_hv_val[0], sbuf[0]);
// WaveSynth.offset_inline(v30mz_timestamp, right - last_hv_val[1], sbuf[1]);
// last_hv_val[0] = left;
// last_hv_val[1] = right;
sbuf[0] += left;
sbuf[1] += right;
}
last_ts = v30mz_timestamp;
}
void WSwan::SoundWrite(uint32_t A, uint8_t V)
{
if(A >= 0x80 && A <= 0x87)
{
int ch = (A - 0x80) >> 1;
if(A & 1)
period[ch] = (period[ch] & 0x00FF) | ((V & 0x07) << 8);
else
period[ch] = (period[ch] & 0x0700) | ((V & 0xFF) << 0);
//printf("Period %d: 0x%04x --- %f\n", ch, period[ch], 3072000.0 / (2048 - period[ch]));
}
else if(A >= 0x88 && A <= 0x8B)
{
volume[A - 0x88] = V;
}
else if(A == 0x8C)
sweep_value = V;
else if(A == 0x8D)
{
sweep_step = V;
sweep_counter = sweep_step + 1;
sweep_8192_divider = 8192;
}
else if(A == 0x8E)
{
//printf("NOISECONTROL: %02x\n", V);
if(V & 0x8)
nreg = 0;
noise_control = V & 0x17;
}
else if(A == 0x90)
{
for(int n = 0; n < 4; n++)
{
if(!(control & (1 << n)) && (V & (1 << n)))
{
period_counter[n] = 1;
sample_pos[n] = 0x1F;
}
}
control = V;
//printf("Sound Control: %02x\n", V);
}
else if(A == 0x91)
{
output_control = V & 0xF;
//printf("%02x, %02x\n", V, (V >> 1) & 3);
}
else if(A == 0x92)
nreg = (nreg & 0xFF00) | (V << 0);
else if(A == 0x93)
nreg = (nreg & 0x00FF) | ((V & 0x7F) << 8);
else if(A == 0x94)
{
voice_volume = V & 0xF;
//printf("%02x\n", V);
}
else switch(A)
{
case 0x6A: HVoiceCtrl = V; break;
case 0x6B: HVoiceChanCtrl = V & 0x6F; break;
case 0x8F: SampleRAMPos = V; break;
case 0x95: HyperVoice = V; break; // Pick a port, any port?!
//default: printf("%04x:%02x\n", A, V); break;
}
}
uint8_t WSwan::SoundRead(uint32_t A)
{
if(A >= 0x80 && A <= 0x87)
{
int ch = (A - 0x80) >> 1;
if(A & 1)
return(period[ch] >> 8);
else
return(period[ch]);
}
else if(A >= 0x88 && A <= 0x8B)
return(volume[A - 0x88]);
else switch(A)
{
default: /*printf("SoundRead: %04x\n", A);*/ return(0);
case 0x6A: return(HVoiceCtrl);
case 0x6B: return(HVoiceChanCtrl);
case 0x8C: return(sweep_value);
case 0x8D: return(sweep_step);
case 0x8E: return(noise_control);
case 0x8F: return(SampleRAMPos);
case 0x90: return(control);
case 0x91: return(output_control | 0x80);
case 0x92: return((nreg >> 0) & 0xFF);
case 0x93: return((nreg >> 8) & 0xFF);
case 0x94: return(voice_volume);
}
}
void WSwan::RAMWrite(uint32_t A, uint8_t V)
{
wsRAM[A & 0x3F] = V;
}
int32_t WSwan::SoundFlush(int16_t *SoundBuf, const int32_t MaxSoundFrames)
{
int32_t FrameCount = 0;
if(SoundBuf)
{
for(int y = 0; y < 2; y++)
{
// sbuf[y]->end_frame(v30mz_timestamp);
// FrameCount = sbuf[y]->read_samples(SoundBuf + y, MaxSoundFrames, true);
int32_t left = sbuf[0];
int32_t right = sbuf[1];
if (left >= 0x400) left = 0x3FF;
else if (left < -0x400) left = -0x400;
if (right >= 0x400) left = 0x3FF;
else if (right < -0x400) left = -0x400;
SoundBuf[0] = (int16_t)left << 5;
SoundBuf[1] = (int16_t)right << 5;
}
}
last_ts = 0;
return(FrameCount);
}
// Call before wsRAM is updated
// void WSwan::SoundCheckRAMWrite(uint32_t A)
// {
// if((A >> 6) == SampleRAMPos)
// SoundUpdate();
// }
// static void RedoVolume(void)
// {
// WaveSynth.volume(2.5);
// }
// void WSwan::SoundInit(void)
// {
// for(int i = 0; i < 2; i++)
// {
// sbuf[i] = new Blip_Buffer();
// sbuf[i]->set_sample_rate(0 ? 0 : 44100, 60);
// sbuf[i]->clock_rate((long)(3072000));
// sbuf[i]->bass_freq(20);
// }
// RedoVolume();
// }
// void WSwan::SoundKill(void)
// {
// for(int i = 0; i < 2; i++)
// {
// if(sbuf[i])
// {
// delete sbuf[i];
// sbuf[i] = NULL;
// }
// }
// }
// bool WSwan::SetSoundRate(uint32_t rate)
// {
// for(int i = 0; i < 2; i++)
// sbuf[i]->set_sample_rate(rate?rate:44100, 60);
// return(true);
// }
void WSwan::SoundReset(void)
{
memset(period, 0, sizeof(period));
memset(volume, 0, sizeof(volume));
voice_volume = 0;
sweep_step = 0;
sweep_value = 0;
noise_control = 0;
control = 0;
output_control = 0;
sweep_8192_divider = 8192;
sweep_counter = 1;
SampleRAMPos = 0;
for(unsigned ch = 0; ch < 4; ch++)
period_counter[ch] = 1;
memset(sample_pos, 0, sizeof(sample_pos));
nreg = 0;
memset(sample_cache, 0, sizeof(sample_cache));
// memset(last_val, 0, sizeof(last_val));
last_v_val = 0;
HyperVoice = 0;
last_hv_val[0] = last_hv_val[1] = 0;
HVoiceCtrl = 0;
HVoiceChanCtrl = 0;
for(int y = 0; y < 2; y++)
// sbuf[y]->clear();
sbuf[y] = 0;
last_ts = 0;
}

View file

@ -0,0 +1,82 @@
/******************************************************************************/
/* Mednafen - Multi-system Emulator */
/******************************************************************************/
/* sound.h - WonderSwan Sound Emulation
** Copyright (C) 2007-2016 Mednafen Team
**
** This program is free software; you can redistribute it and/or
** modify it under the terms of the GNU General Public License
** as published by the Free Software Foundation; either version 2
** of the License, or (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software Foundation, Inc.,
** 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef __WSWAN_SOUND_H
#define __WSWAN_SOUND_H
#include <stdint.h>
class WSwan
{
public:
int32_t SoundFlush(int16_t *SoundBuf, const int32_t MaxSoundFrames);
// void SoundInit(void);
// void SoundKill(void);
// void SetSoundMultiplier(double multiplier);
// bool SetSoundRate(uint32_t rate);
void SoundWrite(uint32_t, uint8_t);
uint8_t SoundRead(uint32_t);
void SoundReset(void);
// void SoundCheckRAMWrite(uint32_t A);
void SoundUpdate(uint32_t);
void RAMWrite(uint32_t, uint8_t);
private:
// Blip_Synth<blip_good_quality, 4096> WaveSynth;
// Blip_Buffer *sbuf[2] = { NULL };
int32_t sbuf[2];
uint16_t period[4];
uint8_t volume[4]; // left volume in upper 4 bits, right in lower 4 bits
uint8_t voice_volume;
uint8_t sweep_step, sweep_value;
uint8_t noise_control;
uint8_t control;
uint8_t output_control;
int32_t sweep_8192_divider;
uint8_t sweep_counter;
uint8_t SampleRAMPos;
int32_t sample_cache[4][2];
int32_t last_v_val;
uint8_t HyperVoice;
int32_t last_hv_val[2];
uint8_t HVoiceCtrl, HVoiceChanCtrl;
int32_t period_counter[4];
// int32_t last_val[4][2]; // Last outputted value, l&r
uint8_t sample_pos[4];
uint16_t nreg;
uint32_t last_ts;
uint8_t wsRAM[64];
int16_t sBuf[2];
};
#endif

View file

@ -0,0 +1,523 @@
/**
* Furnace Tracker - multi-system chiptune tracker
* Copyright (C) 2021-2022 tildearrow and contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "swan.h"
#include "../engine.h"
#include <math.h>
#define rWrite(a,v) if (!skipRegisterWrites) {writes.emplace(a,v); if (dumpWrites) {addWrite(a,v);}}
#define CHIP_DIVIDER 32
const char* regCheatSheetWS[]={
"CH1_Pitch", "00",
"CH2_Pitch", "02",
"CH3_Pitch", "04",
"CH4_Pitch", "06",
"CH1_Vol", "08",
"CH2_Vol", "09",
"CH3_Vol", "0A",
"CH4_Vol", "0B",
"Sweep_Value", "0C",
"Sweep_Time", "0D",
"Noise", "0E",
"Wave_Base", "0F",
"Ctrl", "10",
"Output", "11",
"Random", "12",
"Voice_Ctrl", "14",
"Wave_Mem", "40",
NULL
};
const char** DivPlatformSwan::getRegisterSheet() {
return regCheatSheetWS;
}
const char* DivPlatformSwan::getEffectName(unsigned char effect) {
switch (effect) {
case 0x10:
return "10xx: Change waveform";
break;
case 0x11:
return "11xx: Setup noise mode (0: disabled; 1-8: enabled/tap)";
break;
case 0x12:
return "12xx: Setup sweep period (0: disabled; 1-20: enabled/period)";
break;
case 0x13:
return "13xx: Set sweep amount";
break;
case 0x17:
return "17xx: Toggle PCM mode";
break;
}
return NULL;
}
void DivPlatformSwan::acquire(short* bufL, short* bufR, size_t start, size_t len) {
for (size_t h=start; h<start+len; h++) {
// PCM part
if (pcm && dacSample!=-1) {
dacPeriod+=dacRate;
while (dacPeriod>rate) {
DivSample* s=parent->getSample(dacSample);
if (s->samples<=0) {
dacSample=-1;
continue;
}
rWrite(0x09,(unsigned char)s->data8[dacPos++]+0x80);
if (dacPos>=s->samples) {
if (s->loopStart>=0 && s->loopStart<=(int)s->samples) {
dacPos=s->loopStart;
} else {
dacSample=-1;
}
}
dacPeriod-=rate;
}
}
// the rest
while (!writes.empty()) {
QueuedWrite w=writes.front();
regPool[w.addr]=w.val;
if (w.addr<0x40) ws->SoundWrite(w.addr|0x80,w.val);
else ws->RAMWrite(w.addr&0x3f,w.val);
writes.pop();
}
int16_t samp[2]{0, 0};
ws->SoundUpdate(16);
ws->SoundFlush(samp, 1);
bufL[h]=samp[0];
bufR[h]=samp[1];
}
}
void DivPlatformSwan::updateWave(int ch) {
DivWavetable* wt=parent->getWave(chan[ch].wave);
unsigned char addr=0x40+ch*16;
if (wt->max<1 || wt->len<1) {
for (int i=0; i<16; i++) {
rWrite(addr+i,0);
}
} else {
for (int i=0; i<16; i++) {
unsigned char nibble1=(wt->data[(i*2)*wt->len/32]*15)/wt->max;
unsigned char nibble2=(wt->data[(1+i*2)*wt->len/32]*15)/wt->max;
rWrite(addr+i,nibble1|(nibble2<<4));
}
}
}
void DivPlatformSwan::calcAndWriteOutVol(int ch, int env) {
int vl=chan[ch].vol*((chan[ch].pan>>4)&0x0f)*env/225;
int vr=chan[ch].vol*(chan[ch].pan&0x0f)*env/225;
if (ch==1&&pcm) {
vl=(vl>0)?((vl>7)?3:2):0;
vr=(vr>0)?((vr>7)?3:2):0;
chan[1].outVol=vr|(vl<<2);
} else {
chan[ch].outVol=vr|(vl<<4);
}
writeOutVol(ch);
}
void DivPlatformSwan::writeOutVol(int ch) {
unsigned char val=isMuted[ch]?0:chan[ch].outVol;
if (ch==1&&pcm) {
rWrite(0x14,val)
} else {
rWrite(0x08+ch,val);
}
}
void DivPlatformSwan::tick() {
unsigned char sndCtrl=(pcm?0x20:0)|(sweep?0x40:0)|((noise>0)?0x80:0);
for (int i=0; i<4; i++) {
chan[i].std.next();
if (chan[i].std.willVol) {
int env=chan[i].std.vol;
if(parent->getIns(chan[i].ins)->type==DIV_INS_AMIGA) {
env=MIN(env/4,15);
}
calcAndWriteOutVol(i,env);
}
if (chan[i].std.hadArp) {
if (!chan[i].inPorta) {
if (chan[i].std.arpMode) {
chan[i].baseFreq=NOTE_PERIODIC(chan[i].std.arp);
} else {
chan[i].baseFreq=NOTE_PERIODIC(chan[i].note+chan[i].std.arp);
}
}
chan[i].freqChanged=true;
} else {
if (chan[i].std.arpMode && chan[i].std.finishedArp) {
chan[i].baseFreq=NOTE_PERIODIC(chan[i].note);
chan[i].freqChanged=true;
}
}
if (chan[i].std.hadWave && !(i==1 && pcm)) {
if (chan[i].wave!=chan[i].std.wave) {
chan[i].wave=chan[i].std.wave;
updateWave(i);
}
}
if (chan[i].active) {
sndCtrl|=(1<<i);
}
if (chan[i].freqChanged || chan[i].keyOn || chan[i].keyOff) {
chan[i].freq=parent->calcFreq(chan[i].baseFreq,chan[i].pitch,true);
if (i==1 && pcm && furnaceDac) {
double off=1.0;
if (dacSample>=0 && dacSample<parent->song.sampleLen) {
DivSample* s=parent->getSample(dacSample);
if (s->centerRate<1) {
off=1.0;
} else {
off=8363.0/(double)s->centerRate;
}
}
dacRate=((double)chipClock/2)/MAX(1,off*chan[i].freq);
if (dumpWrites) addWrite(0xffff0001,dacRate);
}
if (chan[i].freq>2048) chan[i].freq=2048;
if (chan[i].freq<1) chan[i].freq=1;
int rVal=2048-chan[i].freq;
rWrite(i*2,rVal&0xff);
rWrite(i*2+1,rVal>>8);
if (chan[i].keyOn) {
if (!chan[i].std.willVol) {
calcAndWriteOutVol(i,15);
}
if (chan[i].wave<0) {
chan[i].wave=0;
updateWave(i);
}
chan[i].keyOn=false;
}
if (chan[i].keyOff) {
chan[i].keyOff=false;
}
chan[i].freqChanged=false;
}
}
if (chan[3].std.hadDuty) {
noise=chan[3].std.duty;
if (noise>0) {
rWrite(0x0e,(noise-1)&0x07|0x18);
sndCtrl|=0x80;
} else {
sndCtrl&=~0x80;
}
}
rWrite(0x10,sndCtrl);
}
int DivPlatformSwan::dispatch(DivCommand c) {
switch (c.cmd) {
case DIV_CMD_NOTE_ON: {
DivInstrument* ins=parent->getIns(chan[c.chan].ins);
if (c.chan==1) {
if (ins->type==DIV_INS_AMIGA) {
pcm=true;
} else if (furnaceDac) {
pcm=false;
}
if (pcm) {
if (skipRegisterWrites) break;
dacPos=0;
dacPeriod=0;
if (ins->type==DIV_INS_AMIGA) {
dacSample=ins->amiga.initSample;
if (dacSample<0 || dacSample>=parent->song.sampleLen) {
dacSample=-1;
if (dumpWrites) addWrite(0xffff0002,0);
break;
} else {
if (dumpWrites) {
addWrite(0xffff0000,dacSample);
}
}
if (c.value!=DIV_NOTE_NULL) {
chan[1].baseFreq=NOTE_PERIODIC(c.value);
chan[1].freqChanged=true;
chan[1].note=c.value;
}
chan[1].active=true;
chan[1].keyOn=true;
chan[1].std.init(ins);
furnaceDac=true;
} else {
if (c.value!=DIV_NOTE_NULL) {
chan[1].note=c.value;
}
dacSample=12*sampleBank+chan[1].note%12;
if (dacSample>=parent->song.sampleLen) {
dacSample=-1;
if (dumpWrites) addWrite(0xffff0002,0);
break;
} else {
if (dumpWrites) addWrite(0xffff0000,dacSample);
}
dacRate=parent->getSample(dacSample)->rate;
if (dumpWrites) {
addWrite(0xffff0001,dacRate);
}
chan[1].active=true;
chan[1].keyOn=true;
furnaceDac=false;
}
break;
}
}
if (c.value!=DIV_NOTE_NULL) {
chan[c.chan].baseFreq=NOTE_PERIODIC(c.value);
chan[c.chan].freqChanged=true;
chan[c.chan].note=c.value;
}
chan[c.chan].active=true;
chan[c.chan].keyOn=true;
chan[c.chan].std.init(ins);
break;
}
case DIV_CMD_NOTE_OFF:
if (c.chan==1&&pcm) {
dacSample=-1;
if (dumpWrites) addWrite(0xffff0002,0);
pcm=false;
}
chan[c.chan].active=false;
chan[c.chan].keyOff=true;
chan[c.chan].std.init(NULL);
break;
case DIV_CMD_NOTE_OFF_ENV:
case DIV_CMD_ENV_RELEASE:
chan[c.chan].std.release();
break;
case DIV_CMD_INSTRUMENT:
if (chan[c.chan].ins!=c.value || c.value2==1) {
chan[c.chan].ins=c.value;
}
break;
case DIV_CMD_VOLUME:
if (chan[c.chan].vol!=c.value) {
chan[c.chan].vol=c.value;
if (!chan[c.chan].std.willVol) {
calcAndWriteOutVol(c.chan,15);
}
}
break;
case DIV_CMD_GET_VOLUME:
return chan[c.chan].vol;
break;
case DIV_CMD_PITCH:
chan[c.chan].pitch=c.value;
chan[c.chan].freqChanged=true;
break;
case DIV_CMD_WAVE:
chan[c.chan].wave=c.value;
updateWave(c.chan);
chan[c.chan].keyOn=true;
break;
case DIV_CMD_WS_SWEEP_TIME:
if (c.chan==2) {
if (c.value==0) {
sweep=false;
} else {
sweep=true;
rWrite(0x0d,(c.value-1)&0xff);
}
}
break;
case DIV_CMD_WS_SWEEP_AMOUNT:
if (c.chan==2) {
rWrite(0x0c,c.value&0xff);
}
break;
case DIV_CMD_NOTE_PORTA: {
int destFreq=NOTE_PERIODIC(c.value2);
bool return2=false;
if (destFreq>chan[c.chan].baseFreq) {
chan[c.chan].baseFreq+=c.value;
if (chan[c.chan].baseFreq>=destFreq) {
chan[c.chan].baseFreq=destFreq;
return2=true;
}
} else {
chan[c.chan].baseFreq-=c.value;
if (chan[c.chan].baseFreq<=destFreq) {
chan[c.chan].baseFreq=destFreq;
return2=true;
}
}
chan[c.chan].freqChanged=true;
if (return2) {
chan[c.chan].inPorta=false;
return 2;
}
break;
}
case DIV_CMD_STD_NOISE_MODE:
if (c.chan==3) {
noise=c.value&0xff;
if (noise>0) rWrite(0x0e,(noise-1)&0x07|0x18);
}
break;
case DIV_CMD_SAMPLE_MODE:
if (c.chan==1) pcm=c.value;
break;
case DIV_CMD_SAMPLE_BANK:
sampleBank=c.value;
if (sampleBank>(parent->song.sample.size()/12)) {
sampleBank=parent->song.sample.size()/12;
}
break;
case DIV_CMD_PANNING: {
chan[c.chan].pan=c.value;
if (!chan[c.chan].std.willVol) {
calcAndWriteOutVol(c.chan,15);
}
break;
}
case DIV_CMD_LEGATO:
chan[c.chan].baseFreq=NOTE_PERIODIC(c.value+((chan[c.chan].std.willArp && !chan[c.chan].std.arpMode)?(chan[c.chan].std.arp):(0)));
chan[c.chan].freqChanged=true;
chan[c.chan].note=c.value;
break;
case DIV_CMD_PRE_PORTA:
if (chan[c.chan].active && c.value2) {
if (parent->song.resetMacroOnPorta) chan[c.chan].std.init(parent->getIns(chan[c.chan].ins));
}
chan[c.chan].inPorta=c.value;
break;
case DIV_CMD_GET_VOLMAX:
return 15;
break;
case DIV_ALWAYS_SET_VOLUME:
return 1;
break;
default:
break;
}
return 1;
}
void DivPlatformSwan::muteChannel(int ch, bool mute) {
isMuted[ch]=mute;
writeOutVol(ch);
}
void DivPlatformSwan::forceIns() {
for (int i=0; i<4; i++) {
chan[i].insChanged=true;
chan[i].freqChanged=true;
updateWave(i);
writeOutVol(i);
}
}
void* DivPlatformSwan::getChanState(int ch) {
return &chan[ch];
}
unsigned char* DivPlatformSwan::getRegisterPool() {
// get Random from emulator
regPool[0x12]=ws->SoundRead(0x92);
regPool[0x13]=ws->SoundRead(0x93);
return regPool;
}
int DivPlatformSwan::getRegisterPoolSize() {
return 128;
}
void DivPlatformSwan::reset() {
while (!writes.empty()) writes.pop();
memset(regPool,0,128);
for (int i=0; i<4; i++) {
chan[i]=Channel();
chan[i].vol=15;
chan[i].pan=0xff;
rWrite(0x08+i,0xff);
}
if (dumpWrites) {
addWrite(0xffffffff,0);
}
ws->SoundReset();
pcm=false;
sweep=false;
furnaceDac=false;
noise=0;
dacPeriod=0;
dacRate=0;
dacPos=0;
dacSample=-1;
sampleBank=0;
rWrite(0x0f,0x00); // wave table at 0x0000
rWrite(0x11,0x09); // enable speakers
}
bool DivPlatformSwan::isStereo() {
return true;
}
void DivPlatformSwan::notifyWaveChange(int wave) {
for (int i=0; i<4; i++) {
if (chan[i].wave==wave) {
updateWave(i);
}
}
}
void DivPlatformSwan::notifyInsDeletion(void* ins) {
for (int i=0; i<4; i++) {
chan[i].std.notifyInsDeletion((DivInstrument*)ins);
}
}
void DivPlatformSwan::poke(unsigned int addr, unsigned short val) {
rWrite(addr,val);
}
void DivPlatformSwan::poke(std::vector<DivRegWrite>& wlist) {
for (DivRegWrite& i: wlist) rWrite(i.addr,i.val);
}
int DivPlatformSwan::init(DivEngine* p, int channels, int sugRate, unsigned int flags) {
parent=p;
dumpWrites=false;
skipRegisterWrites=false;
chipClock=3072000;
rate=chipClock/16; // = 192000kHz, should be enough
for (int i=0; i<4; i++) {
isMuted[i]=false;
}
ws=new WSwan();
reset();
return 4;
}
void DivPlatformSwan::quit() {
delete ws;
}
DivPlatformSwan::~DivPlatformSwan() {
}

View file

@ -0,0 +1,95 @@
/**
* Furnace Tracker - multi-system chiptune tracker
* Copyright (C) 2021-2022 tildearrow and contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifndef _SWAN_H
#define _SWAN_H
#include "../dispatch.h"
#include "../macroInt.h"
#include "sound/swan.h"
#include <queue>
class DivPlatformSwan: public DivDispatch {
struct Channel {
int freq, baseFreq, pitch, note;
unsigned char ins, pan;
bool active, insChanged, freqChanged, keyOn, keyOff, inPorta;
int vol, outVol, wave;
DivMacroInt std;
Channel():
freq(0),
baseFreq(0),
pitch(0),
note(0),
ins(-1),
pan(255),
active(false),
insChanged(true),
freqChanged(false),
keyOn(false),
keyOff(false),
inPorta(false),
vol(15),
outVol(15),
wave(-1) {}
};
Channel chan[4];
bool isMuted[4];
bool pcm, sweep, furnaceDac;
unsigned char sampleBank, noise;
int dacPeriod, dacRate;
unsigned int dacPos;
int dacSample;
unsigned char regPool[0x80];
struct QueuedWrite {
unsigned char addr;
unsigned char val;
QueuedWrite(unsigned char a, unsigned char v): addr(a), val(v) {}
};
std::queue<QueuedWrite> writes;
WSwan* ws;
void updateWave(int ch);
friend void putDispatchChan(void*,int,int);
public:
void acquire(short* bufL, short* bufR, size_t start, size_t len);
int dispatch(DivCommand c);
void* getChanState(int chan);
unsigned char* getRegisterPool();
int getRegisterPoolSize();
void reset();
void forceIns();
void tick();
void muteChannel(int ch, bool mute);
void notifyWaveChange(int wave);
void notifyInsDeletion(void* ins);
bool isStereo();
void poke(unsigned int addr, unsigned short val);
void poke(std::vector<DivRegWrite>& wlist);
const char** getRegisterSheet();
const char* getEffectName(unsigned char effect);
int init(DivEngine* parent, int channels, int sugRate, unsigned int flags);
void quit();
~DivPlatformSwan();
private:
void calcAndWriteOutVol(int ch, int env);
void writeOutVol(int ch);
};
#endif

View file

@ -251,6 +251,27 @@ bool DivEngine::perSystemEffect(int ch, unsigned char effect, unsigned char effe
break;
}
break;
case DIV_SYSTEM_SWAN:
switch (effect) {
case 0x10: // select waveform
dispatchCmd(DivCommand(DIV_CMD_WAVE,ch,effectVal));
break;
case 0x11: // noise mode
dispatchCmd(DivCommand(DIV_CMD_STD_NOISE_MODE,ch,effectVal));
break;
case 0x12: // sweep period
dispatchCmd(DivCommand(DIV_CMD_WS_SWEEP_TIME,ch,effectVal));
break;
case 0x13: // sweep amount
dispatchCmd(DivCommand(DIV_CMD_WS_SWEEP_AMOUNT,ch,effectVal));
break;
case 0x17: // PCM enable
dispatchCmd(DivCommand(DIV_CMD_SAMPLE_MODE,ch,(effectVal>0)));
break;
default:
return false;
}
break;
default:
return false;
}

View file

@ -80,6 +80,10 @@ int SafeWriter::writeC(signed char val) {
int SafeWriter::writeS(short val) {
return write(&val,2);
}
int SafeWriter::writeS_BE(short val) {
unsigned char bytes[2]{(unsigned char)((val>>8)&0xff), (unsigned char)(val&0xff)};
return write(bytes,2);
}
int SafeWriter::writeI(int val) {
return write(&val,4);

View file

@ -1616,6 +1616,7 @@ bool DivEngine::isVGMExportable(DivSystem which) {
case DIV_SYSTEM_OPLL:
case DIV_SYSTEM_OPLL_DRUMS:
case DIV_SYSTEM_VRC7:
case DIV_SYSTEM_SWAN:
return true;
default:
return false;

View file

@ -25,119 +25,123 @@
constexpr int MASTER_CLOCK_PREC=(sizeof(void*)==8)?8:0;
void DivEngine::performVGMWrite(SafeWriter* w, DivSystem sys, DivRegWrite& write, int streamOff, double* loopTimer, double* loopFreq, int* loopSample, bool isSecond) {
unsigned char baseAddr1=isSecond?0xa0:0x50;
unsigned char baseAddr2=isSecond?0x80:0;
unsigned short baseAddr2S=isSecond?0x8000:0;
unsigned char smsAddr=isSecond?0x30:0x50;
if (write.addr==0xffffffff) { // Furnace fake reset
switch (sys) {
case DIV_SYSTEM_YM2612:
case DIV_SYSTEM_YM2612_EXT:
for (int i=0; i<3; i++) { // set SL and RR to highest
w->writeC(isSecond?0xa2:0x52);
w->writeC(2|baseAddr1);
w->writeC(0x80+i);
w->writeC(0xff);
w->writeC(isSecond?0xa2:0x52);
w->writeC(2|baseAddr1);
w->writeC(0x84+i);
w->writeC(0xff);
w->writeC(isSecond?0xa2:0x52);
w->writeC(2|baseAddr1);
w->writeC(0x88+i);
w->writeC(0xff);
w->writeC(isSecond?0xa2:0x52);
w->writeC(2|baseAddr1);
w->writeC(0x8c+i);
w->writeC(0xff);
w->writeC(isSecond?0xa3:0x53);
w->writeC(3|baseAddr1);
w->writeC(0x80+i);
w->writeC(0xff);
w->writeC(isSecond?0xa3:0x53);
w->writeC(3|baseAddr1);
w->writeC(0x84+i);
w->writeC(0xff);
w->writeC(isSecond?0xa3:0x53);
w->writeC(3|baseAddr1);
w->writeC(0x88+i);
w->writeC(0xff);
w->writeC(isSecond?0xa3:0x53);
w->writeC(3|baseAddr1);
w->writeC(0x8c+i);
w->writeC(0xff);
}
for (int i=0; i<3; i++) { // note off
w->writeC(isSecond?0xa2:0x52);
w->writeC(2|baseAddr1);
w->writeC(0x28);
w->writeC(i);
w->writeC(isSecond?0xa2:0x52);
w->writeC(2|baseAddr1);
w->writeC(0x28);
w->writeC(4+i);
}
w->writeC(isSecond?0xa2:0x52); // disable DAC
w->writeC(2|baseAddr1); // disable DAC
w->writeC(0x2b);
w->writeC(0);
break;
case DIV_SYSTEM_SMS:
for (int i=0; i<4; i++) {
w->writeC(isSecond?0x30:0x50);
w->writeC(smsAddr);
w->writeC(0x90|(i<<5)|15);
}
break;
case DIV_SYSTEM_GB:
// square 1
w->writeC(0xb3);
w->writeC(isSecond?0x82:2);
w->writeC(2|baseAddr2);
w->writeC(0);
w->writeC(0xb3);
w->writeC(isSecond?0x84:4);
w->writeC(4|baseAddr2);
w->writeC(0x80);
// square 2
w->writeC(0xb3);
w->writeC(isSecond?0x87:7);
w->writeC(7|baseAddr2);
w->writeC(0);
w->writeC(0xb3);
w->writeC(isSecond?0x89:9);
w->writeC(9|baseAddr2);
w->writeC(0x80);
// wave
w->writeC(0xb3);
w->writeC(isSecond?0x8c:0x0c);
w->writeC(0x0c|baseAddr2);
w->writeC(0);
w->writeC(0xb3);
w->writeC(isSecond?0x8e:0x0e);
w->writeC(0x0e|baseAddr2);
w->writeC(0x80);
// noise
w->writeC(0xb3);
w->writeC(isSecond?0x91:0x11);
w->writeC(0x11|baseAddr2);
w->writeC(0);
w->writeC(0xb3);
w->writeC(isSecond?0x93:0x13);
w->writeC(0x13|baseAddr2);
w->writeC(0x80);
break;
case DIV_SYSTEM_PCE:
for (int i=0; i<6; i++) {
w->writeC(0xb9);
w->writeC(isSecond?0x80:0);
w->writeC(0|baseAddr2);
w->writeC(i);
w->writeC(0xb9);
w->writeC(isSecond?0x84:4);
w->writeC(4|baseAddr2);
w->writeC(0);
}
break;
case DIV_SYSTEM_NES:
w->writeC(0xb4);
w->writeC(isSecond?0x95:0x15);
w->writeC(0x15|baseAddr2);
w->writeC(0);
break;
case DIV_SYSTEM_YM2151:
for (int i=0; i<8; i++) {
w->writeC(isSecond?0xa4:0x54);
w->writeC(4|baseAddr1);
w->writeC(0xe0+i);
w->writeC(0xff);
w->writeC(isSecond?0xa4:0x54);
w->writeC(4|baseAddr1);
w->writeC(0xe8+i);
w->writeC(0xff);
w->writeC(isSecond?0xa4:0x54);
w->writeC(4|baseAddr1);
w->writeC(0xf0+i);
w->writeC(0xff);
w->writeC(isSecond?0xa4:0x54);
w->writeC(4|baseAddr1);
w->writeC(0xf8+i);
w->writeC(0xff);
w->writeC(isSecond?0xa4:0x54);
w->writeC(4|baseAddr1);
w->writeC(0x08);
w->writeC(i);
}
@ -146,7 +150,7 @@ void DivEngine::performVGMWrite(SafeWriter* w, DivSystem sys, DivRegWrite& write
case DIV_SYSTEM_SEGAPCM_COMPAT:
for (int i=0; i<16; i++) {
w->writeC(0xc0);
w->writeS((isSecond?0x8086:0x86)+(i<<3));
w->writeS((0x86|baseAddr2S)+(i<<3));
w->writeC(3);
}
break;
@ -157,60 +161,60 @@ void DivEngine::performVGMWrite(SafeWriter* w, DivSystem sys, DivRegWrite& write
case DIV_SYSTEM_YM2610_FULL_EXT:
case DIV_SYSTEM_YM2610B_EXT:
for (int i=0; i<2; i++) { // set SL and RR to highest
w->writeC(isSecond?0xa8:0x58);
w->writeC(8|baseAddr1);
w->writeC(0x81+i);
w->writeC(0xff);
w->writeC(isSecond?0xa8:0x58);
w->writeC(8|baseAddr1);
w->writeC(0x85+i);
w->writeC(0xff);
w->writeC(isSecond?0xa8:0x58);
w->writeC(8|baseAddr1);
w->writeC(0x89+i);
w->writeC(0xff);
w->writeC(isSecond?0xa8:0x58);
w->writeC(8|baseAddr1);
w->writeC(0x8d+i);
w->writeC(0xff);
w->writeC(isSecond?0xa9:0x59);
w->writeC(9|baseAddr1);
w->writeC(0x81+i);
w->writeC(0xff);
w->writeC(isSecond?0xa9:0x59);
w->writeC(9|baseAddr1);
w->writeC(0x85+i);
w->writeC(0xff);
w->writeC(isSecond?0xa9:0x59);
w->writeC(9|baseAddr1);
w->writeC(0x89+i);
w->writeC(0xff);
w->writeC(isSecond?0xa9:0x59);
w->writeC(9|baseAddr1);
w->writeC(0x8d+i);
w->writeC(0xff);
}
for (int i=0; i<2; i++) { // note off
w->writeC(isSecond?0xa8:0x58);
w->writeC(8|baseAddr1);
w->writeC(0x28);
w->writeC(1+i);
w->writeC(isSecond?0xa8:0x58);
w->writeC(8|baseAddr1);
w->writeC(0x28);
w->writeC(5+i);
}
// reset AY
w->writeC(isSecond?0xa8:0x58);
w->writeC(8|baseAddr1);
w->writeC(7);
w->writeC(0x3f);
w->writeC(isSecond?0xa8:0x58);
w->writeC(8|baseAddr1);
w->writeC(8);
w->writeC(0);
w->writeC(isSecond?0xa8:0x58);
w->writeC(8|baseAddr1);
w->writeC(9);
w->writeC(0);
w->writeC(isSecond?0xa8:0x58);
w->writeC(8|baseAddr1);
w->writeC(10);
w->writeC(0);
// reset sample
w->writeC(isSecond?0xa9:0x59);
w->writeC(9|baseAddr1);
w->writeC(0);
w->writeC(0xbf);
break;
@ -218,56 +222,56 @@ void DivEngine::performVGMWrite(SafeWriter* w, DivSystem sys, DivRegWrite& write
case DIV_SYSTEM_OPLL_DRUMS:
case DIV_SYSTEM_VRC7:
for (int i=0; i<9; i++) {
w->writeC(isSecond?0xa1:0x51);
w->writeC(1|baseAddr1);
w->writeC(0x20+i);
w->writeC(0);
w->writeC(isSecond?0xa1:0x51);
w->writeC(1|baseAddr1);
w->writeC(0x30+i);
w->writeC(0);
w->writeC(isSecond?0xa1:0x51);
w->writeC(1|baseAddr1);
w->writeC(0x10+i);
w->writeC(0);
}
break;
case DIV_SYSTEM_AY8910:
w->writeC(0xa0);
w->writeC(isSecond?0x87:7);
w->writeC(7|baseAddr2);
w->writeC(0x3f);
w->writeC(0xa0);
w->writeC(isSecond?0x88:8);
w->writeC(8|baseAddr2);
w->writeC(0);
w->writeC(0xa0);
w->writeC(isSecond?0x89:9);
w->writeC(9|baseAddr2);
w->writeC(0);
w->writeC(0xa0);
w->writeC(isSecond?0x8a:10);
w->writeC(10|baseAddr2);
w->writeC(0);
break;
case DIV_SYSTEM_AY8930:
w->writeC(0xa0);
w->writeC(isSecond?0x8d:0x0d);
w->writeC(0x0d|baseAddr2);
w->writeC(0);
w->writeC(0xa0);
w->writeC(isSecond?0x8d:0x0d);
w->writeC(0x0d|baseAddr2);
w->writeC(0xa0);
break;
case DIV_SYSTEM_SAA1099:
w->writeC(0xbd);
w->writeC(isSecond?0x9c:0x1c);
w->writeC(0x1c|baseAddr2);
w->writeC(0x02);
w->writeC(0xbd);
w->writeC(isSecond?0x94:0x14);
w->writeC(0x14|baseAddr2);
w->writeC(0);
w->writeC(0xbd);
w->writeC(isSecond?0x95:0x15);
w->writeC(0x15|baseAddr2);
w->writeC(0);
for (int i=0; i<6; i++) {
w->writeC(0xbd);
w->writeC((isSecond?0x80:0)+i);
w->writeC((0|baseAddr2)+i);
w->writeC(0);
}
break;
@ -346,49 +350,49 @@ void DivEngine::performVGMWrite(SafeWriter* w, DivSystem sys, DivRegWrite& write
case DIV_SYSTEM_YM2612_EXT:
switch (write.addr>>8) {
case 0: // port 0
w->writeC(isSecond?0xa2:0x52);
w->writeC(2|baseAddr1);
w->writeC(write.addr&0xff);
w->writeC(write.val);
break;
case 1: // port 1
w->writeC(isSecond?0xa3:0x53);
w->writeC(3|baseAddr1);
w->writeC(write.addr&0xff);
w->writeC(write.val);
break;
case 2: // PSG
w->writeC(isSecond?0x30:0x50);
w->writeC(smsAddr);
w->writeC(write.val);
break;
}
break;
case DIV_SYSTEM_SMS:
w->writeC(isSecond?0x30:0x50);
w->writeC(smsAddr);
w->writeC(write.val);
break;
case DIV_SYSTEM_GB:
w->writeC(0xb3);
w->writeC((isSecond?0x80:0)|((write.addr-16)&0xff));
w->writeC(baseAddr2|((write.addr-16)&0xff));
w->writeC(write.val);
break;
case DIV_SYSTEM_PCE:
w->writeC(0xb9);
w->writeC((isSecond?0x80:0)|(write.addr&0xff));
w->writeC(baseAddr2|(write.addr&0xff));
w->writeC(write.val);
break;
case DIV_SYSTEM_NES:
w->writeC(0xb4);
w->writeC((isSecond?0x80:0)|(write.addr&0xff));
w->writeC(baseAddr2|(write.addr&0xff));
w->writeC(write.val);
break;
case DIV_SYSTEM_YM2151:
w->writeC(isSecond?0xa4:0x54);
w->writeC(4|baseAddr1);
w->writeC(write.addr&0xff);
w->writeC(write.val);
break;
case DIV_SYSTEM_SEGAPCM:
case DIV_SYSTEM_SEGAPCM_COMPAT:
w->writeC(0xc0);
w->writeS((isSecond?0x8000:0)|(write.addr&0xffff));
w->writeS(baseAddr2S|(write.addr&0xffff));
w->writeC(write.val);
break;
case DIV_SYSTEM_YM2610:
@ -399,12 +403,12 @@ void DivEngine::performVGMWrite(SafeWriter* w, DivSystem sys, DivRegWrite& write
case DIV_SYSTEM_YM2610B_EXT:
switch (write.addr>>8) {
case 0: // port 0
w->writeC(isSecond?0xa8:0x58);
w->writeC(8|baseAddr1);
w->writeC(write.addr&0xff);
w->writeC(write.val);
break;
case 1: // port 1
w->writeC(isSecond?0xa9:0x59);
w->writeC(9|baseAddr1);
w->writeC(write.addr&0xff);
w->writeC(write.val);
break;
@ -413,19 +417,19 @@ void DivEngine::performVGMWrite(SafeWriter* w, DivSystem sys, DivRegWrite& write
case DIV_SYSTEM_OPLL:
case DIV_SYSTEM_OPLL_DRUMS:
case DIV_SYSTEM_VRC7:
w->writeC(isSecond?0xa1:0x51);
w->writeC(1|baseAddr1);
w->writeC(write.addr&0xff);
w->writeC(write.val);
break;
case DIV_SYSTEM_AY8910:
case DIV_SYSTEM_AY8930:
w->writeC(0xa0);
w->writeC((isSecond?0x80:0)|(write.addr&0xff));
w->writeC(baseAddr2|(write.addr&0xff));
w->writeC(write.val);
break;
case DIV_SYSTEM_SAA1099:
w->writeC(0xbd);
w->writeC((isSecond?0x80:0)|(write.addr&0xff));
w->writeC(baseAddr2|(write.addr&0xff));
w->writeC(write.val);
break;
case DIV_SYSTEM_LYNX:
@ -439,6 +443,18 @@ void DivEngine::performVGMWrite(SafeWriter* w, DivSystem sys, DivRegWrite& write
w->writeC(write.val&0xff);
w->writeC(write.addr&0xff);
break;
case DIV_SYSTEM_SWAN:
if ((write.addr&0x7f)<0x40) {
w->writeC(0xbc);
w->writeC(baseAddr2|(write.addr&0x3f));
w->writeC(write.val&0xff);
} else {
// (Wave) RAM write
w->writeC(0xc6);
w->writeS_BE(baseAddr2S|(write.addr&0x3f));
w->writeC(write.val&0xff);
}
break;
default:
logW("write not handled!\n");
break;
@ -742,6 +758,21 @@ SafeWriter* DivEngine::saveVGM(bool* sysToExport, bool loop) {
addWarning("dual QSound is not supported by the VGM format");
}
break;
case DIV_SYSTEM_SWAN:
if (!hasSwan) {
hasSwan=disCont[i].dispatch->chipClock;
willExport[i]=true;
// funny enough, VGM doesn't have support for WSC's sound DMA by design
// so DAC stream it goes
// since WS has the same PCM format as YM2612 DAC, I can just reuse this flag
writeDACSamples=true;
} else if (!(hasSwan&0x40000000)) {
isSecond[i]=true;
willExport[i]=true;
hasSwan|=0x40000000;
howManyChips++;
}
break;
default:
break;
}
@ -1027,6 +1058,24 @@ SafeWriter* DivEngine::saveVGM(bool* sysToExport, bool loop) {
streamID++;
}
break;
case DIV_SYSTEM_SWAN:
w->writeC(0x90);
w->writeC(streamID);
w->writeC(isSecond[i]?0xa1:0x21);
w->writeC(0); // port
w->writeC(0x09); // DAC
w->writeC(0x91);
w->writeC(streamID);
w->writeC(0);
w->writeC(1);
w->writeC(0);
w->writeC(0x92);
w->writeC(streamID);
w->writeI(24000); // default
streamID++;
break;
default:
break;
}

View file

@ -4640,6 +4640,7 @@ bool FurnaceGUI::loop() {
sysAddOption(DIV_SYSTEM_AY8930);
sysAddOption(DIV_SYSTEM_LYNX);
sysAddOption(DIV_SYSTEM_QSOUND);
sysAddOption(DIV_SYSTEM_SWAN);
ImGui::EndMenu();
}
if (ImGui::BeginMenu("configure system...")) {
@ -4991,6 +4992,7 @@ bool FurnaceGUI::loop() {
sysChangeOption(i,DIV_SYSTEM_AY8930);
sysChangeOption(i,DIV_SYSTEM_LYNX);
sysChangeOption(i,DIV_SYSTEM_QSOUND);
sysChangeOption(i,DIV_SYSTEM_SWAN);
ImGui::EndMenu();
}
}
@ -6408,6 +6410,12 @@ FurnaceGUI::FurnaceGUI():
0
}
));
cat.systems.push_back(FurnaceGUISysDef(
"WonderSwan", {
DIV_SYSTEM_SWAN, 64, 0, 0,
0
}
));
sysCategories.push_back(cat);
cat=FurnaceGUISysCategory("Computers");

View file

@ -1371,6 +1371,10 @@ void FurnaceGUI::drawInsEdit() {
if (ins->type==DIV_INS_PCE) {
dutyMax=1;
}
if (ins->type==DIV_INS_SWAN) {
dutyLabel="Noise";
dutyMax=8;
}
if (ins->type==DIV_INS_OPLL || ins->type==DIV_INS_OPL) {
dutyMax=0;
}
@ -1790,7 +1794,7 @@ void FurnaceGUI::drawWaveEdit() {
DivWavetable* wave=e->song.wave[curWave];
ImGui::Text("Width");
if (ImGui::IsItemHovered()) {
ImGui::SetTooltip("use a width of 32 on Game Boy and PC Engine.\nany other widths will be scaled during playback.");
ImGui::SetTooltip("use a width of 32 on Game Boy, PC Engine and WonderSwan.\nany other widths will be scaled during playback.");
}
ImGui::SameLine();
ImGui::SetNextItemWidth(128.0f*dpiScale);
@ -1804,7 +1808,7 @@ void FurnaceGUI::drawWaveEdit() {
ImGui::SameLine();
ImGui::Text("Height");
if (ImGui::IsItemHovered()) {
ImGui::SetTooltip("use a height of:\n- 15 for Game Boy\n- 31 for PC Engine\nany other heights will be scaled during playback.");
ImGui::SetTooltip("use a height of:\n- 15 for Game Boy and WonderSwan\n- 31 for PC Engine\nany other heights will be scaled during playback.");
}
ImGui::SameLine();
ImGui::SetNextItemWidth(128.0f*dpiScale);