254 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			254 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Matteo Frigo
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is free software; you can redistribute it and/or modify
							 | 
						||
| 
								 | 
							
								 * it under the terms of the GNU General Public License as published by
							 | 
						||
| 
								 | 
							
								 * the Free Software Foundation; either version 2 of the License, or
							 | 
						||
| 
								 | 
							
								 * (at your option) any later version.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is distributed in the hope that it will be useful,
							 | 
						||
| 
								 | 
							
								 * but WITHOUT ANY WARRANTY; without even the implied warranty of
							 | 
						||
| 
								 | 
							
								 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
							 | 
						||
| 
								 | 
							
								 * GNU General Public License for more details.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * You should have received a copy of the GNU General Public License
							 | 
						||
| 
								 | 
							
								 * along with this program; if not, write to the Free Software
							 | 
						||
| 
								 | 
							
								 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* This file was automatically generated --- DO NOT EDIT */
							 | 
						||
| 
								 | 
							
								/* Generated on Tue Sep 14 10:44:26 EDT 2021 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "dft/codelet-dft.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 5 -name t1_5 -include dft/scalar/t.h */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * This function contains 40 FP additions, 34 FP multiplications,
							 | 
						||
| 
								 | 
							
								 * (or, 14 additions, 8 multiplications, 26 fused multiply/add),
							 | 
						||
| 
								 | 
							
								 * 31 stack variables, 4 constants, and 20 memory accesses
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								#include "dft/scalar/t.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void t1_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
							 | 
						||
| 
								 | 
							
								     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
							 | 
						||
| 
								 | 
							
								     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
							 | 
						||
| 
								 | 
							
								     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
							 | 
						||
| 
								 | 
							
								     {
							 | 
						||
| 
								 | 
							
									  INT m;
							 | 
						||
| 
								 | 
							
									  for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
							 | 
						||
| 
								 | 
							
									       E T1, TM, T7, Tx, Td, Tz, Te, TJ, Tk, TC, Tq, TE, Tr, TK;
							 | 
						||
| 
								 | 
							
									       T1 = ri[0];
							 | 
						||
| 
								 | 
							
									       TM = ii[0];
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E T3, T6, T4, Tw, T9, Tc, Ta, Ty, T2, T8, T5, Tb;
							 | 
						||
| 
								 | 
							
										    T3 = ri[WS(rs, 1)];
							 | 
						||
| 
								 | 
							
										    T6 = ii[WS(rs, 1)];
							 | 
						||
| 
								 | 
							
										    T2 = W[0];
							 | 
						||
| 
								 | 
							
										    T4 = T2 * T3;
							 | 
						||
| 
								 | 
							
										    Tw = T2 * T6;
							 | 
						||
| 
								 | 
							
										    T9 = ri[WS(rs, 4)];
							 | 
						||
| 
								 | 
							
										    Tc = ii[WS(rs, 4)];
							 | 
						||
| 
								 | 
							
										    T8 = W[6];
							 | 
						||
| 
								 | 
							
										    Ta = T8 * T9;
							 | 
						||
| 
								 | 
							
										    Ty = T8 * Tc;
							 | 
						||
| 
								 | 
							
										    T5 = W[1];
							 | 
						||
| 
								 | 
							
										    T7 = FMA(T5, T6, T4);
							 | 
						||
| 
								 | 
							
										    Tx = FNMS(T5, T3, Tw);
							 | 
						||
| 
								 | 
							
										    Tb = W[7];
							 | 
						||
| 
								 | 
							
										    Td = FMA(Tb, Tc, Ta);
							 | 
						||
| 
								 | 
							
										    Tz = FNMS(Tb, T9, Ty);
							 | 
						||
| 
								 | 
							
										    Te = T7 + Td;
							 | 
						||
| 
								 | 
							
										    TJ = Tx + Tz;
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E Tg, Tj, Th, TB, Tm, Tp, Tn, TD, Tf, Tl, Ti, To;
							 | 
						||
| 
								 | 
							
										    Tg = ri[WS(rs, 2)];
							 | 
						||
| 
								 | 
							
										    Tj = ii[WS(rs, 2)];
							 | 
						||
| 
								 | 
							
										    Tf = W[2];
							 | 
						||
| 
								 | 
							
										    Th = Tf * Tg;
							 | 
						||
| 
								 | 
							
										    TB = Tf * Tj;
							 | 
						||
| 
								 | 
							
										    Tm = ri[WS(rs, 3)];
							 | 
						||
| 
								 | 
							
										    Tp = ii[WS(rs, 3)];
							 | 
						||
| 
								 | 
							
										    Tl = W[4];
							 | 
						||
| 
								 | 
							
										    Tn = Tl * Tm;
							 | 
						||
| 
								 | 
							
										    TD = Tl * Tp;
							 | 
						||
| 
								 | 
							
										    Ti = W[3];
							 | 
						||
| 
								 | 
							
										    Tk = FMA(Ti, Tj, Th);
							 | 
						||
| 
								 | 
							
										    TC = FNMS(Ti, Tg, TB);
							 | 
						||
| 
								 | 
							
										    To = W[5];
							 | 
						||
| 
								 | 
							
										    Tq = FMA(To, Tp, Tn);
							 | 
						||
| 
								 | 
							
										    TE = FNMS(To, Tm, TD);
							 | 
						||
| 
								 | 
							
										    Tr = Tk + Tq;
							 | 
						||
| 
								 | 
							
										    TK = TC + TE;
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E Tu, Ts, Tt, TG, TI, TA, TF, TH, Tv;
							 | 
						||
| 
								 | 
							
										    Tu = Te - Tr;
							 | 
						||
| 
								 | 
							
										    Ts = Te + Tr;
							 | 
						||
| 
								 | 
							
										    Tt = FNMS(KP250000000, Ts, T1);
							 | 
						||
| 
								 | 
							
										    TA = Tx - Tz;
							 | 
						||
| 
								 | 
							
										    TF = TC - TE;
							 | 
						||
| 
								 | 
							
										    TG = FMA(KP618033988, TF, TA);
							 | 
						||
| 
								 | 
							
										    TI = FNMS(KP618033988, TA, TF);
							 | 
						||
| 
								 | 
							
										    ri[0] = T1 + Ts;
							 | 
						||
| 
								 | 
							
										    TH = FNMS(KP559016994, Tu, Tt);
							 | 
						||
| 
								 | 
							
										    ri[WS(rs, 2)] = FNMS(KP951056516, TI, TH);
							 | 
						||
| 
								 | 
							
										    ri[WS(rs, 3)] = FMA(KP951056516, TI, TH);
							 | 
						||
| 
								 | 
							
										    Tv = FMA(KP559016994, Tu, Tt);
							 | 
						||
| 
								 | 
							
										    ri[WS(rs, 4)] = FNMS(KP951056516, TG, Tv);
							 | 
						||
| 
								 | 
							
										    ri[WS(rs, 1)] = FMA(KP951056516, TG, Tv);
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E TO, TL, TN, TS, TU, TQ, TR, TT, TP;
							 | 
						||
| 
								 | 
							
										    TO = TJ - TK;
							 | 
						||
| 
								 | 
							
										    TL = TJ + TK;
							 | 
						||
| 
								 | 
							
										    TN = FNMS(KP250000000, TL, TM);
							 | 
						||
| 
								 | 
							
										    TQ = T7 - Td;
							 | 
						||
| 
								 | 
							
										    TR = Tk - Tq;
							 | 
						||
| 
								 | 
							
										    TS = FMA(KP618033988, TR, TQ);
							 | 
						||
| 
								 | 
							
										    TU = FNMS(KP618033988, TQ, TR);
							 | 
						||
| 
								 | 
							
										    ii[0] = TL + TM;
							 | 
						||
| 
								 | 
							
										    TT = FNMS(KP559016994, TO, TN);
							 | 
						||
| 
								 | 
							
										    ii[WS(rs, 2)] = FMA(KP951056516, TU, TT);
							 | 
						||
| 
								 | 
							
										    ii[WS(rs, 3)] = FNMS(KP951056516, TU, TT);
							 | 
						||
| 
								 | 
							
										    TP = FMA(KP559016994, TO, TN);
							 | 
						||
| 
								 | 
							
										    ii[WS(rs, 1)] = FNMS(KP951056516, TS, TP);
							 | 
						||
| 
								 | 
							
										    ii[WS(rs, 4)] = FMA(KP951056516, TS, TP);
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const tw_instr twinstr[] = {
							 | 
						||
| 
								 | 
							
								     { TW_FULL, 0, 5 },
							 | 
						||
| 
								 | 
							
								     { TW_NEXT, 1, 0 }
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const ct_desc desc = { 5, "t1_5", twinstr, &GENUS, { 14, 8, 26, 0 }, 0, 0, 0 };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void X(codelet_t1_5) (planner *p) {
							 | 
						||
| 
								 | 
							
								     X(kdft_dit_register) (p, t1_5, &desc);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 5 -name t1_5 -include dft/scalar/t.h */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * This function contains 40 FP additions, 28 FP multiplications,
							 | 
						||
| 
								 | 
							
								 * (or, 26 additions, 14 multiplications, 14 fused multiply/add),
							 | 
						||
| 
								 | 
							
								 * 29 stack variables, 4 constants, and 20 memory accesses
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								#include "dft/scalar/t.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void t1_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
							 | 
						||
| 
								 | 
							
								     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
							 | 
						||
| 
								 | 
							
								     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
							 | 
						||
| 
								 | 
							
								     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
							 | 
						||
| 
								 | 
							
								     {
							 | 
						||
| 
								 | 
							
									  INT m;
							 | 
						||
| 
								 | 
							
									  for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
							 | 
						||
| 
								 | 
							
									       E T1, TE, Tu, Tx, TJ, TI, TB, TC, TD, Tc, Tn, To;
							 | 
						||
| 
								 | 
							
									       T1 = ri[0];
							 | 
						||
| 
								 | 
							
									       TE = ii[0];
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E T6, Ts, Tm, Tw, Tb, Tt, Th, Tv;
							 | 
						||
| 
								 | 
							
										    {
							 | 
						||
| 
								 | 
							
											 E T3, T5, T2, T4;
							 | 
						||
| 
								 | 
							
											 T3 = ri[WS(rs, 1)];
							 | 
						||
| 
								 | 
							
											 T5 = ii[WS(rs, 1)];
							 | 
						||
| 
								 | 
							
											 T2 = W[0];
							 | 
						||
| 
								 | 
							
											 T4 = W[1];
							 | 
						||
| 
								 | 
							
											 T6 = FMA(T2, T3, T4 * T5);
							 | 
						||
| 
								 | 
							
											 Ts = FNMS(T4, T3, T2 * T5);
							 | 
						||
| 
								 | 
							
										    }
							 | 
						||
| 
								 | 
							
										    {
							 | 
						||
| 
								 | 
							
											 E Tj, Tl, Ti, Tk;
							 | 
						||
| 
								 | 
							
											 Tj = ri[WS(rs, 3)];
							 | 
						||
| 
								 | 
							
											 Tl = ii[WS(rs, 3)];
							 | 
						||
| 
								 | 
							
											 Ti = W[4];
							 | 
						||
| 
								 | 
							
											 Tk = W[5];
							 | 
						||
| 
								 | 
							
											 Tm = FMA(Ti, Tj, Tk * Tl);
							 | 
						||
| 
								 | 
							
											 Tw = FNMS(Tk, Tj, Ti * Tl);
							 | 
						||
| 
								 | 
							
										    }
							 | 
						||
| 
								 | 
							
										    {
							 | 
						||
| 
								 | 
							
											 E T8, Ta, T7, T9;
							 | 
						||
| 
								 | 
							
											 T8 = ri[WS(rs, 4)];
							 | 
						||
| 
								 | 
							
											 Ta = ii[WS(rs, 4)];
							 | 
						||
| 
								 | 
							
											 T7 = W[6];
							 | 
						||
| 
								 | 
							
											 T9 = W[7];
							 | 
						||
| 
								 | 
							
											 Tb = FMA(T7, T8, T9 * Ta);
							 | 
						||
| 
								 | 
							
											 Tt = FNMS(T9, T8, T7 * Ta);
							 | 
						||
| 
								 | 
							
										    }
							 | 
						||
| 
								 | 
							
										    {
							 | 
						||
| 
								 | 
							
											 E Te, Tg, Td, Tf;
							 | 
						||
| 
								 | 
							
											 Te = ri[WS(rs, 2)];
							 | 
						||
| 
								 | 
							
											 Tg = ii[WS(rs, 2)];
							 | 
						||
| 
								 | 
							
											 Td = W[2];
							 | 
						||
| 
								 | 
							
											 Tf = W[3];
							 | 
						||
| 
								 | 
							
											 Th = FMA(Td, Te, Tf * Tg);
							 | 
						||
| 
								 | 
							
											 Tv = FNMS(Tf, Te, Td * Tg);
							 | 
						||
| 
								 | 
							
										    }
							 | 
						||
| 
								 | 
							
										    Tu = Ts - Tt;
							 | 
						||
| 
								 | 
							
										    Tx = Tv - Tw;
							 | 
						||
| 
								 | 
							
										    TJ = Th - Tm;
							 | 
						||
| 
								 | 
							
										    TI = T6 - Tb;
							 | 
						||
| 
								 | 
							
										    TB = Ts + Tt;
							 | 
						||
| 
								 | 
							
										    TC = Tv + Tw;
							 | 
						||
| 
								 | 
							
										    TD = TB + TC;
							 | 
						||
| 
								 | 
							
										    Tc = T6 + Tb;
							 | 
						||
| 
								 | 
							
										    Tn = Th + Tm;
							 | 
						||
| 
								 | 
							
										    To = Tc + Tn;
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       ri[0] = T1 + To;
							 | 
						||
| 
								 | 
							
									       ii[0] = TD + TE;
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E Ty, TA, Tr, Tz, Tp, Tq;
							 | 
						||
| 
								 | 
							
										    Ty = FMA(KP951056516, Tu, KP587785252 * Tx);
							 | 
						||
| 
								 | 
							
										    TA = FNMS(KP587785252, Tu, KP951056516 * Tx);
							 | 
						||
| 
								 | 
							
										    Tp = KP559016994 * (Tc - Tn);
							 | 
						||
| 
								 | 
							
										    Tq = FNMS(KP250000000, To, T1);
							 | 
						||
| 
								 | 
							
										    Tr = Tp + Tq;
							 | 
						||
| 
								 | 
							
										    Tz = Tq - Tp;
							 | 
						||
| 
								 | 
							
										    ri[WS(rs, 4)] = Tr - Ty;
							 | 
						||
| 
								 | 
							
										    ri[WS(rs, 3)] = Tz + TA;
							 | 
						||
| 
								 | 
							
										    ri[WS(rs, 1)] = Tr + Ty;
							 | 
						||
| 
								 | 
							
										    ri[WS(rs, 2)] = Tz - TA;
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E TK, TL, TH, TM, TF, TG;
							 | 
						||
| 
								 | 
							
										    TK = FMA(KP951056516, TI, KP587785252 * TJ);
							 | 
						||
| 
								 | 
							
										    TL = FNMS(KP587785252, TI, KP951056516 * TJ);
							 | 
						||
| 
								 | 
							
										    TF = KP559016994 * (TB - TC);
							 | 
						||
| 
								 | 
							
										    TG = FNMS(KP250000000, TD, TE);
							 | 
						||
| 
								 | 
							
										    TH = TF + TG;
							 | 
						||
| 
								 | 
							
										    TM = TG - TF;
							 | 
						||
| 
								 | 
							
										    ii[WS(rs, 1)] = TH - TK;
							 | 
						||
| 
								 | 
							
										    ii[WS(rs, 3)] = TM - TL;
							 | 
						||
| 
								 | 
							
										    ii[WS(rs, 4)] = TK + TH;
							 | 
						||
| 
								 | 
							
										    ii[WS(rs, 2)] = TL + TM;
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const tw_instr twinstr[] = {
							 | 
						||
| 
								 | 
							
								     { TW_FULL, 0, 5 },
							 | 
						||
| 
								 | 
							
								     { TW_NEXT, 1, 0 }
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const ct_desc desc = { 5, "t1_5", twinstr, &GENUS, { 26, 14, 14, 0 }, 0, 0, 0 };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void X(codelet_t1_5) (planner *p) {
							 | 
						||
| 
								 | 
							
								     X(kdft_dit_register) (p, t1_5, &desc);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								#endif
							 |