177 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			177 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:45:12 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "dft/codelet-dft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name n2fv_6 -with-ostride 2 -include dft/simd/n2f.h -store-multiple 2 */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 18 FP additions, 8 FP multiplications, | ||
|  |  * (or, 12 additions, 2 multiplications, 6 fused multiply/add), | ||
|  |  * 25 stack variables, 2 constants, and 15 memory accesses | ||
|  |  */ | ||
|  | #include "dft/simd/n2f.h"
 | ||
|  | 
 | ||
|  | static void n2fv_6(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  const R *xi; | ||
|  | 	  R *xo; | ||
|  | 	  xi = ri; | ||
|  | 	  xo = ro; | ||
|  | 	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(12, is), MAKE_VOLATILE_STRIDE(12, os)) { | ||
|  | 	       V T3, Td, T6, Te, T9, Tf, Ta, Tg, T1, T2, Tj, Tk; | ||
|  | 	       T1 = LD(&(xi[0]), ivs, &(xi[0])); | ||
|  | 	       T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 	       T3 = VSUB(T1, T2); | ||
|  | 	       Td = VADD(T1, T2); | ||
|  | 	       { | ||
|  | 		    V T4, T5, T7, T8; | ||
|  | 		    T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | ||
|  | 		    T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 		    T6 = VSUB(T4, T5); | ||
|  | 		    Te = VADD(T4, T5); | ||
|  | 		    T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | ||
|  | 		    T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 		    T9 = VSUB(T7, T8); | ||
|  | 		    Tf = VADD(T7, T8); | ||
|  | 	       } | ||
|  | 	       Ta = VADD(T6, T9); | ||
|  | 	       Tg = VADD(Te, Tf); | ||
|  | 	       Tj = VADD(T3, Ta); | ||
|  | 	       STM2(&(xo[6]), Tj, ovs, &(xo[2])); | ||
|  | 	       Tk = VADD(Td, Tg); | ||
|  | 	       STM2(&(xo[0]), Tk, ovs, &(xo[0])); | ||
|  | 	       { | ||
|  | 		    V Tl, Tb, Tc, Tm; | ||
|  | 		    Tb = VFNMS(LDK(KP500000000), Ta, T3); | ||
|  | 		    Tc = VMUL(LDK(KP866025403), VSUB(T9, T6)); | ||
|  | 		    Tl = VFNMSI(Tc, Tb); | ||
|  | 		    STM2(&(xo[10]), Tl, ovs, &(xo[2])); | ||
|  | 		    Tm = VFMAI(Tc, Tb); | ||
|  | 		    STM2(&(xo[2]), Tm, ovs, &(xo[2])); | ||
|  | 		    STN2(&(xo[0]), Tk, Tm, ovs); | ||
|  | 		    { | ||
|  | 			 V Th, Ti, Tn, To; | ||
|  | 			 Th = VFNMS(LDK(KP500000000), Tg, Td); | ||
|  | 			 Ti = VMUL(LDK(KP866025403), VSUB(Tf, Te)); | ||
|  | 			 Tn = VFNMSI(Ti, Th); | ||
|  | 			 STM2(&(xo[4]), Tn, ovs, &(xo[0])); | ||
|  | 			 STN2(&(xo[4]), Tn, Tj, ovs); | ||
|  | 			 To = VFMAI(Ti, Th); | ||
|  | 			 STM2(&(xo[8]), To, ovs, &(xo[0])); | ||
|  | 			 STN2(&(xo[8]), To, Tl, ovs); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const kdft_desc desc = { 6, XSIMD_STRING("n2fv_6"), { 12, 2, 6, 0 }, &GENUS, 0, 2, 0, 0 }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_n2fv_6) (planner *p) { X(kdft_register) (p, n2fv_6, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name n2fv_6 -with-ostride 2 -include dft/simd/n2f.h -store-multiple 2 */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 18 FP additions, 4 FP multiplications, | ||
|  |  * (or, 16 additions, 2 multiplications, 2 fused multiply/add), | ||
|  |  * 25 stack variables, 2 constants, and 15 memory accesses | ||
|  |  */ | ||
|  | #include "dft/simd/n2f.h"
 | ||
|  | 
 | ||
|  | static void n2fv_6(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  const R *xi; | ||
|  | 	  R *xo; | ||
|  | 	  xi = ri; | ||
|  | 	  xo = ro; | ||
|  | 	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(12, is), MAKE_VOLATILE_STRIDE(12, os)) { | ||
|  | 	       V T3, Td, T6, Te, T9, Tf, Ta, Tg, T1, T2, Tj, Tk; | ||
|  | 	       T1 = LD(&(xi[0]), ivs, &(xi[0])); | ||
|  | 	       T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 	       T3 = VSUB(T1, T2); | ||
|  | 	       Td = VADD(T1, T2); | ||
|  | 	       { | ||
|  | 		    V T4, T5, T7, T8; | ||
|  | 		    T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | ||
|  | 		    T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 		    T6 = VSUB(T4, T5); | ||
|  | 		    Te = VADD(T4, T5); | ||
|  | 		    T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | ||
|  | 		    T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 		    T9 = VSUB(T7, T8); | ||
|  | 		    Tf = VADD(T7, T8); | ||
|  | 	       } | ||
|  | 	       Ta = VADD(T6, T9); | ||
|  | 	       Tg = VADD(Te, Tf); | ||
|  | 	       Tj = VADD(T3, Ta); | ||
|  | 	       STM2(&(xo[6]), Tj, ovs, &(xo[2])); | ||
|  | 	       Tk = VADD(Td, Tg); | ||
|  | 	       STM2(&(xo[0]), Tk, ovs, &(xo[0])); | ||
|  | 	       { | ||
|  | 		    V Tl, Tb, Tc, Tm; | ||
|  | 		    Tb = VFNMS(LDK(KP500000000), Ta, T3); | ||
|  | 		    Tc = VBYI(VMUL(LDK(KP866025403), VSUB(T9, T6))); | ||
|  | 		    Tl = VSUB(Tb, Tc); | ||
|  | 		    STM2(&(xo[10]), Tl, ovs, &(xo[2])); | ||
|  | 		    Tm = VADD(Tb, Tc); | ||
|  | 		    STM2(&(xo[2]), Tm, ovs, &(xo[2])); | ||
|  | 		    STN2(&(xo[0]), Tk, Tm, ovs); | ||
|  | 		    { | ||
|  | 			 V Th, Ti, Tn, To; | ||
|  | 			 Th = VFNMS(LDK(KP500000000), Tg, Td); | ||
|  | 			 Ti = VBYI(VMUL(LDK(KP866025403), VSUB(Tf, Te))); | ||
|  | 			 Tn = VSUB(Th, Ti); | ||
|  | 			 STM2(&(xo[4]), Tn, ovs, &(xo[0])); | ||
|  | 			 STN2(&(xo[4]), Tn, Tj, ovs); | ||
|  | 			 To = VADD(Th, Ti); | ||
|  | 			 STM2(&(xo[8]), To, ovs, &(xo[0])); | ||
|  | 			 STN2(&(xo[8]), To, Tl, ovs); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const kdft_desc desc = { 6, XSIMD_STRING("n2fv_6"), { 16, 2, 2, 0 }, &GENUS, 0, 2, 0, 0 }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_n2fv_6) (planner *p) { X(kdft_register) (p, n2fv_6, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 |