644 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			644 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:47:12 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cbdft_12 -include rdft/scalar/hc2cb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 142 FP additions, 68 FP multiplications, | ||
|  |  * (or, 96 additions, 22 multiplications, 46 fused multiply/add), | ||
|  |  * 55 stack variables, 2 constants, and 48 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hc2cb.h"
 | ||
|  | 
 | ||
|  | static void hc2cbdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) { | ||
|  | 	       E Tv, TC, TD, T1L, T1M, T2y, Tb, T1Z, T1E, T2D, T1e, T1U, TY, T2o, T13; | ||
|  | 	       E T18, T19, T1O, T1P, T2E, Tm, T1V, T1H, T2z, T1h, T20, TO, T2p; | ||
|  | 	       { | ||
|  | 		    E T1, T4, Tu, TS, Tp, Ts, Tt, TT, T6, T9, TB, TV, Tw, Tz, TA; | ||
|  | 		    E TW; | ||
|  | 		    { | ||
|  | 			 E T2, T3, Tq, Tr; | ||
|  | 			 T1 = Rp[0]; | ||
|  | 			 T2 = Rp[WS(rs, 4)]; | ||
|  | 			 T3 = Rm[WS(rs, 3)]; | ||
|  | 			 T4 = T2 + T3; | ||
|  | 			 Tu = T2 - T3; | ||
|  | 			 TS = FNMS(KP500000000, T4, T1); | ||
|  | 			 Tp = Ip[0]; | ||
|  | 			 Tq = Ip[WS(rs, 4)]; | ||
|  | 			 Tr = Im[WS(rs, 3)]; | ||
|  | 			 Ts = Tq - Tr; | ||
|  | 			 Tt = FNMS(KP500000000, Ts, Tp); | ||
|  | 			 TT = Tr + Tq; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7, T8, Tx, Ty; | ||
|  | 			 T6 = Rm[WS(rs, 5)]; | ||
|  | 			 T7 = Rm[WS(rs, 1)]; | ||
|  | 			 T8 = Rp[WS(rs, 2)]; | ||
|  | 			 T9 = T7 + T8; | ||
|  | 			 TB = T7 - T8; | ||
|  | 			 TV = FNMS(KP500000000, T9, T6); | ||
|  | 			 Tw = Im[WS(rs, 5)]; | ||
|  | 			 Tx = Im[WS(rs, 1)]; | ||
|  | 			 Ty = Ip[WS(rs, 2)]; | ||
|  | 			 Tz = Tx - Ty; | ||
|  | 			 TA = FNMS(KP500000000, Tz, Tw); | ||
|  | 			 TW = Tx + Ty; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5, Ta, T1C, T1D; | ||
|  | 			 Tv = FMA(KP866025403, Tu, Tt); | ||
|  | 			 TC = FNMS(KP866025403, TB, TA); | ||
|  | 			 TD = Tv + TC; | ||
|  | 			 T1L = FNMS(KP866025403, Tu, Tt); | ||
|  | 			 T1M = FMA(KP866025403, TB, TA); | ||
|  | 			 T2y = T1L + T1M; | ||
|  | 			 T5 = T1 + T4; | ||
|  | 			 Ta = T6 + T9; | ||
|  | 			 Tb = T5 + Ta; | ||
|  | 			 T1Z = T5 - Ta; | ||
|  | 			 T1C = FMA(KP866025403, TT, TS); | ||
|  | 			 T1D = FNMS(KP866025403, TW, TV); | ||
|  | 			 T1E = T1C + T1D; | ||
|  | 			 T2D = T1C - T1D; | ||
|  | 			 { | ||
|  | 			      E T1c, T1d, TU, TX; | ||
|  | 			      T1c = Tp + Ts; | ||
|  | 			      T1d = Tw + Tz; | ||
|  | 			      T1e = T1c - T1d; | ||
|  | 			      T1U = T1c + T1d; | ||
|  | 			      TU = FNMS(KP866025403, TT, TS); | ||
|  | 			      TX = FMA(KP866025403, TW, TV); | ||
|  | 			      TY = TU - TX; | ||
|  | 			      T2o = TU + TX; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tc, Tf, TE, T12, TZ, T10, TH, T11, Th, Tk, TJ, T17, T14, T15, TM; | ||
|  | 		    E T16; | ||
|  | 		    { | ||
|  | 			 E Td, Te, TF, TG; | ||
|  | 			 Tc = Rp[WS(rs, 3)]; | ||
|  | 			 Td = Rm[WS(rs, 4)]; | ||
|  | 			 Te = Rm[0]; | ||
|  | 			 Tf = Td + Te; | ||
|  | 			 TE = FNMS(KP500000000, Tf, Tc); | ||
|  | 			 T12 = Td - Te; | ||
|  | 			 TZ = Ip[WS(rs, 3)]; | ||
|  | 			 TF = Im[WS(rs, 4)]; | ||
|  | 			 TG = Im[0]; | ||
|  | 			 T10 = TF + TG; | ||
|  | 			 TH = TF - TG; | ||
|  | 			 T11 = FMA(KP500000000, T10, TZ); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Ti, Tj, TK, TL; | ||
|  | 			 Th = Rm[WS(rs, 2)]; | ||
|  | 			 Ti = Rp[WS(rs, 1)]; | ||
|  | 			 Tj = Rp[WS(rs, 5)]; | ||
|  | 			 Tk = Ti + Tj; | ||
|  | 			 TJ = FNMS(KP500000000, Tk, Th); | ||
|  | 			 T17 = Ti - Tj; | ||
|  | 			 T14 = Im[WS(rs, 2)]; | ||
|  | 			 TK = Ip[WS(rs, 5)]; | ||
|  | 			 TL = Ip[WS(rs, 1)]; | ||
|  | 			 T15 = TK + TL; | ||
|  | 			 TM = TK - TL; | ||
|  | 			 T16 = FMA(KP500000000, T15, T14); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tg, Tl, T1F, T1G; | ||
|  | 			 T13 = FMA(KP866025403, T12, T11); | ||
|  | 			 T18 = FNMS(KP866025403, T17, T16); | ||
|  | 			 T19 = T13 + T18; | ||
|  | 			 T1O = FNMS(KP866025403, T12, T11); | ||
|  | 			 T1P = FMA(KP866025403, T17, T16); | ||
|  | 			 T2E = T1O + T1P; | ||
|  | 			 Tg = Tc + Tf; | ||
|  | 			 Tl = Th + Tk; | ||
|  | 			 Tm = Tg + Tl; | ||
|  | 			 T1V = Tg - Tl; | ||
|  | 			 T1F = FNMS(KP866025403, TH, TE); | ||
|  | 			 T1G = FNMS(KP866025403, TM, TJ); | ||
|  | 			 T1H = T1F + T1G; | ||
|  | 			 T2z = T1F - T1G; | ||
|  | 			 { | ||
|  | 			      E T1f, T1g, TI, TN; | ||
|  | 			      T1f = TZ - T10; | ||
|  | 			      T1g = T15 - T14; | ||
|  | 			      T1h = T1f + T1g; | ||
|  | 			      T20 = T1f - T1g; | ||
|  | 			      TI = FMA(KP866025403, TH, TE); | ||
|  | 			      TN = FMA(KP866025403, TM, TJ); | ||
|  | 			      TO = TI - TN; | ||
|  | 			      T2p = TI + TN; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tn, T1i, TP, T1a, TQ, T1j, To, T1b, T1k, TR; | ||
|  | 		    Tn = Tb + Tm; | ||
|  | 		    T1i = T1e + T1h; | ||
|  | 		    TP = TD + TO; | ||
|  | 		    T1a = TY - T19; | ||
|  | 		    To = W[0]; | ||
|  | 		    TQ = To * TP; | ||
|  | 		    T1j = To * T1a; | ||
|  | 		    TR = W[1]; | ||
|  | 		    T1b = FMA(TR, T1a, TQ); | ||
|  | 		    T1k = FNMS(TR, TP, T1j); | ||
|  | 		    Rp[0] = Tn - T1b; | ||
|  | 		    Ip[0] = T1i + T1k; | ||
|  | 		    Rm[0] = Tn + T1b; | ||
|  | 		    Im[0] = T1k - T1i; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1p, T1l, T1n, T1o, T1x, T1s, T1v, T1t, T1z, T1m, T1r; | ||
|  | 		    T1p = T1e - T1h; | ||
|  | 		    T1m = Tb - Tm; | ||
|  | 		    T1l = W[10]; | ||
|  | 		    T1n = T1l * T1m; | ||
|  | 		    T1o = W[11]; | ||
|  | 		    T1x = T1o * T1m; | ||
|  | 		    T1s = TD - TO; | ||
|  | 		    T1v = TY + T19; | ||
|  | 		    T1r = W[12]; | ||
|  | 		    T1t = T1r * T1s; | ||
|  | 		    T1z = T1r * T1v; | ||
|  | 		    { | ||
|  | 			 E T1q, T1y, T1w, T1A, T1u; | ||
|  | 			 T1q = FNMS(T1o, T1p, T1n); | ||
|  | 			 T1y = FMA(T1l, T1p, T1x); | ||
|  | 			 T1u = W[13]; | ||
|  | 			 T1w = FMA(T1u, T1v, T1t); | ||
|  | 			 T1A = FNMS(T1u, T1s, T1z); | ||
|  | 			 Rp[WS(rs, 3)] = T1q - T1w; | ||
|  | 			 Ip[WS(rs, 3)] = T1y + T1A; | ||
|  | 			 Rm[WS(rs, 3)] = T1q + T1w; | ||
|  | 			 Im[WS(rs, 3)] = T1A - T1y; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1R, T2b, T27, T29, T2a, T2l, T1B, T1J, T1K, T25, T1W, T21, T1X, T23, T2e; | ||
|  | 		    E T2h, T2f, T2j; | ||
|  | 		    { | ||
|  | 			 E T1N, T1Q, T28, T1I, T1T, T2d; | ||
|  | 			 T1N = T1L - T1M; | ||
|  | 			 T1Q = T1O - T1P; | ||
|  | 			 T1R = T1N - T1Q; | ||
|  | 			 T2b = T1N + T1Q; | ||
|  | 			 T28 = T1E + T1H; | ||
|  | 			 T27 = W[14]; | ||
|  | 			 T29 = T27 * T28; | ||
|  | 			 T2a = W[15]; | ||
|  | 			 T2l = T2a * T28; | ||
|  | 			 T1I = T1E - T1H; | ||
|  | 			 T1B = W[2]; | ||
|  | 			 T1J = T1B * T1I; | ||
|  | 			 T1K = W[3]; | ||
|  | 			 T25 = T1K * T1I; | ||
|  | 			 T1W = T1U - T1V; | ||
|  | 			 T21 = T1Z + T20; | ||
|  | 			 T1T = W[4]; | ||
|  | 			 T1X = T1T * T1W; | ||
|  | 			 T23 = T1T * T21; | ||
|  | 			 T2e = T1V + T1U; | ||
|  | 			 T2h = T1Z - T20; | ||
|  | 			 T2d = W[16]; | ||
|  | 			 T2f = T2d * T2e; | ||
|  | 			 T2j = T2d * T2h; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1S, T26, T22, T24, T1Y; | ||
|  | 			 T1S = FNMS(T1K, T1R, T1J); | ||
|  | 			 T26 = FMA(T1B, T1R, T25); | ||
|  | 			 T1Y = W[5]; | ||
|  | 			 T22 = FMA(T1Y, T21, T1X); | ||
|  | 			 T24 = FNMS(T1Y, T1W, T23); | ||
|  | 			 Rp[WS(rs, 1)] = T1S - T22; | ||
|  | 			 Ip[WS(rs, 1)] = T24 + T26; | ||
|  | 			 Rm[WS(rs, 1)] = T22 + T1S; | ||
|  | 			 Im[WS(rs, 1)] = T24 - T26; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2c, T2m, T2i, T2k, T2g; | ||
|  | 			 T2c = FNMS(T2a, T2b, T29); | ||
|  | 			 T2m = FMA(T27, T2b, T2l); | ||
|  | 			 T2g = W[17]; | ||
|  | 			 T2i = FMA(T2g, T2h, T2f); | ||
|  | 			 T2k = FNMS(T2g, T2e, T2j); | ||
|  | 			 Rp[WS(rs, 4)] = T2c - T2i; | ||
|  | 			 Ip[WS(rs, 4)] = T2k + T2m; | ||
|  | 			 Rm[WS(rs, 4)] = T2i + T2c; | ||
|  | 			 Im[WS(rs, 4)] = T2k - T2m; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2v, T2P, T2L, T2N, T2O, T2X, T2n, T2r, T2s, T2H, T2A, T2F, T2B, T2J, T2S; | ||
|  | 		    E T2V, T2T, T2Z; | ||
|  | 		    { | ||
|  | 			 E T2t, T2u, T2M, T2q, T2x, T2R; | ||
|  | 			 T2t = Tv - TC; | ||
|  | 			 T2u = T13 - T18; | ||
|  | 			 T2v = T2t + T2u; | ||
|  | 			 T2P = T2t - T2u; | ||
|  | 			 T2M = T2o - T2p; | ||
|  | 			 T2L = W[18]; | ||
|  | 			 T2N = T2L * T2M; | ||
|  | 			 T2O = W[19]; | ||
|  | 			 T2X = T2O * T2M; | ||
|  | 			 T2q = T2o + T2p; | ||
|  | 			 T2n = W[6]; | ||
|  | 			 T2r = T2n * T2q; | ||
|  | 			 T2s = W[7]; | ||
|  | 			 T2H = T2s * T2q; | ||
|  | 			 T2A = T2y + T2z; | ||
|  | 			 T2F = T2D - T2E; | ||
|  | 			 T2x = W[8]; | ||
|  | 			 T2B = T2x * T2A; | ||
|  | 			 T2J = T2x * T2F; | ||
|  | 			 T2S = T2y - T2z; | ||
|  | 			 T2V = T2D + T2E; | ||
|  | 			 T2R = W[20]; | ||
|  | 			 T2T = T2R * T2S; | ||
|  | 			 T2Z = T2R * T2V; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2w, T2I, T2G, T2K, T2C; | ||
|  | 			 T2w = FNMS(T2s, T2v, T2r); | ||
|  | 			 T2I = FMA(T2n, T2v, T2H); | ||
|  | 			 T2C = W[9]; | ||
|  | 			 T2G = FMA(T2C, T2F, T2B); | ||
|  | 			 T2K = FNMS(T2C, T2A, T2J); | ||
|  | 			 Rp[WS(rs, 2)] = T2w - T2G; | ||
|  | 			 Ip[WS(rs, 2)] = T2I + T2K; | ||
|  | 			 Rm[WS(rs, 2)] = T2w + T2G; | ||
|  | 			 Im[WS(rs, 2)] = T2K - T2I; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2Q, T2Y, T2W, T30, T2U; | ||
|  | 			 T2Q = FNMS(T2O, T2P, T2N); | ||
|  | 			 T2Y = FMA(T2L, T2P, T2X); | ||
|  | 			 T2U = W[21]; | ||
|  | 			 T2W = FMA(T2U, T2V, T2T); | ||
|  | 			 T30 = FNMS(T2U, T2S, T2Z); | ||
|  | 			 Rp[WS(rs, 5)] = T2Q - T2W; | ||
|  | 			 Ip[WS(rs, 5)] = T2Y + T30; | ||
|  | 			 Rm[WS(rs, 5)] = T2Q + T2W; | ||
|  | 			 Im[WS(rs, 5)] = T30 - T2Y; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 12 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 12, "hc2cbdft_12", twinstr, &GENUS, { 96, 22, 46, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hc2cbdft_12) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cbdft_12, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cbdft_12 -include rdft/scalar/hc2cb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 142 FP additions, 60 FP multiplications, | ||
|  |  * (or, 112 additions, 30 multiplications, 30 fused multiply/add), | ||
|  |  * 47 stack variables, 2 constants, and 48 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hc2cb.h"
 | ||
|  | 
 | ||
|  | static void hc2cbdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      DK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) { | ||
|  | 	       E Tv, T1E, TC, T1F, TW, T1x, TT, T1w, T1d, T1N, Tb, T1R, TI, T1z, TN; | ||
|  | 	       E T1A, T17, T1I, T12, T1H, T1g, T1S, Tm, T1O; | ||
|  | 	       { | ||
|  | 		    E T1, Tq, T6, TA, T4, Tp, Tt, TS, T9, Tw, Tz, TV; | ||
|  | 		    T1 = Rp[0]; | ||
|  | 		    Tq = Ip[0]; | ||
|  | 		    T6 = Rm[WS(rs, 5)]; | ||
|  | 		    TA = Im[WS(rs, 5)]; | ||
|  | 		    { | ||
|  | 			 E T2, T3, Tr, Ts; | ||
|  | 			 T2 = Rp[WS(rs, 4)]; | ||
|  | 			 T3 = Rm[WS(rs, 3)]; | ||
|  | 			 T4 = T2 + T3; | ||
|  | 			 Tp = KP866025403 * (T2 - T3); | ||
|  | 			 Tr = Im[WS(rs, 3)]; | ||
|  | 			 Ts = Ip[WS(rs, 4)]; | ||
|  | 			 Tt = Tr - Ts; | ||
|  | 			 TS = KP866025403 * (Tr + Ts); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7, T8, Tx, Ty; | ||
|  | 			 T7 = Rm[WS(rs, 1)]; | ||
|  | 			 T8 = Rp[WS(rs, 2)]; | ||
|  | 			 T9 = T7 + T8; | ||
|  | 			 Tw = KP866025403 * (T7 - T8); | ||
|  | 			 Tx = Im[WS(rs, 1)]; | ||
|  | 			 Ty = Ip[WS(rs, 2)]; | ||
|  | 			 Tz = Tx - Ty; | ||
|  | 			 TV = KP866025403 * (Tx + Ty); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tu, TB, TU, TR; | ||
|  | 			 Tu = FMA(KP500000000, Tt, Tq); | ||
|  | 			 Tv = Tp + Tu; | ||
|  | 			 T1E = Tu - Tp; | ||
|  | 			 TB = FMS(KP500000000, Tz, TA); | ||
|  | 			 TC = Tw + TB; | ||
|  | 			 T1F = TB - Tw; | ||
|  | 			 TU = FNMS(KP500000000, T9, T6); | ||
|  | 			 TW = TU + TV; | ||
|  | 			 T1x = TU - TV; | ||
|  | 			 TR = FNMS(KP500000000, T4, T1); | ||
|  | 			 TT = TR - TS; | ||
|  | 			 T1w = TR + TS; | ||
|  | 			 { | ||
|  | 			      E T1b, T1c, T5, Ta; | ||
|  | 			      T1b = Tq - Tt; | ||
|  | 			      T1c = Tz + TA; | ||
|  | 			      T1d = T1b - T1c; | ||
|  | 			      T1N = T1b + T1c; | ||
|  | 			      T5 = T1 + T4; | ||
|  | 			      Ta = T6 + T9; | ||
|  | 			      Tb = T5 + Ta; | ||
|  | 			      T1R = T5 - Ta; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tc, T10, Th, T15, Tf, TY, TH, TZ, Tk, T13, TM, T14; | ||
|  | 		    Tc = Rp[WS(rs, 3)]; | ||
|  | 		    T10 = Ip[WS(rs, 3)]; | ||
|  | 		    Th = Rm[WS(rs, 2)]; | ||
|  | 		    T15 = Im[WS(rs, 2)]; | ||
|  | 		    { | ||
|  | 			 E Td, Te, TF, TG; | ||
|  | 			 Td = Rm[WS(rs, 4)]; | ||
|  | 			 Te = Rm[0]; | ||
|  | 			 Tf = Td + Te; | ||
|  | 			 TY = KP866025403 * (Td - Te); | ||
|  | 			 TF = Im[WS(rs, 4)]; | ||
|  | 			 TG = Im[0]; | ||
|  | 			 TH = KP866025403 * (TF - TG); | ||
|  | 			 TZ = TF + TG; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Ti, Tj, TK, TL; | ||
|  | 			 Ti = Rp[WS(rs, 1)]; | ||
|  | 			 Tj = Rp[WS(rs, 5)]; | ||
|  | 			 Tk = Ti + Tj; | ||
|  | 			 T13 = KP866025403 * (Ti - Tj); | ||
|  | 			 TK = Ip[WS(rs, 5)]; | ||
|  | 			 TL = Ip[WS(rs, 1)]; | ||
|  | 			 TM = KP866025403 * (TK - TL); | ||
|  | 			 T14 = TK + TL; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TE, TJ, T16, T11; | ||
|  | 			 TE = FNMS(KP500000000, Tf, Tc); | ||
|  | 			 TI = TE + TH; | ||
|  | 			 T1z = TE - TH; | ||
|  | 			 TJ = FNMS(KP500000000, Tk, Th); | ||
|  | 			 TN = TJ + TM; | ||
|  | 			 T1A = TJ - TM; | ||
|  | 			 T16 = FMA(KP500000000, T14, T15); | ||
|  | 			 T17 = T13 - T16; | ||
|  | 			 T1I = T13 + T16; | ||
|  | 			 T11 = FMA(KP500000000, TZ, T10); | ||
|  | 			 T12 = TY + T11; | ||
|  | 			 T1H = T11 - TY; | ||
|  | 			 { | ||
|  | 			      E T1e, T1f, Tg, Tl; | ||
|  | 			      T1e = T10 - TZ; | ||
|  | 			      T1f = T14 - T15; | ||
|  | 			      T1g = T1e + T1f; | ||
|  | 			      T1S = T1e - T1f; | ||
|  | 			      Tg = Tc + Tf; | ||
|  | 			      Tl = Th + Tk; | ||
|  | 			      Tm = Tg + Tl; | ||
|  | 			      T1O = Tg - Tl; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tn, T1h, TP, T1p, T19, T1r, T1n, T1t; | ||
|  | 		    Tn = Tb + Tm; | ||
|  | 		    T1h = T1d + T1g; | ||
|  | 		    { | ||
|  | 			 E TD, TO, TX, T18; | ||
|  | 			 TD = Tv - TC; | ||
|  | 			 TO = TI - TN; | ||
|  | 			 TP = TD + TO; | ||
|  | 			 T1p = TD - TO; | ||
|  | 			 TX = TT - TW; | ||
|  | 			 T18 = T12 - T17; | ||
|  | 			 T19 = TX - T18; | ||
|  | 			 T1r = TX + T18; | ||
|  | 			 { | ||
|  | 			      E T1k, T1m, T1j, T1l; | ||
|  | 			      T1k = Tb - Tm; | ||
|  | 			      T1m = T1d - T1g; | ||
|  | 			      T1j = W[10]; | ||
|  | 			      T1l = W[11]; | ||
|  | 			      T1n = FNMS(T1l, T1m, T1j * T1k); | ||
|  | 			      T1t = FMA(T1l, T1k, T1j * T1m); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1a, T1i, To, TQ; | ||
|  | 			 To = W[0]; | ||
|  | 			 TQ = W[1]; | ||
|  | 			 T1a = FMA(To, TP, TQ * T19); | ||
|  | 			 T1i = FNMS(TQ, TP, To * T19); | ||
|  | 			 Rp[0] = Tn - T1a; | ||
|  | 			 Ip[0] = T1h + T1i; | ||
|  | 			 Rm[0] = Tn + T1a; | ||
|  | 			 Im[0] = T1i - T1h; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1s, T1u, T1o, T1q; | ||
|  | 			 T1o = W[12]; | ||
|  | 			 T1q = W[13]; | ||
|  | 			 T1s = FMA(T1o, T1p, T1q * T1r); | ||
|  | 			 T1u = FNMS(T1q, T1p, T1o * T1r); | ||
|  | 			 Rp[WS(rs, 3)] = T1n - T1s; | ||
|  | 			 Ip[WS(rs, 3)] = T1t + T1u; | ||
|  | 			 Rm[WS(rs, 3)] = T1n + T1s; | ||
|  | 			 Im[WS(rs, 3)] = T1u - T1t; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1C, T1Y, T1K, T20, T1U, T1V, T26, T27; | ||
|  | 		    { | ||
|  | 			 E T1y, T1B, T1G, T1J; | ||
|  | 			 T1y = T1w + T1x; | ||
|  | 			 T1B = T1z + T1A; | ||
|  | 			 T1C = T1y - T1B; | ||
|  | 			 T1Y = T1y + T1B; | ||
|  | 			 T1G = T1E + T1F; | ||
|  | 			 T1J = T1H - T1I; | ||
|  | 			 T1K = T1G - T1J; | ||
|  | 			 T20 = T1G + T1J; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1P, T1T, T1M, T1Q; | ||
|  | 			 T1P = T1N - T1O; | ||
|  | 			 T1T = T1R + T1S; | ||
|  | 			 T1M = W[4]; | ||
|  | 			 T1Q = W[5]; | ||
|  | 			 T1U = FMA(T1M, T1P, T1Q * T1T); | ||
|  | 			 T1V = FNMS(T1Q, T1P, T1M * T1T); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T23, T25, T22, T24; | ||
|  | 			 T23 = T1O + T1N; | ||
|  | 			 T25 = T1R - T1S; | ||
|  | 			 T22 = W[16]; | ||
|  | 			 T24 = W[17]; | ||
|  | 			 T26 = FMA(T22, T23, T24 * T25); | ||
|  | 			 T27 = FNMS(T24, T23, T22 * T25); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1L, T1W, T1v, T1D; | ||
|  | 			 T1v = W[2]; | ||
|  | 			 T1D = W[3]; | ||
|  | 			 T1L = FNMS(T1D, T1K, T1v * T1C); | ||
|  | 			 T1W = FMA(T1D, T1C, T1v * T1K); | ||
|  | 			 Rp[WS(rs, 1)] = T1L - T1U; | ||
|  | 			 Ip[WS(rs, 1)] = T1V + T1W; | ||
|  | 			 Rm[WS(rs, 1)] = T1U + T1L; | ||
|  | 			 Im[WS(rs, 1)] = T1V - T1W; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T21, T28, T1X, T1Z; | ||
|  | 			 T1X = W[14]; | ||
|  | 			 T1Z = W[15]; | ||
|  | 			 T21 = FNMS(T1Z, T20, T1X * T1Y); | ||
|  | 			 T28 = FMA(T1Z, T1Y, T1X * T20); | ||
|  | 			 Rp[WS(rs, 4)] = T21 - T26; | ||
|  | 			 Ip[WS(rs, 4)] = T27 + T28; | ||
|  | 			 Rm[WS(rs, 4)] = T26 + T21; | ||
|  | 			 Im[WS(rs, 4)] = T27 - T28; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2c, T2u, T2p, T2B, T2g, T2w, T2l, T2z; | ||
|  | 		    { | ||
|  | 			 E T2a, T2b, T2n, T2o; | ||
|  | 			 T2a = TT + TW; | ||
|  | 			 T2b = TI + TN; | ||
|  | 			 T2c = T2a + T2b; | ||
|  | 			 T2u = T2a - T2b; | ||
|  | 			 T2n = T1w - T1x; | ||
|  | 			 T2o = T1H + T1I; | ||
|  | 			 T2p = T2n - T2o; | ||
|  | 			 T2B = T2n + T2o; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2e, T2f, T2j, T2k; | ||
|  | 			 T2e = Tv + TC; | ||
|  | 			 T2f = T12 + T17; | ||
|  | 			 T2g = T2e + T2f; | ||
|  | 			 T2w = T2e - T2f; | ||
|  | 			 T2j = T1E - T1F; | ||
|  | 			 T2k = T1z - T1A; | ||
|  | 			 T2l = T2j + T2k; | ||
|  | 			 T2z = T2j - T2k; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2h, T2r, T2q, T2s; | ||
|  | 			 { | ||
|  | 			      E T29, T2d, T2i, T2m; | ||
|  | 			      T29 = W[6]; | ||
|  | 			      T2d = W[7]; | ||
|  | 			      T2h = FNMS(T2d, T2g, T29 * T2c); | ||
|  | 			      T2r = FMA(T2d, T2c, T29 * T2g); | ||
|  | 			      T2i = W[8]; | ||
|  | 			      T2m = W[9]; | ||
|  | 			      T2q = FMA(T2i, T2l, T2m * T2p); | ||
|  | 			      T2s = FNMS(T2m, T2l, T2i * T2p); | ||
|  | 			 } | ||
|  | 			 Rp[WS(rs, 2)] = T2h - T2q; | ||
|  | 			 Ip[WS(rs, 2)] = T2r + T2s; | ||
|  | 			 Rm[WS(rs, 2)] = T2h + T2q; | ||
|  | 			 Im[WS(rs, 2)] = T2s - T2r; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2x, T2D, T2C, T2E; | ||
|  | 			 { | ||
|  | 			      E T2t, T2v, T2y, T2A; | ||
|  | 			      T2t = W[18]; | ||
|  | 			      T2v = W[19]; | ||
|  | 			      T2x = FNMS(T2v, T2w, T2t * T2u); | ||
|  | 			      T2D = FMA(T2v, T2u, T2t * T2w); | ||
|  | 			      T2y = W[20]; | ||
|  | 			      T2A = W[21]; | ||
|  | 			      T2C = FMA(T2y, T2z, T2A * T2B); | ||
|  | 			      T2E = FNMS(T2A, T2z, T2y * T2B); | ||
|  | 			 } | ||
|  | 			 Rp[WS(rs, 5)] = T2x - T2C; | ||
|  | 			 Ip[WS(rs, 5)] = T2D + T2E; | ||
|  | 			 Rm[WS(rs, 5)] = T2x + T2C; | ||
|  | 			 Im[WS(rs, 5)] = T2E - T2D; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 12 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 12, "hc2cbdft_12", twinstr, &GENUS, { 112, 30, 30, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hc2cbdft_12) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cbdft_12, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #endif
 |