429 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			429 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:47:22 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 16 -dif -sign 1 -name hc2cbdftv_16 -include rdft/simd/hc2cbv.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 103 FP additions, 80 FP multiplications, | ||
|  |  * (or, 53 additions, 30 multiplications, 50 fused multiply/add), | ||
|  |  * 79 stack variables, 3 constants, and 32 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/simd/hc2cbv.h"
 | ||
|  | 
 | ||
|  | static void hc2cbdftv_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | ||
|  |      DVK(KP414213562, +0.414213562373095048801688724209698078569671875); | ||
|  |      DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 30)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(64, rs)) { | ||
|  | 	       V T8, Tv, TE, T1t, TP, T1w, T10, T1p, Tn, Tw, T13, T1q, TL, T1x, TS; | ||
|  | 	       V T1u; | ||
|  | 	       { | ||
|  | 		    V T4, TA, Tu, TC, T7, TN, Tr, TB, T2, T3, Ts, Tt, T5, T6, Tp; | ||
|  | 		    V Tq, TD, TO, TY, TZ, Tb, TF, Tl, TJ, Te, TG, Ti, TI, T9, Ta; | ||
|  | 		    V Tj, Tk, Tc, Td, Tg, Th, Tf, Tm, T11, T12, TH, TK, TQ, TR; | ||
|  | 		    T2 = LD(&(Rp[0]), ms, &(Rp[0])); | ||
|  | 		    T3 = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    T4 = VFMACONJ(T3, T2); | ||
|  | 		    TA = VFNMSCONJ(T3, T2); | ||
|  | 		    Ts = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0])); | ||
|  | 		    Tt = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    Tu = VFMACONJ(Tt, Ts); | ||
|  | 		    TC = VFMSCONJ(Tt, Ts); | ||
|  | 		    T5 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); | ||
|  | 		    T6 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    T7 = VFMACONJ(T6, T5); | ||
|  | 		    TN = VFNMSCONJ(T6, T5); | ||
|  | 		    Tp = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | ||
|  | 		    Tq = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    Tr = VFMACONJ(Tq, Tp); | ||
|  | 		    TB = VFNMSCONJ(Tq, Tp); | ||
|  | 		    T8 = VSUB(T4, T7); | ||
|  | 		    Tv = VSUB(Tr, Tu); | ||
|  | 		    TD = VADD(TB, TC); | ||
|  | 		    TE = VFMA(LDK(KP707106781), TD, TA); | ||
|  | 		    T1t = VFNMS(LDK(KP707106781), TD, TA); | ||
|  | 		    TO = VSUB(TB, TC); | ||
|  | 		    TP = VFMA(LDK(KP707106781), TO, TN); | ||
|  | 		    T1w = VFNMS(LDK(KP707106781), TO, TN); | ||
|  | 		    TY = VADD(T4, T7); | ||
|  | 		    TZ = VADD(Tr, Tu); | ||
|  | 		    T10 = VADD(TY, TZ); | ||
|  | 		    T1p = VSUB(TY, TZ); | ||
|  | 		    T9 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    Ta = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0])); | ||
|  | 		    Tb = VFMACONJ(Ta, T9); | ||
|  | 		    TF = VFNMSCONJ(Ta, T9); | ||
|  | 		    Tj = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    Tk = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); | ||
|  | 		    Tl = VFMACONJ(Tk, Tj); | ||
|  | 		    TJ = VFNMSCONJ(Tk, Tj); | ||
|  | 		    Tc = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    Td = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | ||
|  | 		    Te = VFMACONJ(Td, Tc); | ||
|  | 		    TG = VFNMSCONJ(Td, Tc); | ||
|  | 		    Tg = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    Th = LD(&(Rm[0]), -ms, &(Rm[0])); | ||
|  | 		    Ti = VFMACONJ(Th, Tg); | ||
|  | 		    TI = VFMSCONJ(Th, Tg); | ||
|  | 		    Tf = VSUB(Tb, Te); | ||
|  | 		    Tm = VSUB(Ti, Tl); | ||
|  | 		    Tn = VADD(Tf, Tm); | ||
|  | 		    Tw = VSUB(Tf, Tm); | ||
|  | 		    T11 = VADD(Tb, Te); | ||
|  | 		    T12 = VADD(Ti, Tl); | ||
|  | 		    T13 = VADD(T11, T12); | ||
|  | 		    T1q = VSUB(T11, T12); | ||
|  | 		    TH = VFNMS(LDK(KP414213562), TG, TF); | ||
|  | 		    TK = VFMA(LDK(KP414213562), TJ, TI); | ||
|  | 		    TL = VADD(TH, TK); | ||
|  | 		    T1x = VSUB(TH, TK); | ||
|  | 		    TQ = VFMA(LDK(KP414213562), TF, TG); | ||
|  | 		    TR = VFNMS(LDK(KP414213562), TI, TJ); | ||
|  | 		    TS = VADD(TQ, TR); | ||
|  | 		    T1u = VSUB(TQ, TR); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V T1j, T1R, T1c, T1J, T1g, T1l, T1N, T1T, T1Q, T1a, T1b, T19, T1I, T1e, T1f; | ||
|  | 		    V T1d, T1k, T1L, T1M, T1K, T1S, T1h, T1U, T1V, T1i, T1m, T1O, T1P, T1n, T14; | ||
|  | 		    V T1r, Ty, T1D, TU, T16, T1z, T1F, TX, T1o, To, Tx, T1, T1C, TM, TT; | ||
|  | 		    V Tz, T15, T1v, T1y, T1s, T1E, TV, T1G, T1H, TW, T17, T1A, T1B, T18; | ||
|  | 		    T1j = VADD(T10, T13); | ||
|  | 		    T1Q = LDW(&(W[TWVL * 22])); | ||
|  | 		    T1R = VZMUL(T1Q, VFNMSI(T1q, T1p)); | ||
|  | 		    T1a = VFMA(LDK(KP707106781), Tn, T8); | ||
|  | 		    T1b = VFMA(LDK(KP707106781), Tw, Tv); | ||
|  | 		    T19 = LDW(&(W[TWVL * 26])); | ||
|  | 		    T1c = VZMUL(T19, VFNMSI(T1b, T1a)); | ||
|  | 		    T1I = LDW(&(W[TWVL * 2])); | ||
|  | 		    T1J = VZMUL(T1I, VFMAI(T1b, T1a)); | ||
|  | 		    T1e = VFMA(LDK(KP923879532), TL, TE); | ||
|  | 		    T1f = VFMA(LDK(KP923879532), TS, TP); | ||
|  | 		    T1d = LDW(&(W[TWVL * 28])); | ||
|  | 		    T1g = VZMULI(T1d, VFNMSI(T1f, T1e)); | ||
|  | 		    T1k = LDW(&(W[0])); | ||
|  | 		    T1l = VZMULI(T1k, VFMAI(T1f, T1e)); | ||
|  | 		    T1L = VFMA(LDK(KP923879532), T1u, T1t); | ||
|  | 		    T1M = VFNMS(LDK(KP923879532), T1x, T1w); | ||
|  | 		    T1K = LDW(&(W[TWVL * 4])); | ||
|  | 		    T1N = VZMULI(T1K, VFNMSI(T1M, T1L)); | ||
|  | 		    T1S = LDW(&(W[TWVL * 24])); | ||
|  | 		    T1T = VZMULI(T1S, VFMAI(T1M, T1L)); | ||
|  | 		    T1h = VCONJ(VSUB(T1c, T1g)); | ||
|  | 		    ST(&(Rm[WS(rs, 7)]), T1h, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    T1U = VCONJ(VSUB(T1R, T1T)); | ||
|  | 		    ST(&(Rm[WS(rs, 6)]), T1U, -ms, &(Rm[0])); | ||
|  | 		    T1V = VADD(T1R, T1T); | ||
|  | 		    ST(&(Rp[WS(rs, 6)]), T1V, ms, &(Rp[0])); | ||
|  | 		    T1i = VADD(T1c, T1g); | ||
|  | 		    ST(&(Rp[WS(rs, 7)]), T1i, ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    T1m = VCONJ(VSUB(T1j, T1l)); | ||
|  | 		    ST(&(Rm[0]), T1m, -ms, &(Rm[0])); | ||
|  | 		    T1O = VCONJ(VSUB(T1J, T1N)); | ||
|  | 		    ST(&(Rm[WS(rs, 1)]), T1O, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    T1P = VADD(T1J, T1N); | ||
|  | 		    ST(&(Rp[WS(rs, 1)]), T1P, ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    T1n = VADD(T1j, T1l); | ||
|  | 		    ST(&(Rp[0]), T1n, ms, &(Rp[0])); | ||
|  | 		    TX = LDW(&(W[TWVL * 14])); | ||
|  | 		    T14 = VZMUL(TX, VSUB(T10, T13)); | ||
|  | 		    T1o = LDW(&(W[TWVL * 6])); | ||
|  | 		    T1r = VZMUL(T1o, VFMAI(T1q, T1p)); | ||
|  | 		    To = VFNMS(LDK(KP707106781), Tn, T8); | ||
|  | 		    Tx = VFNMS(LDK(KP707106781), Tw, Tv); | ||
|  | 		    T1 = LDW(&(W[TWVL * 10])); | ||
|  | 		    Ty = VZMUL(T1, VFNMSI(Tx, To)); | ||
|  | 		    T1C = LDW(&(W[TWVL * 18])); | ||
|  | 		    T1D = VZMUL(T1C, VFMAI(Tx, To)); | ||
|  | 		    TM = VFNMS(LDK(KP923879532), TL, TE); | ||
|  | 		    TT = VFNMS(LDK(KP923879532), TS, TP); | ||
|  | 		    Tz = LDW(&(W[TWVL * 12])); | ||
|  | 		    TU = VZMULI(Tz, VFNMSI(TT, TM)); | ||
|  | 		    T15 = LDW(&(W[TWVL * 16])); | ||
|  | 		    T16 = VZMULI(T15, VFMAI(TT, TM)); | ||
|  | 		    T1v = VFNMS(LDK(KP923879532), T1u, T1t); | ||
|  | 		    T1y = VFMA(LDK(KP923879532), T1x, T1w); | ||
|  | 		    T1s = LDW(&(W[TWVL * 8])); | ||
|  | 		    T1z = VZMULI(T1s, VFMAI(T1y, T1v)); | ||
|  | 		    T1E = LDW(&(W[TWVL * 20])); | ||
|  | 		    T1F = VZMULI(T1E, VFNMSI(T1y, T1v)); | ||
|  | 		    TV = VCONJ(VSUB(Ty, TU)); | ||
|  | 		    ST(&(Rm[WS(rs, 3)]), TV, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    T1G = VCONJ(VSUB(T1D, T1F)); | ||
|  | 		    ST(&(Rm[WS(rs, 5)]), T1G, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    T1H = VADD(T1D, T1F); | ||
|  | 		    ST(&(Rp[WS(rs, 5)]), T1H, ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    TW = VADD(Ty, TU); | ||
|  | 		    ST(&(Rp[WS(rs, 3)]), TW, ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    T17 = VCONJ(VSUB(T14, T16)); | ||
|  | 		    ST(&(Rm[WS(rs, 4)]), T17, -ms, &(Rm[0])); | ||
|  | 		    T1A = VCONJ(VSUB(T1r, T1z)); | ||
|  | 		    ST(&(Rm[WS(rs, 2)]), T1A, -ms, &(Rm[0])); | ||
|  | 		    T1B = VADD(T1r, T1z); | ||
|  | 		    ST(&(Rp[WS(rs, 2)]), T1B, ms, &(Rp[0])); | ||
|  | 		    T18 = VADD(T14, T16); | ||
|  | 		    ST(&(Rp[WS(rs, 4)]), T18, ms, &(Rp[0])); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(1, 1), | ||
|  |      VTW(1, 2), | ||
|  |      VTW(1, 3), | ||
|  |      VTW(1, 4), | ||
|  |      VTW(1, 5), | ||
|  |      VTW(1, 6), | ||
|  |      VTW(1, 7), | ||
|  |      VTW(1, 8), | ||
|  |      VTW(1, 9), | ||
|  |      VTW(1, 10), | ||
|  |      VTW(1, 11), | ||
|  |      VTW(1, 12), | ||
|  |      VTW(1, 13), | ||
|  |      VTW(1, 14), | ||
|  |      VTW(1, 15), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 16, XSIMD_STRING("hc2cbdftv_16"), twinstr, &GENUS, { 53, 30, 50, 0 } }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_hc2cbdftv_16) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cbdftv_16, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 16 -dif -sign 1 -name hc2cbdftv_16 -include rdft/simd/hc2cbv.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 103 FP additions, 42 FP multiplications, | ||
|  |  * (or, 99 additions, 38 multiplications, 4 fused multiply/add), | ||
|  |  * 83 stack variables, 3 constants, and 32 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/simd/hc2cbv.h"
 | ||
|  | 
 | ||
|  | static void hc2cbdftv_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP382683432, +0.382683432365089771728459984030398866761344562); | ||
|  |      DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | ||
|  |      DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 30)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(64, rs)) { | ||
|  | 	       V Tf, T16, TZ, T1C, TI, T1a, TV, T1D, T1F, T1G, Ty, T19, TC, T17, TS; | ||
|  | 	       V T10; | ||
|  | 	       { | ||
|  | 		    V T2, TD, T4, TF, Tc, Tb, Td, T6, T8, T9, T3, TE, Ta, T7, T5; | ||
|  | 		    V Te, TX, TY, TG, TH, TT, TU, Tj, TM, Tw, TQ, Tn, TN, Ts, TP; | ||
|  | 		    V Tg, Ti, Th, Tt, Tv, Tu, Tk, Tm, Tl, Tr, Tq, Tp, To, Tx, TA; | ||
|  | 		    V TB, TO, TR; | ||
|  | 		    T2 = LD(&(Rp[0]), ms, &(Rp[0])); | ||
|  | 		    TD = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); | ||
|  | 		    T3 = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    T4 = VCONJ(T3); | ||
|  | 		    TE = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    TF = VCONJ(TE); | ||
|  | 		    Tc = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0])); | ||
|  | 		    Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    Tb = VCONJ(Ta); | ||
|  | 		    Td = VSUB(Tb, Tc); | ||
|  | 		    T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | ||
|  | 		    T7 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    T8 = VCONJ(T7); | ||
|  | 		    T9 = VSUB(T6, T8); | ||
|  | 		    T5 = VSUB(T2, T4); | ||
|  | 		    Te = VMUL(LDK(KP707106781), VADD(T9, Td)); | ||
|  | 		    Tf = VADD(T5, Te); | ||
|  | 		    T16 = VSUB(T5, Te); | ||
|  | 		    TX = VADD(T2, T4); | ||
|  | 		    TY = VADD(TD, TF); | ||
|  | 		    TZ = VSUB(TX, TY); | ||
|  | 		    T1C = VADD(TX, TY); | ||
|  | 		    TG = VSUB(TD, TF); | ||
|  | 		    TH = VMUL(LDK(KP707106781), VSUB(T9, Td)); | ||
|  | 		    TI = VADD(TG, TH); | ||
|  | 		    T1a = VSUB(TH, TG); | ||
|  | 		    TT = VADD(T6, T8); | ||
|  | 		    TU = VADD(Tb, Tc); | ||
|  | 		    TV = VSUB(TT, TU); | ||
|  | 		    T1D = VADD(TT, TU); | ||
|  | 		    Tg = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    Th = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0])); | ||
|  | 		    Ti = VCONJ(Th); | ||
|  | 		    Tj = VSUB(Tg, Ti); | ||
|  | 		    TM = VADD(Tg, Ti); | ||
|  | 		    Tt = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    Tu = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); | ||
|  | 		    Tv = VCONJ(Tu); | ||
|  | 		    Tw = VSUB(Tt, Tv); | ||
|  | 		    TQ = VADD(Tt, Tv); | ||
|  | 		    Tk = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    Tl = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | ||
|  | 		    Tm = VCONJ(Tl); | ||
|  | 		    Tn = VSUB(Tk, Tm); | ||
|  | 		    TN = VADD(Tk, Tm); | ||
|  | 		    Tr = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    Tp = LD(&(Rm[0]), -ms, &(Rm[0])); | ||
|  | 		    Tq = VCONJ(Tp); | ||
|  | 		    Ts = VSUB(Tq, Tr); | ||
|  | 		    TP = VADD(Tq, Tr); | ||
|  | 		    T1F = VADD(TM, TN); | ||
|  | 		    T1G = VADD(TP, TQ); | ||
|  | 		    To = VFNMS(LDK(KP382683432), Tn, VMUL(LDK(KP923879532), Tj)); | ||
|  | 		    Tx = VFMA(LDK(KP923879532), Ts, VMUL(LDK(KP382683432), Tw)); | ||
|  | 		    Ty = VADD(To, Tx); | ||
|  | 		    T19 = VSUB(To, Tx); | ||
|  | 		    TA = VFMA(LDK(KP382683432), Tj, VMUL(LDK(KP923879532), Tn)); | ||
|  | 		    TB = VFNMS(LDK(KP382683432), Ts, VMUL(LDK(KP923879532), Tw)); | ||
|  | 		    TC = VADD(TA, TB); | ||
|  | 		    T17 = VSUB(TA, TB); | ||
|  | 		    TO = VSUB(TM, TN); | ||
|  | 		    TR = VSUB(TP, TQ); | ||
|  | 		    TS = VMUL(LDK(KP707106781), VSUB(TO, TR)); | ||
|  | 		    T10 = VMUL(LDK(KP707106781), VADD(TO, TR)); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V T21, T1W, T1u, T20, T1I, T1O, TK, T1S, T12, T1e, T1k, T1A, T1o, T1w, T1c; | ||
|  | 		    V T1M, T1U, T1V, T1T, T1s, T1t, T1r, T1Z, T1E, T1H, T1B, T1N, Tz, TJ, T1; | ||
|  | 		    V T1R, TW, T11, TL, T1d, T1i, T1j, T1h, T1z, T1m, T1n, T1l, T1v, T18, T1b; | ||
|  | 		    V T15, T1L, T13, T1g, T1X, T23, T14, T1f, T1Y, T22, T1p, T1y, T1J, T1Q, T1q; | ||
|  | 		    V T1x, T1K, T1P; | ||
|  | 		    T1U = VADD(T1C, T1D); | ||
|  | 		    T1V = VADD(T1F, T1G); | ||
|  | 		    T21 = VADD(T1U, T1V); | ||
|  | 		    T1T = LDW(&(W[TWVL * 14])); | ||
|  | 		    T1W = VZMUL(T1T, VSUB(T1U, T1V)); | ||
|  | 		    T1s = VADD(Tf, Ty); | ||
|  | 		    T1t = VBYI(VADD(TI, TC)); | ||
|  | 		    T1r = LDW(&(W[TWVL * 28])); | ||
|  | 		    T1u = VZMULI(T1r, VSUB(T1s, T1t)); | ||
|  | 		    T1Z = LDW(&(W[0])); | ||
|  | 		    T20 = VZMULI(T1Z, VADD(T1s, T1t)); | ||
|  | 		    T1E = VSUB(T1C, T1D); | ||
|  | 		    T1H = VBYI(VSUB(T1F, T1G)); | ||
|  | 		    T1B = LDW(&(W[TWVL * 22])); | ||
|  | 		    T1I = VZMUL(T1B, VSUB(T1E, T1H)); | ||
|  | 		    T1N = LDW(&(W[TWVL * 6])); | ||
|  | 		    T1O = VZMUL(T1N, VADD(T1E, T1H)); | ||
|  | 		    Tz = VSUB(Tf, Ty); | ||
|  | 		    TJ = VBYI(VSUB(TC, TI)); | ||
|  | 		    T1 = LDW(&(W[TWVL * 12])); | ||
|  | 		    TK = VZMULI(T1, VADD(Tz, TJ)); | ||
|  | 		    T1R = LDW(&(W[TWVL * 16])); | ||
|  | 		    T1S = VZMULI(T1R, VSUB(Tz, TJ)); | ||
|  | 		    TW = VBYI(VSUB(TS, TV)); | ||
|  | 		    T11 = VSUB(TZ, T10); | ||
|  | 		    TL = LDW(&(W[TWVL * 10])); | ||
|  | 		    T12 = VZMUL(TL, VADD(TW, T11)); | ||
|  | 		    T1d = LDW(&(W[TWVL * 18])); | ||
|  | 		    T1e = VZMUL(T1d, VSUB(T11, TW)); | ||
|  | 		    T1i = VBYI(VADD(T1a, T19)); | ||
|  | 		    T1j = VADD(T16, T17); | ||
|  | 		    T1h = LDW(&(W[TWVL * 4])); | ||
|  | 		    T1k = VZMULI(T1h, VADD(T1i, T1j)); | ||
|  | 		    T1z = LDW(&(W[TWVL * 24])); | ||
|  | 		    T1A = VZMULI(T1z, VSUB(T1j, T1i)); | ||
|  | 		    T1m = VBYI(VADD(TV, TS)); | ||
|  | 		    T1n = VADD(TZ, T10); | ||
|  | 		    T1l = LDW(&(W[TWVL * 2])); | ||
|  | 		    T1o = VZMUL(T1l, VADD(T1m, T1n)); | ||
|  | 		    T1v = LDW(&(W[TWVL * 26])); | ||
|  | 		    T1w = VZMUL(T1v, VSUB(T1n, T1m)); | ||
|  | 		    T18 = VSUB(T16, T17); | ||
|  | 		    T1b = VBYI(VSUB(T19, T1a)); | ||
|  | 		    T15 = LDW(&(W[TWVL * 20])); | ||
|  | 		    T1c = VZMULI(T15, VSUB(T18, T1b)); | ||
|  | 		    T1L = LDW(&(W[TWVL * 8])); | ||
|  | 		    T1M = VZMULI(T1L, VADD(T1b, T18)); | ||
|  | 		    T13 = VADD(TK, T12); | ||
|  | 		    ST(&(Rp[WS(rs, 3)]), T13, ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    T1g = VCONJ(VSUB(T1e, T1c)); | ||
|  | 		    ST(&(Rm[WS(rs, 5)]), T1g, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    T1X = VADD(T1S, T1W); | ||
|  | 		    ST(&(Rp[WS(rs, 4)]), T1X, ms, &(Rp[0])); | ||
|  | 		    T23 = VCONJ(VSUB(T21, T20)); | ||
|  | 		    ST(&(Rm[0]), T23, -ms, &(Rm[0])); | ||
|  | 		    T14 = VCONJ(VSUB(T12, TK)); | ||
|  | 		    ST(&(Rm[WS(rs, 3)]), T14, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    T1f = VADD(T1c, T1e); | ||
|  | 		    ST(&(Rp[WS(rs, 5)]), T1f, ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    T1Y = VCONJ(VSUB(T1W, T1S)); | ||
|  | 		    ST(&(Rm[WS(rs, 4)]), T1Y, -ms, &(Rm[0])); | ||
|  | 		    T22 = VADD(T20, T21); | ||
|  | 		    ST(&(Rp[0]), T22, ms, &(Rp[0])); | ||
|  | 		    T1p = VADD(T1k, T1o); | ||
|  | 		    ST(&(Rp[WS(rs, 1)]), T1p, ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    T1y = VCONJ(VSUB(T1w, T1u)); | ||
|  | 		    ST(&(Rm[WS(rs, 7)]), T1y, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    T1J = VADD(T1A, T1I); | ||
|  | 		    ST(&(Rp[WS(rs, 6)]), T1J, ms, &(Rp[0])); | ||
|  | 		    T1Q = VCONJ(VSUB(T1O, T1M)); | ||
|  | 		    ST(&(Rm[WS(rs, 2)]), T1Q, -ms, &(Rm[0])); | ||
|  | 		    T1q = VCONJ(VSUB(T1o, T1k)); | ||
|  | 		    ST(&(Rm[WS(rs, 1)]), T1q, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 		    T1x = VADD(T1u, T1w); | ||
|  | 		    ST(&(Rp[WS(rs, 7)]), T1x, ms, &(Rp[WS(rs, 1)])); | ||
|  | 		    T1K = VCONJ(VSUB(T1I, T1A)); | ||
|  | 		    ST(&(Rm[WS(rs, 6)]), T1K, -ms, &(Rm[0])); | ||
|  | 		    T1P = VADD(T1M, T1O); | ||
|  | 		    ST(&(Rp[WS(rs, 2)]), T1P, ms, &(Rp[0])); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(1, 1), | ||
|  |      VTW(1, 2), | ||
|  |      VTW(1, 3), | ||
|  |      VTW(1, 4), | ||
|  |      VTW(1, 5), | ||
|  |      VTW(1, 6), | ||
|  |      VTW(1, 7), | ||
|  |      VTW(1, 8), | ||
|  |      VTW(1, 9), | ||
|  |      VTW(1, 10), | ||
|  |      VTW(1, 11), | ||
|  |      VTW(1, 12), | ||
|  |      VTW(1, 13), | ||
|  |      VTW(1, 14), | ||
|  |      VTW(1, 15), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 16, XSIMD_STRING("hc2cbdftv_16"), twinstr, &GENUS, { 99, 38, 4, 0 } }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_hc2cbdftv_16) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cbdftv_16, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #endif
 |