797 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			797 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:46:14 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -n 16 -dit -name hf_16 -include rdft/scalar/hf.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 174 FP additions, 100 FP multiplications, | ||
|  |  * (or, 104 additions, 30 multiplications, 70 fused multiply/add), | ||
|  |  * 60 stack variables, 3 constants, and 64 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hf.h"
 | ||
|  | 
 | ||
|  | static void hf_16(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP923879532, +0.923879532511286756128183189396788286822416626); | ||
|  |      DK(KP414213562, +0.414213562373095048801688724209698078569671875); | ||
|  |      DK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 30, MAKE_VOLATILE_STRIDE(32, rs)) { | ||
|  | 	       E T8, T3A, T1I, T3o, T1s, T35, T2k, T2w, T1F, T36, T2p, T2r, Tl, T3z, T1N; | ||
|  | 	       E T3k, Tz, T2W, T1P, T1U, T11, T30, T25, T2g, T1e, T31, T2a, T2h, TM, T2V; | ||
|  | 	       E T1W, T21; | ||
|  | 	       { | ||
|  | 		    E T1, T3n, T3, T6, T4, T3l, T2, T7, T3m, T5; | ||
|  | 		    T1 = cr[0]; | ||
|  | 		    T3n = ci[0]; | ||
|  | 		    T3 = cr[WS(rs, 8)]; | ||
|  | 		    T6 = ci[WS(rs, 8)]; | ||
|  | 		    T2 = W[14]; | ||
|  | 		    T4 = T2 * T3; | ||
|  | 		    T3l = T2 * T6; | ||
|  | 		    T5 = W[15]; | ||
|  | 		    T7 = FMA(T5, T6, T4); | ||
|  | 		    T3m = FNMS(T5, T3, T3l); | ||
|  | 		    T8 = T1 + T7; | ||
|  | 		    T3A = T3n - T3m; | ||
|  | 		    T1I = T1 - T7; | ||
|  | 		    T3o = T3m + T3n; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1h, T1k, T1i, T2s, T1n, T1q, T1o, T2u, T1g, T1m; | ||
|  | 		    T1h = cr[WS(rs, 15)]; | ||
|  | 		    T1k = ci[WS(rs, 15)]; | ||
|  | 		    T1g = W[28]; | ||
|  | 		    T1i = T1g * T1h; | ||
|  | 		    T2s = T1g * T1k; | ||
|  | 		    T1n = cr[WS(rs, 7)]; | ||
|  | 		    T1q = ci[WS(rs, 7)]; | ||
|  | 		    T1m = W[12]; | ||
|  | 		    T1o = T1m * T1n; | ||
|  | 		    T2u = T1m * T1q; | ||
|  | 		    { | ||
|  | 			 E T1l, T2t, T1r, T2v, T1j, T1p; | ||
|  | 			 T1j = W[29]; | ||
|  | 			 T1l = FMA(T1j, T1k, T1i); | ||
|  | 			 T2t = FNMS(T1j, T1h, T2s); | ||
|  | 			 T1p = W[13]; | ||
|  | 			 T1r = FMA(T1p, T1q, T1o); | ||
|  | 			 T2v = FNMS(T1p, T1n, T2u); | ||
|  | 			 T1s = T1l + T1r; | ||
|  | 			 T35 = T2t + T2v; | ||
|  | 			 T2k = T1l - T1r; | ||
|  | 			 T2w = T2t - T2v; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1u, T1x, T1v, T2l, T1A, T1D, T1B, T2n, T1t, T1z; | ||
|  | 		    T1u = cr[WS(rs, 3)]; | ||
|  | 		    T1x = ci[WS(rs, 3)]; | ||
|  | 		    T1t = W[4]; | ||
|  | 		    T1v = T1t * T1u; | ||
|  | 		    T2l = T1t * T1x; | ||
|  | 		    T1A = cr[WS(rs, 11)]; | ||
|  | 		    T1D = ci[WS(rs, 11)]; | ||
|  | 		    T1z = W[20]; | ||
|  | 		    T1B = T1z * T1A; | ||
|  | 		    T2n = T1z * T1D; | ||
|  | 		    { | ||
|  | 			 E T1y, T2m, T1E, T2o, T1w, T1C; | ||
|  | 			 T1w = W[5]; | ||
|  | 			 T1y = FMA(T1w, T1x, T1v); | ||
|  | 			 T2m = FNMS(T1w, T1u, T2l); | ||
|  | 			 T1C = W[21]; | ||
|  | 			 T1E = FMA(T1C, T1D, T1B); | ||
|  | 			 T2o = FNMS(T1C, T1A, T2n); | ||
|  | 			 T1F = T1y + T1E; | ||
|  | 			 T36 = T2m + T2o; | ||
|  | 			 T2p = T2m - T2o; | ||
|  | 			 T2r = T1E - T1y; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ta, Td, Tb, T1J, Tg, Tj, Th, T1L, T9, Tf; | ||
|  | 		    Ta = cr[WS(rs, 4)]; | ||
|  | 		    Td = ci[WS(rs, 4)]; | ||
|  | 		    T9 = W[6]; | ||
|  | 		    Tb = T9 * Ta; | ||
|  | 		    T1J = T9 * Td; | ||
|  | 		    Tg = cr[WS(rs, 12)]; | ||
|  | 		    Tj = ci[WS(rs, 12)]; | ||
|  | 		    Tf = W[22]; | ||
|  | 		    Th = Tf * Tg; | ||
|  | 		    T1L = Tf * Tj; | ||
|  | 		    { | ||
|  | 			 E Te, T1K, Tk, T1M, Tc, Ti; | ||
|  | 			 Tc = W[7]; | ||
|  | 			 Te = FMA(Tc, Td, Tb); | ||
|  | 			 T1K = FNMS(Tc, Ta, T1J); | ||
|  | 			 Ti = W[23]; | ||
|  | 			 Tk = FMA(Ti, Tj, Th); | ||
|  | 			 T1M = FNMS(Ti, Tg, T1L); | ||
|  | 			 Tl = Te + Tk; | ||
|  | 			 T3z = Te - Tk; | ||
|  | 			 T1N = T1K - T1M; | ||
|  | 			 T3k = T1K + T1M; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E To, Tr, Tp, T1Q, Tu, Tx, Tv, T1S, Tn, Tt; | ||
|  | 		    To = cr[WS(rs, 2)]; | ||
|  | 		    Tr = ci[WS(rs, 2)]; | ||
|  | 		    Tn = W[2]; | ||
|  | 		    Tp = Tn * To; | ||
|  | 		    T1Q = Tn * Tr; | ||
|  | 		    Tu = cr[WS(rs, 10)]; | ||
|  | 		    Tx = ci[WS(rs, 10)]; | ||
|  | 		    Tt = W[18]; | ||
|  | 		    Tv = Tt * Tu; | ||
|  | 		    T1S = Tt * Tx; | ||
|  | 		    { | ||
|  | 			 E Ts, T1R, Ty, T1T, Tq, Tw; | ||
|  | 			 Tq = W[3]; | ||
|  | 			 Ts = FMA(Tq, Tr, Tp); | ||
|  | 			 T1R = FNMS(Tq, To, T1Q); | ||
|  | 			 Tw = W[19]; | ||
|  | 			 Ty = FMA(Tw, Tx, Tv); | ||
|  | 			 T1T = FNMS(Tw, Tu, T1S); | ||
|  | 			 Tz = Ts + Ty; | ||
|  | 			 T2W = T1R + T1T; | ||
|  | 			 T1P = Ts - Ty; | ||
|  | 			 T1U = T1R - T1T; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TQ, TT, TR, T2c, TW, TZ, TX, T2e, TP, TV; | ||
|  | 		    TQ = cr[WS(rs, 1)]; | ||
|  | 		    TT = ci[WS(rs, 1)]; | ||
|  | 		    TP = W[0]; | ||
|  | 		    TR = TP * TQ; | ||
|  | 		    T2c = TP * TT; | ||
|  | 		    TW = cr[WS(rs, 9)]; | ||
|  | 		    TZ = ci[WS(rs, 9)]; | ||
|  | 		    TV = W[16]; | ||
|  | 		    TX = TV * TW; | ||
|  | 		    T2e = TV * TZ; | ||
|  | 		    { | ||
|  | 			 E TU, T2d, T10, T2f, TS, TY; | ||
|  | 			 TS = W[1]; | ||
|  | 			 TU = FMA(TS, TT, TR); | ||
|  | 			 T2d = FNMS(TS, TQ, T2c); | ||
|  | 			 TY = W[17]; | ||
|  | 			 T10 = FMA(TY, TZ, TX); | ||
|  | 			 T2f = FNMS(TY, TW, T2e); | ||
|  | 			 T11 = TU + T10; | ||
|  | 			 T30 = T2d + T2f; | ||
|  | 			 T25 = TU - T10; | ||
|  | 			 T2g = T2d - T2f; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T13, T16, T14, T26, T19, T1c, T1a, T28, T12, T18; | ||
|  | 		    T13 = cr[WS(rs, 5)]; | ||
|  | 		    T16 = ci[WS(rs, 5)]; | ||
|  | 		    T12 = W[8]; | ||
|  | 		    T14 = T12 * T13; | ||
|  | 		    T26 = T12 * T16; | ||
|  | 		    T19 = cr[WS(rs, 13)]; | ||
|  | 		    T1c = ci[WS(rs, 13)]; | ||
|  | 		    T18 = W[24]; | ||
|  | 		    T1a = T18 * T19; | ||
|  | 		    T28 = T18 * T1c; | ||
|  | 		    { | ||
|  | 			 E T17, T27, T1d, T29, T15, T1b; | ||
|  | 			 T15 = W[9]; | ||
|  | 			 T17 = FMA(T15, T16, T14); | ||
|  | 			 T27 = FNMS(T15, T13, T26); | ||
|  | 			 T1b = W[25]; | ||
|  | 			 T1d = FMA(T1b, T1c, T1a); | ||
|  | 			 T29 = FNMS(T1b, T19, T28); | ||
|  | 			 T1e = T17 + T1d; | ||
|  | 			 T31 = T27 + T29; | ||
|  | 			 T2a = T27 - T29; | ||
|  | 			 T2h = T17 - T1d; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TB, TE, TC, T1X, TH, TK, TI, T1Z, TA, TG; | ||
|  | 		    TB = cr[WS(rs, 14)]; | ||
|  | 		    TE = ci[WS(rs, 14)]; | ||
|  | 		    TA = W[26]; | ||
|  | 		    TC = TA * TB; | ||
|  | 		    T1X = TA * TE; | ||
|  | 		    TH = cr[WS(rs, 6)]; | ||
|  | 		    TK = ci[WS(rs, 6)]; | ||
|  | 		    TG = W[10]; | ||
|  | 		    TI = TG * TH; | ||
|  | 		    T1Z = TG * TK; | ||
|  | 		    { | ||
|  | 			 E TF, T1Y, TL, T20, TD, TJ; | ||
|  | 			 TD = W[27]; | ||
|  | 			 TF = FMA(TD, TE, TC); | ||
|  | 			 T1Y = FNMS(TD, TB, T1X); | ||
|  | 			 TJ = W[11]; | ||
|  | 			 TL = FMA(TJ, TK, TI); | ||
|  | 			 T20 = FNMS(TJ, TH, T1Z); | ||
|  | 			 TM = TF + TL; | ||
|  | 			 T2V = T1Y + T20; | ||
|  | 			 T1W = TF - TL; | ||
|  | 			 T21 = T1Y - T20; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TO, T3e, T3q, T3s, T1H, T3r, T3h, T3i; | ||
|  | 		    { | ||
|  | 			 E Tm, TN, T3j, T3p; | ||
|  | 			 Tm = T8 + Tl; | ||
|  | 			 TN = Tz + TM; | ||
|  | 			 TO = Tm + TN; | ||
|  | 			 T3e = Tm - TN; | ||
|  | 			 T3j = T2W + T2V; | ||
|  | 			 T3p = T3k + T3o; | ||
|  | 			 T3q = T3j + T3p; | ||
|  | 			 T3s = T3p - T3j; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1f, T1G, T3f, T3g; | ||
|  | 			 T1f = T11 + T1e; | ||
|  | 			 T1G = T1s + T1F; | ||
|  | 			 T1H = T1f + T1G; | ||
|  | 			 T3r = T1G - T1f; | ||
|  | 			 T3f = T35 + T36; | ||
|  | 			 T3g = T30 + T31; | ||
|  | 			 T3h = T3f - T3g; | ||
|  | 			 T3i = T3g + T3f; | ||
|  | 		    } | ||
|  | 		    ci[WS(rs, 7)] = TO - T1H; | ||
|  | 		    cr[WS(rs, 12)] = T3r - T3s; | ||
|  | 		    ci[WS(rs, 11)] = T3r + T3s; | ||
|  | 		    cr[0] = TO + T1H; | ||
|  | 		    cr[WS(rs, 4)] = T3e - T3h; | ||
|  | 		    cr[WS(rs, 8)] = T3i - T3q; | ||
|  | 		    ci[WS(rs, 15)] = T3i + T3q; | ||
|  | 		    ci[WS(rs, 3)] = T3e + T3h; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2Y, T3a, T3v, T3x, T33, T3b, T38, T3c; | ||
|  | 		    { | ||
|  | 			 E T2U, T2X, T3t, T3u; | ||
|  | 			 T2U = T8 - Tl; | ||
|  | 			 T2X = T2V - T2W; | ||
|  | 			 T2Y = T2U - T2X; | ||
|  | 			 T3a = T2U + T2X; | ||
|  | 			 T3t = Tz - TM; | ||
|  | 			 T3u = T3o - T3k; | ||
|  | 			 T3v = T3t + T3u; | ||
|  | 			 T3x = T3u - T3t; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2Z, T32, T34, T37; | ||
|  | 			 T2Z = T11 - T1e; | ||
|  | 			 T32 = T30 - T31; | ||
|  | 			 T33 = T2Z + T32; | ||
|  | 			 T3b = T2Z - T32; | ||
|  | 			 T34 = T1s - T1F; | ||
|  | 			 T37 = T35 - T36; | ||
|  | 			 T38 = T34 - T37; | ||
|  | 			 T3c = T34 + T37; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T39, T3y, T3d, T3w; | ||
|  | 			 T39 = T33 + T38; | ||
|  | 			 ci[WS(rs, 5)] = FNMS(KP707106781, T39, T2Y); | ||
|  | 			 cr[WS(rs, 2)] = FMA(KP707106781, T39, T2Y); | ||
|  | 			 T3y = T3c - T3b; | ||
|  | 			 cr[WS(rs, 10)] = FMS(KP707106781, T3y, T3x); | ||
|  | 			 ci[WS(rs, 13)] = FMA(KP707106781, T3y, T3x); | ||
|  | 			 T3d = T3b + T3c; | ||
|  | 			 cr[WS(rs, 6)] = FNMS(KP707106781, T3d, T3a); | ||
|  | 			 ci[WS(rs, 1)] = FMA(KP707106781, T3d, T3a); | ||
|  | 			 T3w = T38 - T33; | ||
|  | 			 cr[WS(rs, 14)] = FMS(KP707106781, T3w, T3v); | ||
|  | 			 ci[WS(rs, 9)] = FMA(KP707106781, T3w, T3v); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1O, T3B, T3H, T2E, T23, T3I, T2O, T2R, T2H, T3C, T2j, T2B, T2L, T2S, T2y; | ||
|  | 		    E T2C; | ||
|  | 		    { | ||
|  | 			 E T1V, T22, T2b, T2i; | ||
|  | 			 T1O = T1I - T1N; | ||
|  | 			 T3B = T3z + T3A; | ||
|  | 			 T3H = T3A - T3z; | ||
|  | 			 T2E = T1I + T1N; | ||
|  | 			 T1V = T1P - T1U; | ||
|  | 			 T22 = T1W + T21; | ||
|  | 			 T23 = T1V + T22; | ||
|  | 			 T3I = T22 - T1V; | ||
|  | 			 { | ||
|  | 			      E T2M, T2N, T2F, T2G; | ||
|  | 			      T2M = T2k + T2p; | ||
|  | 			      T2N = T2w + T2r; | ||
|  | 			      T2O = FNMS(KP414213562, T2N, T2M); | ||
|  | 			      T2R = FMA(KP414213562, T2M, T2N); | ||
|  | 			      T2F = T1P + T1U; | ||
|  | 			      T2G = T1W - T21; | ||
|  | 			      T2H = T2F + T2G; | ||
|  | 			      T3C = T2F - T2G; | ||
|  | 			 } | ||
|  | 			 T2b = T25 - T2a; | ||
|  | 			 T2i = T2g + T2h; | ||
|  | 			 T2j = FNMS(KP414213562, T2i, T2b); | ||
|  | 			 T2B = FMA(KP414213562, T2b, T2i); | ||
|  | 			 { | ||
|  | 			      E T2J, T2K, T2q, T2x; | ||
|  | 			      T2J = T25 + T2a; | ||
|  | 			      T2K = T2g - T2h; | ||
|  | 			      T2L = FMA(KP414213562, T2K, T2J); | ||
|  | 			      T2S = FNMS(KP414213562, T2J, T2K); | ||
|  | 			      T2q = T2k - T2p; | ||
|  | 			      T2x = T2r - T2w; | ||
|  | 			      T2y = FNMS(KP414213562, T2x, T2q); | ||
|  | 			      T2C = FMA(KP414213562, T2q, T2x); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T24, T2z, T3J, T3K; | ||
|  | 			 T24 = FMA(KP707106781, T23, T1O); | ||
|  | 			 T2z = T2j + T2y; | ||
|  | 			 cr[WS(rs, 7)] = FNMS(KP923879532, T2z, T24); | ||
|  | 			 ci[0] = FMA(KP923879532, T2z, T24); | ||
|  | 			 T3J = FMA(KP707106781, T3I, T3H); | ||
|  | 			 T3K = T2S + T2R; | ||
|  | 			 cr[WS(rs, 9)] = FMS(KP923879532, T3K, T3J); | ||
|  | 			 ci[WS(rs, 14)] = FMA(KP923879532, T3K, T3J); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3L, T3M, T2A, T2D; | ||
|  | 			 T3L = FNMS(KP707106781, T3I, T3H); | ||
|  | 			 T3M = T2O - T2L; | ||
|  | 			 cr[WS(rs, 13)] = FMS(KP923879532, T3M, T3L); | ||
|  | 			 ci[WS(rs, 10)] = FMA(KP923879532, T3M, T3L); | ||
|  | 			 T2A = FNMS(KP707106781, T23, T1O); | ||
|  | 			 T2D = T2B + T2C; | ||
|  | 			 ci[WS(rs, 4)] = FNMS(KP923879532, T2D, T2A); | ||
|  | 			 cr[WS(rs, 3)] = FMA(KP923879532, T2D, T2A); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2I, T2P, T3D, T3E; | ||
|  | 			 T2I = FMA(KP707106781, T2H, T2E); | ||
|  | 			 T2P = T2L + T2O; | ||
|  | 			 ci[WS(rs, 6)] = FNMS(KP923879532, T2P, T2I); | ||
|  | 			 cr[WS(rs, 1)] = FMA(KP923879532, T2P, T2I); | ||
|  | 			 T3D = FMA(KP707106781, T3C, T3B); | ||
|  | 			 T3E = T2C - T2B; | ||
|  | 			 cr[WS(rs, 15)] = FMS(KP923879532, T3E, T3D); | ||
|  | 			 ci[WS(rs, 8)] = FMA(KP923879532, T3E, T3D); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3F, T3G, T2Q, T2T; | ||
|  | 			 T3F = FNMS(KP707106781, T3C, T3B); | ||
|  | 			 T3G = T2y - T2j; | ||
|  | 			 cr[WS(rs, 11)] = FMS(KP923879532, T3G, T3F); | ||
|  | 			 ci[WS(rs, 12)] = FMA(KP923879532, T3G, T3F); | ||
|  | 			 T2Q = FNMS(KP707106781, T2H, T2E); | ||
|  | 			 T2T = T2R - T2S; | ||
|  | 			 cr[WS(rs, 5)] = FNMS(KP923879532, T2T, T2Q); | ||
|  | 			 ci[WS(rs, 2)] = FMA(KP923879532, T2T, T2Q); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 16 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2hc_desc desc = { 16, "hf_16", twinstr, &GENUS, { 104, 30, 70, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hf_16) (planner *p) { | ||
|  |      X(khc2hc_register) (p, hf_16, &desc); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 16 -dit -name hf_16 -include rdft/scalar/hf.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 174 FP additions, 84 FP multiplications, | ||
|  |  * (or, 136 additions, 46 multiplications, 38 fused multiply/add), | ||
|  |  * 52 stack variables, 3 constants, and 64 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hf.h"
 | ||
|  | 
 | ||
|  | static void hf_16(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP382683432, +0.382683432365089771728459984030398866761344562); | ||
|  |      DK(KP923879532, +0.923879532511286756128183189396788286822416626); | ||
|  |      DK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 30, MAKE_VOLATILE_STRIDE(32, rs)) { | ||
|  | 	       E T7, T38, T1t, T2U, Ti, T37, T1w, T2R, Tu, T2t, T1C, T2c, TF, T2s, T1H; | ||
|  | 	       E T2d, T1f, T1q, T2B, T2C, T2D, T2E, T1Z, T2k, T24, T2j, TS, T13, T2w, T2x; | ||
|  | 	       E T2y, T2z, T1O, T2h, T1T, T2g; | ||
|  | 	       { | ||
|  | 		    E T1, T2T, T6, T2S; | ||
|  | 		    T1 = cr[0]; | ||
|  | 		    T2T = ci[0]; | ||
|  | 		    { | ||
|  | 			 E T3, T5, T2, T4; | ||
|  | 			 T3 = cr[WS(rs, 8)]; | ||
|  | 			 T5 = ci[WS(rs, 8)]; | ||
|  | 			 T2 = W[14]; | ||
|  | 			 T4 = W[15]; | ||
|  | 			 T6 = FMA(T2, T3, T4 * T5); | ||
|  | 			 T2S = FNMS(T4, T3, T2 * T5); | ||
|  | 		    } | ||
|  | 		    T7 = T1 + T6; | ||
|  | 		    T38 = T2T - T2S; | ||
|  | 		    T1t = T1 - T6; | ||
|  | 		    T2U = T2S + T2T; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tc, T1u, Th, T1v; | ||
|  | 		    { | ||
|  | 			 E T9, Tb, T8, Ta; | ||
|  | 			 T9 = cr[WS(rs, 4)]; | ||
|  | 			 Tb = ci[WS(rs, 4)]; | ||
|  | 			 T8 = W[6]; | ||
|  | 			 Ta = W[7]; | ||
|  | 			 Tc = FMA(T8, T9, Ta * Tb); | ||
|  | 			 T1u = FNMS(Ta, T9, T8 * Tb); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Te, Tg, Td, Tf; | ||
|  | 			 Te = cr[WS(rs, 12)]; | ||
|  | 			 Tg = ci[WS(rs, 12)]; | ||
|  | 			 Td = W[22]; | ||
|  | 			 Tf = W[23]; | ||
|  | 			 Th = FMA(Td, Te, Tf * Tg); | ||
|  | 			 T1v = FNMS(Tf, Te, Td * Tg); | ||
|  | 		    } | ||
|  | 		    Ti = Tc + Th; | ||
|  | 		    T37 = Tc - Th; | ||
|  | 		    T1w = T1u - T1v; | ||
|  | 		    T2R = T1u + T1v; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E To, T1z, Tt, T1A, T1y, T1B; | ||
|  | 		    { | ||
|  | 			 E Tl, Tn, Tk, Tm; | ||
|  | 			 Tl = cr[WS(rs, 2)]; | ||
|  | 			 Tn = ci[WS(rs, 2)]; | ||
|  | 			 Tk = W[2]; | ||
|  | 			 Tm = W[3]; | ||
|  | 			 To = FMA(Tk, Tl, Tm * Tn); | ||
|  | 			 T1z = FNMS(Tm, Tl, Tk * Tn); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tq, Ts, Tp, Tr; | ||
|  | 			 Tq = cr[WS(rs, 10)]; | ||
|  | 			 Ts = ci[WS(rs, 10)]; | ||
|  | 			 Tp = W[18]; | ||
|  | 			 Tr = W[19]; | ||
|  | 			 Tt = FMA(Tp, Tq, Tr * Ts); | ||
|  | 			 T1A = FNMS(Tr, Tq, Tp * Ts); | ||
|  | 		    } | ||
|  | 		    Tu = To + Tt; | ||
|  | 		    T2t = T1z + T1A; | ||
|  | 		    T1y = To - Tt; | ||
|  | 		    T1B = T1z - T1A; | ||
|  | 		    T1C = T1y - T1B; | ||
|  | 		    T2c = T1y + T1B; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tz, T1E, TE, T1F, T1D, T1G; | ||
|  | 		    { | ||
|  | 			 E Tw, Ty, Tv, Tx; | ||
|  | 			 Tw = cr[WS(rs, 14)]; | ||
|  | 			 Ty = ci[WS(rs, 14)]; | ||
|  | 			 Tv = W[26]; | ||
|  | 			 Tx = W[27]; | ||
|  | 			 Tz = FMA(Tv, Tw, Tx * Ty); | ||
|  | 			 T1E = FNMS(Tx, Tw, Tv * Ty); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TB, TD, TA, TC; | ||
|  | 			 TB = cr[WS(rs, 6)]; | ||
|  | 			 TD = ci[WS(rs, 6)]; | ||
|  | 			 TA = W[10]; | ||
|  | 			 TC = W[11]; | ||
|  | 			 TE = FMA(TA, TB, TC * TD); | ||
|  | 			 T1F = FNMS(TC, TB, TA * TD); | ||
|  | 		    } | ||
|  | 		    TF = Tz + TE; | ||
|  | 		    T2s = T1E + T1F; | ||
|  | 		    T1D = Tz - TE; | ||
|  | 		    T1G = T1E - T1F; | ||
|  | 		    T1H = T1D + T1G; | ||
|  | 		    T2d = T1D - T1G; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T19, T1V, T1p, T22, T1e, T1W, T1k, T21; | ||
|  | 		    { | ||
|  | 			 E T16, T18, T15, T17; | ||
|  | 			 T16 = cr[WS(rs, 15)]; | ||
|  | 			 T18 = ci[WS(rs, 15)]; | ||
|  | 			 T15 = W[28]; | ||
|  | 			 T17 = W[29]; | ||
|  | 			 T19 = FMA(T15, T16, T17 * T18); | ||
|  | 			 T1V = FNMS(T17, T16, T15 * T18); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1m, T1o, T1l, T1n; | ||
|  | 			 T1m = cr[WS(rs, 11)]; | ||
|  | 			 T1o = ci[WS(rs, 11)]; | ||
|  | 			 T1l = W[20]; | ||
|  | 			 T1n = W[21]; | ||
|  | 			 T1p = FMA(T1l, T1m, T1n * T1o); | ||
|  | 			 T22 = FNMS(T1n, T1m, T1l * T1o); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1b, T1d, T1a, T1c; | ||
|  | 			 T1b = cr[WS(rs, 7)]; | ||
|  | 			 T1d = ci[WS(rs, 7)]; | ||
|  | 			 T1a = W[12]; | ||
|  | 			 T1c = W[13]; | ||
|  | 			 T1e = FMA(T1a, T1b, T1c * T1d); | ||
|  | 			 T1W = FNMS(T1c, T1b, T1a * T1d); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1h, T1j, T1g, T1i; | ||
|  | 			 T1h = cr[WS(rs, 3)]; | ||
|  | 			 T1j = ci[WS(rs, 3)]; | ||
|  | 			 T1g = W[4]; | ||
|  | 			 T1i = W[5]; | ||
|  | 			 T1k = FMA(T1g, T1h, T1i * T1j); | ||
|  | 			 T21 = FNMS(T1i, T1h, T1g * T1j); | ||
|  | 		    } | ||
|  | 		    T1f = T19 + T1e; | ||
|  | 		    T1q = T1k + T1p; | ||
|  | 		    T2B = T1f - T1q; | ||
|  | 		    T2C = T1V + T1W; | ||
|  | 		    T2D = T21 + T22; | ||
|  | 		    T2E = T2C - T2D; | ||
|  | 		    { | ||
|  | 			 E T1X, T1Y, T20, T23; | ||
|  | 			 T1X = T1V - T1W; | ||
|  | 			 T1Y = T1k - T1p; | ||
|  | 			 T1Z = T1X + T1Y; | ||
|  | 			 T2k = T1X - T1Y; | ||
|  | 			 T20 = T19 - T1e; | ||
|  | 			 T23 = T21 - T22; | ||
|  | 			 T24 = T20 - T23; | ||
|  | 			 T2j = T20 + T23; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TM, T1P, T12, T1M, TR, T1Q, TX, T1L; | ||
|  | 		    { | ||
|  | 			 E TJ, TL, TI, TK; | ||
|  | 			 TJ = cr[WS(rs, 1)]; | ||
|  | 			 TL = ci[WS(rs, 1)]; | ||
|  | 			 TI = W[0]; | ||
|  | 			 TK = W[1]; | ||
|  | 			 TM = FMA(TI, TJ, TK * TL); | ||
|  | 			 T1P = FNMS(TK, TJ, TI * TL); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TZ, T11, TY, T10; | ||
|  | 			 TZ = cr[WS(rs, 13)]; | ||
|  | 			 T11 = ci[WS(rs, 13)]; | ||
|  | 			 TY = W[24]; | ||
|  | 			 T10 = W[25]; | ||
|  | 			 T12 = FMA(TY, TZ, T10 * T11); | ||
|  | 			 T1M = FNMS(T10, TZ, TY * T11); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TO, TQ, TN, TP; | ||
|  | 			 TO = cr[WS(rs, 9)]; | ||
|  | 			 TQ = ci[WS(rs, 9)]; | ||
|  | 			 TN = W[16]; | ||
|  | 			 TP = W[17]; | ||
|  | 			 TR = FMA(TN, TO, TP * TQ); | ||
|  | 			 T1Q = FNMS(TP, TO, TN * TQ); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TU, TW, TT, TV; | ||
|  | 			 TU = cr[WS(rs, 5)]; | ||
|  | 			 TW = ci[WS(rs, 5)]; | ||
|  | 			 TT = W[8]; | ||
|  | 			 TV = W[9]; | ||
|  | 			 TX = FMA(TT, TU, TV * TW); | ||
|  | 			 T1L = FNMS(TV, TU, TT * TW); | ||
|  | 		    } | ||
|  | 		    TS = TM + TR; | ||
|  | 		    T13 = TX + T12; | ||
|  | 		    T2w = TS - T13; | ||
|  | 		    T2x = T1P + T1Q; | ||
|  | 		    T2y = T1L + T1M; | ||
|  | 		    T2z = T2x - T2y; | ||
|  | 		    { | ||
|  | 			 E T1K, T1N, T1R, T1S; | ||
|  | 			 T1K = TM - TR; | ||
|  | 			 T1N = T1L - T1M; | ||
|  | 			 T1O = T1K - T1N; | ||
|  | 			 T2h = T1K + T1N; | ||
|  | 			 T1R = T1P - T1Q; | ||
|  | 			 T1S = TX - T12; | ||
|  | 			 T1T = T1R + T1S; | ||
|  | 			 T2g = T1R - T1S; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1J, T27, T3a, T3c, T26, T3b, T2a, T35; | ||
|  | 		    { | ||
|  | 			 E T1x, T1I, T36, T39; | ||
|  | 			 T1x = T1t - T1w; | ||
|  | 			 T1I = KP707106781 * (T1C + T1H); | ||
|  | 			 T1J = T1x + T1I; | ||
|  | 			 T27 = T1x - T1I; | ||
|  | 			 T36 = KP707106781 * (T2c - T2d); | ||
|  | 			 T39 = T37 + T38; | ||
|  | 			 T3a = T36 + T39; | ||
|  | 			 T3c = T39 - T36; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1U, T25, T28, T29; | ||
|  | 			 T1U = FNMS(KP382683432, T1T, KP923879532 * T1O); | ||
|  | 			 T25 = FMA(KP382683432, T1Z, KP923879532 * T24); | ||
|  | 			 T26 = T1U + T25; | ||
|  | 			 T3b = T25 - T1U; | ||
|  | 			 T28 = FMA(KP923879532, T1T, KP382683432 * T1O); | ||
|  | 			 T29 = FNMS(KP923879532, T1Z, KP382683432 * T24); | ||
|  | 			 T2a = T28 + T29; | ||
|  | 			 T35 = T29 - T28; | ||
|  | 		    } | ||
|  | 		    cr[WS(rs, 7)] = T1J - T26; | ||
|  | 		    cr[WS(rs, 11)] = T3b - T3c; | ||
|  | 		    ci[WS(rs, 12)] = T3b + T3c; | ||
|  | 		    ci[0] = T1J + T26; | ||
|  | 		    ci[WS(rs, 4)] = T27 - T2a; | ||
|  | 		    cr[WS(rs, 15)] = T35 - T3a; | ||
|  | 		    ci[WS(rs, 8)] = T35 + T3a; | ||
|  | 		    cr[WS(rs, 3)] = T27 + T2a; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TH, T2L, T2W, T2Y, T1s, T2X, T2O, T2P; | ||
|  | 		    { | ||
|  | 			 E Tj, TG, T2Q, T2V; | ||
|  | 			 Tj = T7 + Ti; | ||
|  | 			 TG = Tu + TF; | ||
|  | 			 TH = Tj + TG; | ||
|  | 			 T2L = Tj - TG; | ||
|  | 			 T2Q = T2t + T2s; | ||
|  | 			 T2V = T2R + T2U; | ||
|  | 			 T2W = T2Q + T2V; | ||
|  | 			 T2Y = T2V - T2Q; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T14, T1r, T2M, T2N; | ||
|  | 			 T14 = TS + T13; | ||
|  | 			 T1r = T1f + T1q; | ||
|  | 			 T1s = T14 + T1r; | ||
|  | 			 T2X = T1r - T14; | ||
|  | 			 T2M = T2C + T2D; | ||
|  | 			 T2N = T2x + T2y; | ||
|  | 			 T2O = T2M - T2N; | ||
|  | 			 T2P = T2N + T2M; | ||
|  | 		    } | ||
|  | 		    ci[WS(rs, 7)] = TH - T1s; | ||
|  | 		    cr[WS(rs, 12)] = T2X - T2Y; | ||
|  | 		    ci[WS(rs, 11)] = T2X + T2Y; | ||
|  | 		    cr[0] = TH + T1s; | ||
|  | 		    cr[WS(rs, 4)] = T2L - T2O; | ||
|  | 		    cr[WS(rs, 8)] = T2P - T2W; | ||
|  | 		    ci[WS(rs, 15)] = T2P + T2W; | ||
|  | 		    ci[WS(rs, 3)] = T2L + T2O; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2f, T2n, T3g, T3i, T2m, T3h, T2q, T3d; | ||
|  | 		    { | ||
|  | 			 E T2b, T2e, T3e, T3f; | ||
|  | 			 T2b = T1t + T1w; | ||
|  | 			 T2e = KP707106781 * (T2c + T2d); | ||
|  | 			 T2f = T2b + T2e; | ||
|  | 			 T2n = T2b - T2e; | ||
|  | 			 T3e = KP707106781 * (T1H - T1C); | ||
|  | 			 T3f = T38 - T37; | ||
|  | 			 T3g = T3e + T3f; | ||
|  | 			 T3i = T3f - T3e; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2i, T2l, T2o, T2p; | ||
|  | 			 T2i = FMA(KP382683432, T2g, KP923879532 * T2h); | ||
|  | 			 T2l = FNMS(KP382683432, T2k, KP923879532 * T2j); | ||
|  | 			 T2m = T2i + T2l; | ||
|  | 			 T3h = T2l - T2i; | ||
|  | 			 T2o = FNMS(KP923879532, T2g, KP382683432 * T2h); | ||
|  | 			 T2p = FMA(KP923879532, T2k, KP382683432 * T2j); | ||
|  | 			 T2q = T2o + T2p; | ||
|  | 			 T3d = T2p - T2o; | ||
|  | 		    } | ||
|  | 		    ci[WS(rs, 6)] = T2f - T2m; | ||
|  | 		    cr[WS(rs, 13)] = T3h - T3i; | ||
|  | 		    ci[WS(rs, 10)] = T3h + T3i; | ||
|  | 		    cr[WS(rs, 1)] = T2f + T2m; | ||
|  | 		    cr[WS(rs, 5)] = T2n - T2q; | ||
|  | 		    cr[WS(rs, 9)] = T3d - T3g; | ||
|  | 		    ci[WS(rs, 14)] = T3d + T3g; | ||
|  | 		    ci[WS(rs, 2)] = T2n + T2q; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2v, T2H, T32, T34, T2G, T2Z, T2K, T33; | ||
|  | 		    { | ||
|  | 			 E T2r, T2u, T30, T31; | ||
|  | 			 T2r = T7 - Ti; | ||
|  | 			 T2u = T2s - T2t; | ||
|  | 			 T2v = T2r - T2u; | ||
|  | 			 T2H = T2r + T2u; | ||
|  | 			 T30 = Tu - TF; | ||
|  | 			 T31 = T2U - T2R; | ||
|  | 			 T32 = T30 + T31; | ||
|  | 			 T34 = T31 - T30; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2A, T2F, T2I, T2J; | ||
|  | 			 T2A = T2w + T2z; | ||
|  | 			 T2F = T2B - T2E; | ||
|  | 			 T2G = KP707106781 * (T2A + T2F); | ||
|  | 			 T2Z = KP707106781 * (T2F - T2A); | ||
|  | 			 T2I = T2w - T2z; | ||
|  | 			 T2J = T2B + T2E; | ||
|  | 			 T2K = KP707106781 * (T2I + T2J); | ||
|  | 			 T33 = KP707106781 * (T2J - T2I); | ||
|  | 		    } | ||
|  | 		    ci[WS(rs, 5)] = T2v - T2G; | ||
|  | 		    cr[WS(rs, 10)] = T33 - T34; | ||
|  | 		    ci[WS(rs, 13)] = T33 + T34; | ||
|  | 		    cr[WS(rs, 2)] = T2v + T2G; | ||
|  | 		    cr[WS(rs, 6)] = T2H - T2K; | ||
|  | 		    cr[WS(rs, 14)] = T2Z - T32; | ||
|  | 		    ci[WS(rs, 9)] = T2Z + T32; | ||
|  | 		    ci[WS(rs, 1)] = T2H + T2K; | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 16 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2hc_desc desc = { 16, "hf_16", twinstr, &GENUS, { 136, 46, 38, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hf_16) (planner *p) { | ||
|  |      X(khc2hc_register) (p, hf_16, &desc); | ||
|  | } | ||
|  | #endif
 |