195 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			195 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Matteo Frigo
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is free software; you can redistribute it and/or modify
							 | 
						||
| 
								 | 
							
								 * it under the terms of the GNU General Public License as published by
							 | 
						||
| 
								 | 
							
								 * the Free Software Foundation; either version 2 of the License, or
							 | 
						||
| 
								 | 
							
								 * (at your option) any later version.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is distributed in the hope that it will be useful,
							 | 
						||
| 
								 | 
							
								 * but WITHOUT ANY WARRANTY; without even the implied warranty of
							 | 
						||
| 
								 | 
							
								 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
							 | 
						||
| 
								 | 
							
								 * GNU General Public License for more details.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * You should have received a copy of the GNU General Public License
							 | 
						||
| 
								 | 
							
								 * along with this program; if not, write to the Free Software
							 | 
						||
| 
								 | 
							
								 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* This file was automatically generated --- DO NOT EDIT */
							 | 
						||
| 
								 | 
							
								/* Generated on Tue Sep 14 10:44:24 EDT 2021 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "dft/codelet-dft.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 5 -name n1_5 -include dft/scalar/n.h */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * This function contains 32 FP additions, 18 FP multiplications,
							 | 
						||
| 
								 | 
							
								 * (or, 14 additions, 0 multiplications, 18 fused multiply/add),
							 | 
						||
| 
								 | 
							
								 * 21 stack variables, 4 constants, and 20 memory accesses
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								#include "dft/scalar/n.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void n1_5(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
							 | 
						||
| 
								 | 
							
								     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
							 | 
						||
| 
								 | 
							
								     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
							 | 
						||
| 
								 | 
							
								     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
							 | 
						||
| 
								 | 
							
								     {
							 | 
						||
| 
								 | 
							
									  INT i;
							 | 
						||
| 
								 | 
							
									  for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) {
							 | 
						||
| 
								 | 
							
									       E T1, Tl, T8, Tt, Ta, Ts, Te, Tq, Th, To;
							 | 
						||
| 
								 | 
							
									       T1 = ri[0];
							 | 
						||
| 
								 | 
							
									       Tl = ii[0];
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E T2, T3, T4, T5, T6, T7;
							 | 
						||
| 
								 | 
							
										    T2 = ri[WS(is, 1)];
							 | 
						||
| 
								 | 
							
										    T3 = ri[WS(is, 4)];
							 | 
						||
| 
								 | 
							
										    T4 = T2 + T3;
							 | 
						||
| 
								 | 
							
										    T5 = ri[WS(is, 2)];
							 | 
						||
| 
								 | 
							
										    T6 = ri[WS(is, 3)];
							 | 
						||
| 
								 | 
							
										    T7 = T5 + T6;
							 | 
						||
| 
								 | 
							
										    T8 = T4 + T7;
							 | 
						||
| 
								 | 
							
										    Tt = T5 - T6;
							 | 
						||
| 
								 | 
							
										    Ta = T4 - T7;
							 | 
						||
| 
								 | 
							
										    Ts = T2 - T3;
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E Tc, Td, Tm, Tf, Tg, Tn;
							 | 
						||
| 
								 | 
							
										    Tc = ii[WS(is, 1)];
							 | 
						||
| 
								 | 
							
										    Td = ii[WS(is, 4)];
							 | 
						||
| 
								 | 
							
										    Tm = Tc + Td;
							 | 
						||
| 
								 | 
							
										    Tf = ii[WS(is, 2)];
							 | 
						||
| 
								 | 
							
										    Tg = ii[WS(is, 3)];
							 | 
						||
| 
								 | 
							
										    Tn = Tf + Tg;
							 | 
						||
| 
								 | 
							
										    Te = Tc - Td;
							 | 
						||
| 
								 | 
							
										    Tq = Tm - Tn;
							 | 
						||
| 
								 | 
							
										    Th = Tf - Tg;
							 | 
						||
| 
								 | 
							
										    To = Tm + Tn;
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       ro[0] = T1 + T8;
							 | 
						||
| 
								 | 
							
									       io[0] = Tl + To;
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E Ti, Tk, Tb, Tj, T9;
							 | 
						||
| 
								 | 
							
										    Ti = FMA(KP618033988, Th, Te);
							 | 
						||
| 
								 | 
							
										    Tk = FNMS(KP618033988, Te, Th);
							 | 
						||
| 
								 | 
							
										    T9 = FNMS(KP250000000, T8, T1);
							 | 
						||
| 
								 | 
							
										    Tb = FMA(KP559016994, Ta, T9);
							 | 
						||
| 
								 | 
							
										    Tj = FNMS(KP559016994, Ta, T9);
							 | 
						||
| 
								 | 
							
										    ro[WS(os, 4)] = FNMS(KP951056516, Ti, Tb);
							 | 
						||
| 
								 | 
							
										    ro[WS(os, 3)] = FMA(KP951056516, Tk, Tj);
							 | 
						||
| 
								 | 
							
										    ro[WS(os, 1)] = FMA(KP951056516, Ti, Tb);
							 | 
						||
| 
								 | 
							
										    ro[WS(os, 2)] = FNMS(KP951056516, Tk, Tj);
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E Tu, Tw, Tr, Tv, Tp;
							 | 
						||
| 
								 | 
							
										    Tu = FMA(KP618033988, Tt, Ts);
							 | 
						||
| 
								 | 
							
										    Tw = FNMS(KP618033988, Ts, Tt);
							 | 
						||
| 
								 | 
							
										    Tp = FNMS(KP250000000, To, Tl);
							 | 
						||
| 
								 | 
							
										    Tr = FMA(KP559016994, Tq, Tp);
							 | 
						||
| 
								 | 
							
										    Tv = FNMS(KP559016994, Tq, Tp);
							 | 
						||
| 
								 | 
							
										    io[WS(os, 1)] = FNMS(KP951056516, Tu, Tr);
							 | 
						||
| 
								 | 
							
										    io[WS(os, 3)] = FNMS(KP951056516, Tw, Tv);
							 | 
						||
| 
								 | 
							
										    io[WS(os, 4)] = FMA(KP951056516, Tu, Tr);
							 | 
						||
| 
								 | 
							
										    io[WS(os, 2)] = FMA(KP951056516, Tw, Tv);
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const kdft_desc desc = { 5, "n1_5", { 14, 0, 18, 0 }, &GENUS, 0, 0, 0, 0 };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void X(codelet_n1_5) (planner *p) { X(kdft_register) (p, n1_5, &desc);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 5 -name n1_5 -include dft/scalar/n.h */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * This function contains 32 FP additions, 12 FP multiplications,
							 | 
						||
| 
								 | 
							
								 * (or, 26 additions, 6 multiplications, 6 fused multiply/add),
							 | 
						||
| 
								 | 
							
								 * 21 stack variables, 4 constants, and 20 memory accesses
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								#include "dft/scalar/n.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void n1_5(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
							 | 
						||
| 
								 | 
							
								     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
							 | 
						||
| 
								 | 
							
								     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
							 | 
						||
| 
								 | 
							
								     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
							 | 
						||
| 
								 | 
							
								     {
							 | 
						||
| 
								 | 
							
									  INT i;
							 | 
						||
| 
								 | 
							
									  for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) {
							 | 
						||
| 
								 | 
							
									       E T1, To, T8, Tt, T9, Ts, Te, Tp, Th, Tn;
							 | 
						||
| 
								 | 
							
									       T1 = ri[0];
							 | 
						||
| 
								 | 
							
									       To = ii[0];
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E T2, T3, T4, T5, T6, T7;
							 | 
						||
| 
								 | 
							
										    T2 = ri[WS(is, 1)];
							 | 
						||
| 
								 | 
							
										    T3 = ri[WS(is, 4)];
							 | 
						||
| 
								 | 
							
										    T4 = T2 + T3;
							 | 
						||
| 
								 | 
							
										    T5 = ri[WS(is, 2)];
							 | 
						||
| 
								 | 
							
										    T6 = ri[WS(is, 3)];
							 | 
						||
| 
								 | 
							
										    T7 = T5 + T6;
							 | 
						||
| 
								 | 
							
										    T8 = T4 + T7;
							 | 
						||
| 
								 | 
							
										    Tt = T5 - T6;
							 | 
						||
| 
								 | 
							
										    T9 = KP559016994 * (T4 - T7);
							 | 
						||
| 
								 | 
							
										    Ts = T2 - T3;
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E Tc, Td, Tl, Tf, Tg, Tm;
							 | 
						||
| 
								 | 
							
										    Tc = ii[WS(is, 1)];
							 | 
						||
| 
								 | 
							
										    Td = ii[WS(is, 4)];
							 | 
						||
| 
								 | 
							
										    Tl = Tc + Td;
							 | 
						||
| 
								 | 
							
										    Tf = ii[WS(is, 2)];
							 | 
						||
| 
								 | 
							
										    Tg = ii[WS(is, 3)];
							 | 
						||
| 
								 | 
							
										    Tm = Tf + Tg;
							 | 
						||
| 
								 | 
							
										    Te = Tc - Td;
							 | 
						||
| 
								 | 
							
										    Tp = Tl + Tm;
							 | 
						||
| 
								 | 
							
										    Th = Tf - Tg;
							 | 
						||
| 
								 | 
							
										    Tn = KP559016994 * (Tl - Tm);
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       ro[0] = T1 + T8;
							 | 
						||
| 
								 | 
							
									       io[0] = To + Tp;
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E Ti, Tk, Tb, Tj, Ta;
							 | 
						||
| 
								 | 
							
										    Ti = FMA(KP951056516, Te, KP587785252 * Th);
							 | 
						||
| 
								 | 
							
										    Tk = FNMS(KP587785252, Te, KP951056516 * Th);
							 | 
						||
| 
								 | 
							
										    Ta = FNMS(KP250000000, T8, T1);
							 | 
						||
| 
								 | 
							
										    Tb = T9 + Ta;
							 | 
						||
| 
								 | 
							
										    Tj = Ta - T9;
							 | 
						||
| 
								 | 
							
										    ro[WS(os, 4)] = Tb - Ti;
							 | 
						||
| 
								 | 
							
										    ro[WS(os, 3)] = Tj + Tk;
							 | 
						||
| 
								 | 
							
										    ro[WS(os, 1)] = Tb + Ti;
							 | 
						||
| 
								 | 
							
										    ro[WS(os, 2)] = Tj - Tk;
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       {
							 | 
						||
| 
								 | 
							
										    E Tu, Tv, Tr, Tw, Tq;
							 | 
						||
| 
								 | 
							
										    Tu = FMA(KP951056516, Ts, KP587785252 * Tt);
							 | 
						||
| 
								 | 
							
										    Tv = FNMS(KP587785252, Ts, KP951056516 * Tt);
							 | 
						||
| 
								 | 
							
										    Tq = FNMS(KP250000000, Tp, To);
							 | 
						||
| 
								 | 
							
										    Tr = Tn + Tq;
							 | 
						||
| 
								 | 
							
										    Tw = Tq - Tn;
							 | 
						||
| 
								 | 
							
										    io[WS(os, 1)] = Tr - Tu;
							 | 
						||
| 
								 | 
							
										    io[WS(os, 3)] = Tw - Tv;
							 | 
						||
| 
								 | 
							
										    io[WS(os, 4)] = Tu + Tr;
							 | 
						||
| 
								 | 
							
										    io[WS(os, 2)] = Tv + Tw;
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const kdft_desc desc = { 5, "n1_5", { 26, 6, 6, 0 }, &GENUS, 0, 0, 0, 0 };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void X(codelet_n1_5) (planner *p) { X(kdft_register) (p, n1_5, &desc);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif
							 |