195 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			195 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Matteo Frigo
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is free software; you can redistribute it and/or modify
							 | 
						||
| 
								 | 
							
								 * it under the terms of the GNU General Public License as published by
							 | 
						||
| 
								 | 
							
								 * the Free Software Foundation; either version 2 of the License, or
							 | 
						||
| 
								 | 
							
								 * (at your option) any later version.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is distributed in the hope that it will be useful,
							 | 
						||
| 
								 | 
							
								 * but WITHOUT ANY WARRANTY; without even the implied warranty of
							 | 
						||
| 
								 | 
							
								 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
							 | 
						||
| 
								 | 
							
								 * GNU General Public License for more details.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * You should have received a copy of the GNU General Public License
							 | 
						||
| 
								 | 
							
								 * along with this program; if not, write to the Free Software
							 | 
						||
| 
								 | 
							
								 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* This file was automatically generated --- DO NOT EDIT */
							 | 
						||
| 
								 | 
							
								/* Generated on Tue Sep 14 10:46:24 EDT 2021 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "rdft/codelet-rdft.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 10 -name r2cfII_10 -dft-II -include rdft/scalar/r2cfII.h */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * This function contains 32 FP additions, 18 FP multiplications,
							 | 
						||
| 
								 | 
							
								 * (or, 14 additions, 0 multiplications, 18 fused multiply/add),
							 | 
						||
| 
								 | 
							
								 * 21 stack variables, 4 constants, and 20 memory accesses
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								#include "rdft/scalar/r2cfII.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void r2cfII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
							 | 
						||
| 
								 | 
							
								     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
							 | 
						||
| 
								 | 
							
								     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
							 | 
						||
| 
								 | 
							
								     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
							 | 
						||
| 
								 | 
							
								     {
							 | 
						||
| 
								 | 
							
									  INT i;
							 | 
						||
| 
								 | 
							
									  for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
							 | 
						||
| 
								 | 
							
									       E T1, To, T8, Tt, Ta, Ts, Te, Tq, Th, Tn;
							 | 
						||
| 
								 | 
							
									       T1 = R0[0];
							 | 
						||
| 
								 | 
							
									       To = R1[WS(rs, 2)];
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E T2, T3, T4, T5, T6, T7;
							 | 
						||
| 
								 | 
							
										    T2 = R0[WS(rs, 2)];
							 | 
						||
| 
								 | 
							
										    T3 = R0[WS(rs, 3)];
							 | 
						||
| 
								 | 
							
										    T4 = T2 - T3;
							 | 
						||
| 
								 | 
							
										    T5 = R0[WS(rs, 4)];
							 | 
						||
| 
								 | 
							
										    T6 = R0[WS(rs, 1)];
							 | 
						||
| 
								 | 
							
										    T7 = T5 - T6;
							 | 
						||
| 
								 | 
							
										    T8 = T4 + T7;
							 | 
						||
| 
								 | 
							
										    Tt = T5 + T6;
							 | 
						||
| 
								 | 
							
										    Ta = T4 - T7;
							 | 
						||
| 
								 | 
							
										    Ts = T2 + T3;
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E Tc, Td, Tm, Tf, Tg, Tl;
							 | 
						||
| 
								 | 
							
										    Tc = R1[0];
							 | 
						||
| 
								 | 
							
										    Td = R1[WS(rs, 4)];
							 | 
						||
| 
								 | 
							
										    Tm = Tc + Td;
							 | 
						||
| 
								 | 
							
										    Tf = R1[WS(rs, 1)];
							 | 
						||
| 
								 | 
							
										    Tg = R1[WS(rs, 3)];
							 | 
						||
| 
								 | 
							
										    Tl = Tf + Tg;
							 | 
						||
| 
								 | 
							
										    Te = Tc - Td;
							 | 
						||
| 
								 | 
							
										    Tq = Tm + Tl;
							 | 
						||
| 
								 | 
							
										    Th = Tf - Tg;
							 | 
						||
| 
								 | 
							
										    Tn = Tl - Tm;
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       Cr[WS(csr, 2)] = T1 + T8;
							 | 
						||
| 
								 | 
							
									       Ci[WS(csi, 2)] = Tn - To;
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E Ti, Tk, Tb, Tj, T9;
							 | 
						||
| 
								 | 
							
										    Ti = FMA(KP618033988, Th, Te);
							 | 
						||
| 
								 | 
							
										    Tk = FNMS(KP618033988, Te, Th);
							 | 
						||
| 
								 | 
							
										    T9 = FNMS(KP250000000, T8, T1);
							 | 
						||
| 
								 | 
							
										    Tb = FMA(KP559016994, Ta, T9);
							 | 
						||
| 
								 | 
							
										    Tj = FNMS(KP559016994, Ta, T9);
							 | 
						||
| 
								 | 
							
										    Cr[WS(csr, 4)] = FNMS(KP951056516, Ti, Tb);
							 | 
						||
| 
								 | 
							
										    Cr[WS(csr, 3)] = FMA(KP951056516, Tk, Tj);
							 | 
						||
| 
								 | 
							
										    Cr[0] = FMA(KP951056516, Ti, Tb);
							 | 
						||
| 
								 | 
							
										    Cr[WS(csr, 1)] = FNMS(KP951056516, Tk, Tj);
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E Tu, Tw, Tr, Tv, Tp;
							 | 
						||
| 
								 | 
							
										    Tu = FMA(KP618033988, Tt, Ts);
							 | 
						||
| 
								 | 
							
										    Tw = FNMS(KP618033988, Ts, Tt);
							 | 
						||
| 
								 | 
							
										    Tp = FMA(KP250000000, Tn, To);
							 | 
						||
| 
								 | 
							
										    Tr = FMA(KP559016994, Tq, Tp);
							 | 
						||
| 
								 | 
							
										    Tv = FNMS(KP559016994, Tq, Tp);
							 | 
						||
| 
								 | 
							
										    Ci[0] = -(FMA(KP951056516, Tu, Tr));
							 | 
						||
| 
								 | 
							
										    Ci[WS(csi, 3)] = FMA(KP951056516, Tw, Tv);
							 | 
						||
| 
								 | 
							
										    Ci[WS(csi, 4)] = FMS(KP951056516, Tu, Tr);
							 | 
						||
| 
								 | 
							
										    Ci[WS(csi, 1)] = FNMS(KP951056516, Tw, Tv);
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const kr2c_desc desc = { 10, "r2cfII_10", { 14, 0, 18, 0 }, &GENUS };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void X(codelet_r2cfII_10) (planner *p) { X(kr2c_register) (p, r2cfII_10, &desc);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 10 -name r2cfII_10 -dft-II -include rdft/scalar/r2cfII.h */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * This function contains 32 FP additions, 12 FP multiplications,
							 | 
						||
| 
								 | 
							
								 * (or, 26 additions, 6 multiplications, 6 fused multiply/add),
							 | 
						||
| 
								 | 
							
								 * 21 stack variables, 4 constants, and 20 memory accesses
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								#include "rdft/scalar/r2cfII.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void r2cfII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
							 | 
						||
| 
								 | 
							
								     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
							 | 
						||
| 
								 | 
							
								     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
							 | 
						||
| 
								 | 
							
								     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
							 | 
						||
| 
								 | 
							
								     {
							 | 
						||
| 
								 | 
							
									  INT i;
							 | 
						||
| 
								 | 
							
									  for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
							 | 
						||
| 
								 | 
							
									       E T1, To, T8, Tq, T9, Tp, Te, Ts, Th, Tn;
							 | 
						||
| 
								 | 
							
									       T1 = R0[0];
							 | 
						||
| 
								 | 
							
									       To = R1[WS(rs, 2)];
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E T2, T3, T4, T5, T6, T7;
							 | 
						||
| 
								 | 
							
										    T2 = R0[WS(rs, 2)];
							 | 
						||
| 
								 | 
							
										    T3 = R0[WS(rs, 3)];
							 | 
						||
| 
								 | 
							
										    T4 = T2 - T3;
							 | 
						||
| 
								 | 
							
										    T5 = R0[WS(rs, 4)];
							 | 
						||
| 
								 | 
							
										    T6 = R0[WS(rs, 1)];
							 | 
						||
| 
								 | 
							
										    T7 = T5 - T6;
							 | 
						||
| 
								 | 
							
										    T8 = T4 + T7;
							 | 
						||
| 
								 | 
							
										    Tq = T5 + T6;
							 | 
						||
| 
								 | 
							
										    T9 = KP559016994 * (T4 - T7);
							 | 
						||
| 
								 | 
							
										    Tp = T2 + T3;
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E Tc, Td, Tm, Tf, Tg, Tl;
							 | 
						||
| 
								 | 
							
										    Tc = R1[0];
							 | 
						||
| 
								 | 
							
										    Td = R1[WS(rs, 4)];
							 | 
						||
| 
								 | 
							
										    Tm = Tc + Td;
							 | 
						||
| 
								 | 
							
										    Tf = R1[WS(rs, 1)];
							 | 
						||
| 
								 | 
							
										    Tg = R1[WS(rs, 3)];
							 | 
						||
| 
								 | 
							
										    Tl = Tf + Tg;
							 | 
						||
| 
								 | 
							
										    Te = Tc - Td;
							 | 
						||
| 
								 | 
							
										    Ts = KP559016994 * (Tm + Tl);
							 | 
						||
| 
								 | 
							
										    Th = Tf - Tg;
							 | 
						||
| 
								 | 
							
										    Tn = Tl - Tm;
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       Cr[WS(csr, 2)] = T1 + T8;
							 | 
						||
| 
								 | 
							
									       Ci[WS(csi, 2)] = Tn - To;
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E Ti, Tk, Tb, Tj, Ta;
							 | 
						||
| 
								 | 
							
										    Ti = FMA(KP951056516, Te, KP587785252 * Th);
							 | 
						||
| 
								 | 
							
										    Tk = FNMS(KP587785252, Te, KP951056516 * Th);
							 | 
						||
| 
								 | 
							
										    Ta = FNMS(KP250000000, T8, T1);
							 | 
						||
| 
								 | 
							
										    Tb = T9 + Ta;
							 | 
						||
| 
								 | 
							
										    Tj = Ta - T9;
							 | 
						||
| 
								 | 
							
										    Cr[WS(csr, 4)] = Tb - Ti;
							 | 
						||
| 
								 | 
							
										    Cr[WS(csr, 3)] = Tj + Tk;
							 | 
						||
| 
								 | 
							
										    Cr[0] = Tb + Ti;
							 | 
						||
| 
								 | 
							
										    Cr[WS(csr, 1)] = Tj - Tk;
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E Tr, Tw, Tu, Tv, Tt;
							 | 
						||
| 
								 | 
							
										    Tr = FMA(KP951056516, Tp, KP587785252 * Tq);
							 | 
						||
| 
								 | 
							
										    Tw = FNMS(KP587785252, Tp, KP951056516 * Tq);
							 | 
						||
| 
								 | 
							
										    Tt = FMA(KP250000000, Tn, To);
							 | 
						||
| 
								 | 
							
										    Tu = Ts + Tt;
							 | 
						||
| 
								 | 
							
										    Tv = Tt - Ts;
							 | 
						||
| 
								 | 
							
										    Ci[0] = -(Tr + Tu);
							 | 
						||
| 
								 | 
							
										    Ci[WS(csi, 3)] = Tw + Tv;
							 | 
						||
| 
								 | 
							
										    Ci[WS(csi, 4)] = Tr - Tu;
							 | 
						||
| 
								 | 
							
										    Ci[WS(csi, 1)] = Tv - Tw;
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const kr2c_desc desc = { 10, "r2cfII_10", { 26, 6, 6, 0 }, &GENUS };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void X(codelet_r2cfII_10) (planner *p) { X(kr2c_register) (p, r2cfII_10, &desc);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif
							 |