304 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			304 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:47:00 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -name r2cbIII_15 -dft-III -include rdft/scalar/r2cbIII.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 64 FP additions, 43 FP multiplications, | ||
|  |  * (or, 21 additions, 0 multiplications, 43 fused multiply/add), | ||
|  |  * 42 stack variables, 9 constants, and 30 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/r2cbIII.h"
 | ||
|  | 
 | ||
|  | static void r2cbIII_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      DK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); | ||
|  |      DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); | ||
|  |      DK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); | ||
|  |      DK(KP618033988, +0.618033988749894848204586834365638117720309180); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) { | ||
|  | 	       E Tk, TA, T5, Th, Tz, T6, Tn, TX, TR, Td, Tm, TI, Tv, TN, TD; | ||
|  | 	       E TL, TM, Ti, Tj, T12, Te, T11; | ||
|  | 	       Ti = Ci[WS(csi, 4)]; | ||
|  | 	       Tj = Ci[WS(csi, 1)]; | ||
|  | 	       Tk = FMA(KP618033988, Tj, Ti); | ||
|  | 	       TA = FNMS(KP618033988, Ti, Tj); | ||
|  | 	       { | ||
|  | 		    E T1, T4, Tg, T2, T3, Tf; | ||
|  | 		    T1 = Cr[WS(csr, 7)]; | ||
|  | 		    T2 = Cr[WS(csr, 4)]; | ||
|  | 		    T3 = Cr[WS(csr, 1)]; | ||
|  | 		    T4 = T2 + T3; | ||
|  | 		    Tg = T2 - T3; | ||
|  | 		    T5 = FMA(KP2_000000000, T4, T1); | ||
|  | 		    Tf = FNMS(KP500000000, T4, T1); | ||
|  | 		    Th = FMA(KP1_118033988, Tg, Tf); | ||
|  | 		    Tz = FNMS(KP1_118033988, Tg, Tf); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tc, TP, T9, TQ; | ||
|  | 		    T6 = Cr[WS(csr, 2)]; | ||
|  | 		    { | ||
|  | 			 E Ta, Tb, T7, T8; | ||
|  | 			 Ta = Cr[WS(csr, 3)]; | ||
|  | 			 Tb = Cr[WS(csr, 6)]; | ||
|  | 			 Tc = Ta + Tb; | ||
|  | 			 TP = Ta - Tb; | ||
|  | 			 T7 = Cr[0]; | ||
|  | 			 T8 = Cr[WS(csr, 5)]; | ||
|  | 			 T9 = T7 + T8; | ||
|  | 			 TQ = T7 - T8; | ||
|  | 		    } | ||
|  | 		    Tn = T9 - Tc; | ||
|  | 		    TX = FMA(KP618033988, TP, TQ); | ||
|  | 		    TR = FNMS(KP618033988, TQ, TP); | ||
|  | 		    Td = T9 + Tc; | ||
|  | 		    Tm = FNMS(KP250000000, Td, T6); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tu, TK, Tr, TJ; | ||
|  | 		    TI = Ci[WS(csi, 2)]; | ||
|  | 		    { | ||
|  | 			 E Ts, Tt, Tp, Tq; | ||
|  | 			 Ts = Ci[WS(csi, 3)]; | ||
|  | 			 Tt = Ci[WS(csi, 6)]; | ||
|  | 			 Tu = Ts - Tt; | ||
|  | 			 TK = Ts + Tt; | ||
|  | 			 Tp = Ci[0]; | ||
|  | 			 Tq = Ci[WS(csi, 5)]; | ||
|  | 			 Tr = Tp + Tq; | ||
|  | 			 TJ = Tq - Tp; | ||
|  | 		    } | ||
|  | 		    Tv = FMA(KP618033988, Tu, Tr); | ||
|  | 		    TN = TJ + TK; | ||
|  | 		    TD = FNMS(KP618033988, Tr, Tu); | ||
|  | 		    TL = TJ - TK; | ||
|  | 		    TM = FNMS(KP250000000, TL, TI); | ||
|  | 	       } | ||
|  | 	       T12 = TL + TI; | ||
|  | 	       Te = T6 + Td; | ||
|  | 	       T11 = Te - T5; | ||
|  | 	       R0[0] = FMA(KP2_000000000, Te, T5); | ||
|  | 	       R0[WS(rs, 5)] = FMS(KP1_732050807, T12, T11); | ||
|  | 	       R1[WS(rs, 2)] = FMA(KP1_732050807, T12, T11); | ||
|  | 	       { | ||
|  | 		    E TB, TF, TE, TG, TS, TU, TC, TO, TH, TT; | ||
|  | 		    TB = FNMS(KP1_902113032, TA, Tz); | ||
|  | 		    TF = FMA(KP1_902113032, TA, Tz); | ||
|  | 		    TC = FNMS(KP559016994, Tn, Tm); | ||
|  | 		    TE = FMA(KP951056516, TD, TC); | ||
|  | 		    TG = FNMS(KP951056516, TD, TC); | ||
|  | 		    TO = FNMS(KP559016994, TN, TM); | ||
|  | 		    TS = FMA(KP951056516, TR, TO); | ||
|  | 		    TU = FNMS(KP951056516, TR, TO); | ||
|  | 		    R0[WS(rs, 6)] = FMA(KP2_000000000, TE, TB); | ||
|  | 		    R1[WS(rs, 1)] = -(FMA(KP2_000000000, TG, TF)); | ||
|  | 		    TH = TB - TE; | ||
|  | 		    R0[WS(rs, 1)] = FNMS(KP1_732050807, TS, TH); | ||
|  | 		    R1[WS(rs, 3)] = -(FMA(KP1_732050807, TS, TH)); | ||
|  | 		    TT = TF - TG; | ||
|  | 		    R0[WS(rs, 4)] = FNMS(KP1_732050807, TU, TT); | ||
|  | 		    R1[WS(rs, 6)] = -(FMA(KP1_732050807, TU, TT)); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tl, Tx, Tw, Ty, TY, T10, To, TW, TV, TZ; | ||
|  | 		    Tl = FNMS(KP1_902113032, Tk, Th); | ||
|  | 		    Tx = FMA(KP1_902113032, Tk, Th); | ||
|  | 		    To = FMA(KP559016994, Tn, Tm); | ||
|  | 		    Tw = FMA(KP951056516, Tv, To); | ||
|  | 		    Ty = FNMS(KP951056516, Tv, To); | ||
|  | 		    TW = FMA(KP559016994, TN, TM); | ||
|  | 		    TY = FNMS(KP951056516, TX, TW); | ||
|  | 		    T10 = FMA(KP951056516, TX, TW); | ||
|  | 		    R1[WS(rs, 4)] = -(FMA(KP2_000000000, Tw, Tl)); | ||
|  | 		    R0[WS(rs, 3)] = FMA(KP2_000000000, Ty, Tx); | ||
|  | 		    TV = Ty - Tx; | ||
|  | 		    R1[0] = FNMS(KP1_732050807, TY, TV); | ||
|  | 		    R1[WS(rs, 5)] = FMA(KP1_732050807, TY, TV); | ||
|  | 		    TZ = Tl - Tw; | ||
|  | 		    R0[WS(rs, 7)] = FNMS(KP1_732050807, T10, TZ); | ||
|  | 		    R0[WS(rs, 2)] = FMA(KP1_732050807, T10, TZ); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kr2c_desc desc = { 15, "r2cbIII_15", { 21, 0, 43, 0 }, &GENUS }; | ||
|  | 
 | ||
|  | void X(codelet_r2cbIII_15) (planner *p) { X(kr2c_register) (p, r2cbIII_15, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -name r2cbIII_15 -dft-III -include rdft/scalar/r2cbIII.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 64 FP additions, 26 FP multiplications, | ||
|  |  * (or, 49 additions, 11 multiplications, 15 fused multiply/add), | ||
|  |  * 47 stack variables, 14 constants, and 30 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/r2cbIII.h"
 | ||
|  | 
 | ||
|  | static void r2cbIII_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); | ||
|  |      DK(KP433012701, +0.433012701892219323381861585376468091735701313); | ||
|  |      DK(KP968245836, +0.968245836551854221294816349945599902708230426); | ||
|  |      DK(KP587785252, +0.587785252292473129168705954639072768597652438); | ||
|  |      DK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      DK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DK(KP1_647278207, +1.647278207092663851754840078556380006059321028); | ||
|  |      DK(KP1_018073920, +1.018073920910254366901961726787815297021466329); | ||
|  |      DK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); | ||
|  |      DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); | ||
|  |      DK(KP1_175570504, +1.175570504584946258337411909278145537195304875); | ||
|  |      DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) { | ||
|  | 	       E Tv, TD, T5, Ts, TC, T6, Tf, TW, TK, Td, Tg, TP, To, TN, TA; | ||
|  | 	       E TO, TQ, Tt, Tu, T12, Te, T11; | ||
|  | 	       Tt = Ci[WS(csi, 4)]; | ||
|  | 	       Tu = Ci[WS(csi, 1)]; | ||
|  | 	       Tv = FMA(KP1_902113032, Tt, KP1_175570504 * Tu); | ||
|  | 	       TD = FNMS(KP1_175570504, Tt, KP1_902113032 * Tu); | ||
|  | 	       { | ||
|  | 		    E T1, T4, Tq, T2, T3, Tr; | ||
|  | 		    T1 = Cr[WS(csr, 7)]; | ||
|  | 		    T2 = Cr[WS(csr, 4)]; | ||
|  | 		    T3 = Cr[WS(csr, 1)]; | ||
|  | 		    T4 = T2 + T3; | ||
|  | 		    Tq = KP1_118033988 * (T2 - T3); | ||
|  | 		    T5 = FMA(KP2_000000000, T4, T1); | ||
|  | 		    Tr = FNMS(KP500000000, T4, T1); | ||
|  | 		    Ts = Tq + Tr; | ||
|  | 		    TC = Tr - Tq; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tc, TJ, T9, TI; | ||
|  | 		    T6 = Cr[WS(csr, 2)]; | ||
|  | 		    { | ||
|  | 			 E Ta, Tb, T7, T8; | ||
|  | 			 Ta = Cr[WS(csr, 3)]; | ||
|  | 			 Tb = Cr[WS(csr, 6)]; | ||
|  | 			 Tc = Ta + Tb; | ||
|  | 			 TJ = Ta - Tb; | ||
|  | 			 T7 = Cr[0]; | ||
|  | 			 T8 = Cr[WS(csr, 5)]; | ||
|  | 			 T9 = T7 + T8; | ||
|  | 			 TI = T7 - T8; | ||
|  | 		    } | ||
|  | 		    Tf = KP559016994 * (T9 - Tc); | ||
|  | 		    TW = FNMS(KP1_647278207, TJ, KP1_018073920 * TI); | ||
|  | 		    TK = FMA(KP1_647278207, TI, KP1_018073920 * TJ); | ||
|  | 		    Td = T9 + Tc; | ||
|  | 		    Tg = FNMS(KP250000000, Td, T6); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tn, TM, Tk, TL; | ||
|  | 		    TP = Ci[WS(csi, 2)]; | ||
|  | 		    { | ||
|  | 			 E Tl, Tm, Ti, Tj; | ||
|  | 			 Tl = Ci[WS(csi, 3)]; | ||
|  | 			 Tm = Ci[WS(csi, 6)]; | ||
|  | 			 Tn = Tl - Tm; | ||
|  | 			 TM = Tl + Tm; | ||
|  | 			 Ti = Ci[0]; | ||
|  | 			 Tj = Ci[WS(csi, 5)]; | ||
|  | 			 Tk = Ti + Tj; | ||
|  | 			 TL = Ti - Tj; | ||
|  | 		    } | ||
|  | 		    To = FMA(KP951056516, Tk, KP587785252 * Tn); | ||
|  | 		    TN = KP968245836 * (TL - TM); | ||
|  | 		    TA = FNMS(KP587785252, Tk, KP951056516 * Tn); | ||
|  | 		    TO = TL + TM; | ||
|  | 		    TQ = FMA(KP433012701, TO, KP1_732050807 * TP); | ||
|  | 	       } | ||
|  | 	       T12 = KP1_732050807 * (TP - TO); | ||
|  | 	       Te = T6 + Td; | ||
|  | 	       T11 = Te - T5; | ||
|  | 	       R0[0] = FMA(KP2_000000000, Te, T5); | ||
|  | 	       R0[WS(rs, 5)] = T12 - T11; | ||
|  | 	       R1[WS(rs, 2)] = T11 + T12; | ||
|  | 	       { | ||
|  | 		    E TE, TG, TB, TF, TY, T10, Tz, TX, TV, TZ; | ||
|  | 		    TE = TC - TD; | ||
|  | 		    TG = TC + TD; | ||
|  | 		    Tz = Tg - Tf; | ||
|  | 		    TB = Tz + TA; | ||
|  | 		    TF = TA - Tz; | ||
|  | 		    TX = TN + TQ; | ||
|  | 		    TY = TW - TX; | ||
|  | 		    T10 = TW + TX; | ||
|  | 		    R0[WS(rs, 6)] = FMA(KP2_000000000, TB, TE); | ||
|  | 		    R1[WS(rs, 1)] = FMS(KP2_000000000, TF, TG); | ||
|  | 		    TV = TE - TB; | ||
|  | 		    R0[WS(rs, 1)] = TV + TY; | ||
|  | 		    R1[WS(rs, 3)] = TY - TV; | ||
|  | 		    TZ = TF + TG; | ||
|  | 		    R0[WS(rs, 4)] = TZ - T10; | ||
|  | 		    R1[WS(rs, 6)] = -(TZ + T10); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tw, Ty, Tp, Tx, TS, TU, Th, TR, TH, TT; | ||
|  | 		    Tw = Ts - Tv; | ||
|  | 		    Ty = Ts + Tv; | ||
|  | 		    Th = Tf + Tg; | ||
|  | 		    Tp = Th + To; | ||
|  | 		    Tx = Th - To; | ||
|  | 		    TR = TN - TQ; | ||
|  | 		    TS = TK + TR; | ||
|  | 		    TU = TR - TK; | ||
|  | 		    R1[WS(rs, 4)] = -(FMA(KP2_000000000, Tp, Tw)); | ||
|  | 		    R0[WS(rs, 3)] = FMA(KP2_000000000, Tx, Ty); | ||
|  | 		    TH = Tx - Ty; | ||
|  | 		    R1[WS(rs, 5)] = TH - TS; | ||
|  | 		    R1[0] = TH + TS; | ||
|  | 		    TT = Tw - Tp; | ||
|  | 		    R0[WS(rs, 2)] = TT - TU; | ||
|  | 		    R0[WS(rs, 7)] = TT + TU; | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kr2c_desc desc = { 15, "r2cbIII_15", { 49, 11, 15, 0 }, &GENUS }; | ||
|  | 
 | ||
|  | void X(codelet_r2cbIII_15) (planner *p) { X(kr2c_register) (p, r2cbIII_15, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 |