233 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			233 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:45:55 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "dft/codelet-dft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3bv_8 -include dft/simd/t3b.h -sign 1 */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 37 FP additions, 32 FP multiplications, | ||
|  |  * (or, 27 additions, 22 multiplications, 10 fused multiply/add), | ||
|  |  * 31 stack variables, 1 constants, and 16 memory accesses | ||
|  |  */ | ||
|  | #include "dft/simd/t3b.h"
 | ||
|  | 
 | ||
|  | static void t3bv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  R *x; | ||
|  | 	  x = ii; | ||
|  | 	  for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) { | ||
|  | 	       V T2, T3, Ta, T4, Tb, Tc, Tp; | ||
|  | 	       T2 = LDW(&(W[0])); | ||
|  | 	       T3 = LDW(&(W[TWVL * 2])); | ||
|  | 	       Ta = VZMULJ(T2, T3); | ||
|  | 	       T4 = VZMUL(T2, T3); | ||
|  | 	       Tb = LDW(&(W[TWVL * 4])); | ||
|  | 	       Tc = VZMULJ(Ta, Tb); | ||
|  | 	       Tp = VZMULJ(T2, Tb); | ||
|  | 	       { | ||
|  | 		    V T7, Tx, Ts, Ty, Tf, TA, Tk, TB, T1, T6, T5; | ||
|  | 		    T1 = LD(&(x[0]), ms, &(x[0])); | ||
|  | 		    T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | ||
|  | 		    T6 = VZMUL(T4, T5); | ||
|  | 		    T7 = VSUB(T1, T6); | ||
|  | 		    Tx = VADD(T1, T6); | ||
|  | 		    { | ||
|  | 			 V To, Tr, Tn, Tq; | ||
|  | 			 Tn = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | ||
|  | 			 To = VZMUL(Ta, Tn); | ||
|  | 			 Tq = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | ||
|  | 			 Tr = VZMUL(Tp, Tq); | ||
|  | 			 Ts = VSUB(To, Tr); | ||
|  | 			 Ty = VADD(To, Tr); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 V T9, Te, T8, Td; | ||
|  | 			 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 T9 = VZMUL(T2, T8); | ||
|  | 			 Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 Te = VZMUL(Tc, Td); | ||
|  | 			 Tf = VSUB(T9, Te); | ||
|  | 			 TA = VADD(T9, Te); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 V Th, Tj, Tg, Ti; | ||
|  | 			 Tg = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 Th = VZMUL(Tb, Tg); | ||
|  | 			 Ti = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 Tj = VZMUL(T3, Ti); | ||
|  | 			 Tk = VSUB(Th, Tj); | ||
|  | 			 TB = VADD(Th, Tj); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 V Tz, TC, TD, TE; | ||
|  | 			 Tz = VSUB(Tx, Ty); | ||
|  | 			 TC = VSUB(TA, TB); | ||
|  | 			 ST(&(x[WS(rs, 6)]), VFNMSI(TC, Tz), ms, &(x[0])); | ||
|  | 			 ST(&(x[WS(rs, 2)]), VFMAI(TC, Tz), ms, &(x[0])); | ||
|  | 			 TD = VADD(Tx, Ty); | ||
|  | 			 TE = VADD(TA, TB); | ||
|  | 			 ST(&(x[WS(rs, 4)]), VSUB(TD, TE), ms, &(x[0])); | ||
|  | 			 ST(&(x[0]), VADD(TD, TE), ms, &(x[0])); | ||
|  | 			 { | ||
|  | 			      V Tm, Tv, Tu, Tw, Tl, Tt; | ||
|  | 			      Tl = VADD(Tf, Tk); | ||
|  | 			      Tm = VFNMS(LDK(KP707106781), Tl, T7); | ||
|  | 			      Tv = VFMA(LDK(KP707106781), Tl, T7); | ||
|  | 			      Tt = VSUB(Tf, Tk); | ||
|  | 			      Tu = VFNMS(LDK(KP707106781), Tt, Ts); | ||
|  | 			      Tw = VFMA(LDK(KP707106781), Tt, Ts); | ||
|  | 			      ST(&(x[WS(rs, 3)]), VFNMSI(Tu, Tm), ms, &(x[WS(rs, 1)])); | ||
|  | 			      ST(&(x[WS(rs, 7)]), VFNMSI(Tw, Tv), ms, &(x[WS(rs, 1)])); | ||
|  | 			      ST(&(x[WS(rs, 5)]), VFMAI(Tu, Tm), ms, &(x[WS(rs, 1)])); | ||
|  | 			      ST(&(x[WS(rs, 1)]), VFMAI(Tw, Tv), ms, &(x[WS(rs, 1)])); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(0, 1), | ||
|  |      VTW(0, 3), | ||
|  |      VTW(0, 7), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const ct_desc desc = { 8, XSIMD_STRING("t3bv_8"), twinstr, &GENUS, { 27, 22, 10, 0 }, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_t3bv_8) (planner *p) { | ||
|  |      X(kdft_dit_register) (p, t3bv_8, &desc); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3bv_8 -include dft/simd/t3b.h -sign 1 */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 37 FP additions, 24 FP multiplications, | ||
|  |  * (or, 37 additions, 24 multiplications, 0 fused multiply/add), | ||
|  |  * 31 stack variables, 1 constants, and 16 memory accesses | ||
|  |  */ | ||
|  | #include "dft/simd/t3b.h"
 | ||
|  | 
 | ||
|  | static void t3bv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  R *x; | ||
|  | 	  x = ii; | ||
|  | 	  for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) { | ||
|  | 	       V T1, T4, T5, Tp, T6, T7, Tj; | ||
|  | 	       T1 = LDW(&(W[0])); | ||
|  | 	       T4 = LDW(&(W[TWVL * 2])); | ||
|  | 	       T5 = VZMULJ(T1, T4); | ||
|  | 	       Tp = VZMUL(T1, T4); | ||
|  | 	       T6 = LDW(&(W[TWVL * 4])); | ||
|  | 	       T7 = VZMULJ(T5, T6); | ||
|  | 	       Tj = VZMULJ(T1, T6); | ||
|  | 	       { | ||
|  | 		    V Ts, Tx, Tm, Ty, Ta, TA, Tf, TB, To, Tr, Tq; | ||
|  | 		    To = LD(&(x[0]), ms, &(x[0])); | ||
|  | 		    Tq = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | ||
|  | 		    Tr = VZMUL(Tp, Tq); | ||
|  | 		    Ts = VSUB(To, Tr); | ||
|  | 		    Tx = VADD(To, Tr); | ||
|  | 		    { | ||
|  | 			 V Ti, Tl, Th, Tk; | ||
|  | 			 Th = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | ||
|  | 			 Ti = VZMUL(T5, Th); | ||
|  | 			 Tk = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | ||
|  | 			 Tl = VZMUL(Tj, Tk); | ||
|  | 			 Tm = VSUB(Ti, Tl); | ||
|  | 			 Ty = VADD(Ti, Tl); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 V T3, T9, T2, T8; | ||
|  | 			 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 T3 = VZMUL(T1, T2); | ||
|  | 			 T8 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 T9 = VZMUL(T7, T8); | ||
|  | 			 Ta = VSUB(T3, T9); | ||
|  | 			 TA = VADD(T3, T9); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 V Tc, Te, Tb, Td; | ||
|  | 			 Tb = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 Tc = VZMUL(T6, Tb); | ||
|  | 			 Td = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 Te = VZMUL(T4, Td); | ||
|  | 			 Tf = VSUB(Tc, Te); | ||
|  | 			 TB = VADD(Tc, Te); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 V Tz, TC, TD, TE; | ||
|  | 			 Tz = VSUB(Tx, Ty); | ||
|  | 			 TC = VBYI(VSUB(TA, TB)); | ||
|  | 			 ST(&(x[WS(rs, 6)]), VSUB(Tz, TC), ms, &(x[0])); | ||
|  | 			 ST(&(x[WS(rs, 2)]), VADD(Tz, TC), ms, &(x[0])); | ||
|  | 			 TD = VADD(Tx, Ty); | ||
|  | 			 TE = VADD(TA, TB); | ||
|  | 			 ST(&(x[WS(rs, 4)]), VSUB(TD, TE), ms, &(x[0])); | ||
|  | 			 ST(&(x[0]), VADD(TD, TE), ms, &(x[0])); | ||
|  | 			 { | ||
|  | 			      V Tn, Tv, Tu, Tw, Tg, Tt; | ||
|  | 			      Tg = VMUL(LDK(KP707106781), VSUB(Ta, Tf)); | ||
|  | 			      Tn = VBYI(VSUB(Tg, Tm)); | ||
|  | 			      Tv = VBYI(VADD(Tm, Tg)); | ||
|  | 			      Tt = VMUL(LDK(KP707106781), VADD(Ta, Tf)); | ||
|  | 			      Tu = VSUB(Ts, Tt); | ||
|  | 			      Tw = VADD(Ts, Tt); | ||
|  | 			      ST(&(x[WS(rs, 3)]), VADD(Tn, Tu), ms, &(x[WS(rs, 1)])); | ||
|  | 			      ST(&(x[WS(rs, 7)]), VSUB(Tw, Tv), ms, &(x[WS(rs, 1)])); | ||
|  | 			      ST(&(x[WS(rs, 5)]), VSUB(Tu, Tn), ms, &(x[WS(rs, 1)])); | ||
|  | 			      ST(&(x[WS(rs, 1)]), VADD(Tv, Tw), ms, &(x[WS(rs, 1)])); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(0, 1), | ||
|  |      VTW(0, 3), | ||
|  |      VTW(0, 7), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const ct_desc desc = { 8, XSIMD_STRING("t3bv_8"), twinstr, &GENUS, { 37, 24, 0, 0 }, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_t3bv_8) (planner *p) { | ||
|  |      X(kdft_dit_register) (p, t3bv_8, &desc); | ||
|  | } | ||
|  | #endif
 |