834 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			834 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:47:07 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cb_16 -include rdft/scalar/hc2cb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 174 FP additions, 100 FP multiplications, | ||
|  |  * (or, 104 additions, 30 multiplications, 70 fused multiply/add), | ||
|  |  * 63 stack variables, 3 constants, and 64 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hc2cb.h"
 | ||
|  | 
 | ||
|  | static void hc2cb_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP923879532, +0.923879532511286756128183189396788286822416626); | ||
|  |      DK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      DK(KP414213562, +0.414213562373095048801688724209698078569671875); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) { | ||
|  | 	       E TA, T1O, T21, T1h, T2P, T2S, T3b, T3p, T3q, T3D, T1k, T1P, Tf, T3y, T2A; | ||
|  | 	       E T36, TL, T22, T3s, T3t, T3z, T2F, T2U, T2K, T2V, Tu, T3E, TX, T1n, T1T; | ||
|  | 	       E T24, T1W, T25, T18, T1m; | ||
|  | 	       { | ||
|  | 		    E T3, Tw, T1g, T2Q, T6, T1d, Tz, T2R, Ta, TB, TE, T2y, Td, TG, TJ; | ||
|  | 		    E T2x; | ||
|  | 		    { | ||
|  | 			 E T1, T2, T1e, T1f; | ||
|  | 			 T1 = Rp[0]; | ||
|  | 			 T2 = Rm[WS(rs, 7)]; | ||
|  | 			 T3 = T1 + T2; | ||
|  | 			 Tw = T1 - T2; | ||
|  | 			 T1e = Ip[0]; | ||
|  | 			 T1f = Im[WS(rs, 7)]; | ||
|  | 			 T1g = T1e + T1f; | ||
|  | 			 T2Q = T1e - T1f; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4, T5, Tx, Ty; | ||
|  | 			 T4 = Rp[WS(rs, 4)]; | ||
|  | 			 T5 = Rm[WS(rs, 3)]; | ||
|  | 			 T6 = T4 + T5; | ||
|  | 			 T1d = T4 - T5; | ||
|  | 			 Tx = Ip[WS(rs, 4)]; | ||
|  | 			 Ty = Im[WS(rs, 3)]; | ||
|  | 			 Tz = Tx + Ty; | ||
|  | 			 T2R = Tx - Ty; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8, T9, TC, TD; | ||
|  | 			 T8 = Rp[WS(rs, 2)]; | ||
|  | 			 T9 = Rm[WS(rs, 5)]; | ||
|  | 			 Ta = T8 + T9; | ||
|  | 			 TB = T8 - T9; | ||
|  | 			 TC = Ip[WS(rs, 2)]; | ||
|  | 			 TD = Im[WS(rs, 5)]; | ||
|  | 			 TE = TC + TD; | ||
|  | 			 T2y = TC - TD; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tb, Tc, TH, TI; | ||
|  | 			 Tb = Rm[WS(rs, 1)]; | ||
|  | 			 Tc = Rp[WS(rs, 6)]; | ||
|  | 			 Td = Tb + Tc; | ||
|  | 			 TG = Tb - Tc; | ||
|  | 			 TH = Ip[WS(rs, 6)]; | ||
|  | 			 TI = Im[WS(rs, 1)]; | ||
|  | 			 TJ = TH + TI; | ||
|  | 			 T2x = TH - TI; | ||
|  | 		    } | ||
|  | 		    TA = Tw - Tz; | ||
|  | 		    T1O = Tw + Tz; | ||
|  | 		    T21 = T1g - T1d; | ||
|  | 		    T1h = T1d + T1g; | ||
|  | 		    T2P = Ta - Td; | ||
|  | 		    T2S = T2Q - T2R; | ||
|  | 		    T3b = T2S - T2P; | ||
|  | 		    { | ||
|  | 			 E T1i, T1j, T7, Te; | ||
|  | 			 T3p = T2Q + T2R; | ||
|  | 			 T3q = T2y + T2x; | ||
|  | 			 T3D = T3p - T3q; | ||
|  | 			 T1i = TB + TE; | ||
|  | 			 T1j = TG + TJ; | ||
|  | 			 T1k = T1i - T1j; | ||
|  | 			 T1P = T1i + T1j; | ||
|  | 			 T7 = T3 + T6; | ||
|  | 			 Te = Ta + Td; | ||
|  | 			 Tf = T7 + Te; | ||
|  | 			 T3y = T7 - Te; | ||
|  | 			 { | ||
|  | 			      E T2w, T2z, TF, TK; | ||
|  | 			      T2w = T3 - T6; | ||
|  | 			      T2z = T2x - T2y; | ||
|  | 			      T2A = T2w + T2z; | ||
|  | 			      T36 = T2w - T2z; | ||
|  | 			      TF = TB - TE; | ||
|  | 			      TK = TG - TJ; | ||
|  | 			      TL = TF + TK; | ||
|  | 			      T22 = TF - TK; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ti, T13, T11, T2C, Tl, TY, T16, T2D, Tp, TS, TQ, T2H, Ts, TN, TV; | ||
|  | 		    E T2I, T2B, T2E; | ||
|  | 		    { | ||
|  | 			 E Tg, Th, TZ, T10; | ||
|  | 			 Tg = Rp[WS(rs, 1)]; | ||
|  | 			 Th = Rm[WS(rs, 6)]; | ||
|  | 			 Ti = Tg + Th; | ||
|  | 			 T13 = Tg - Th; | ||
|  | 			 TZ = Ip[WS(rs, 1)]; | ||
|  | 			 T10 = Im[WS(rs, 6)]; | ||
|  | 			 T11 = TZ + T10; | ||
|  | 			 T2C = TZ - T10; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tj, Tk, T14, T15; | ||
|  | 			 Tj = Rp[WS(rs, 5)]; | ||
|  | 			 Tk = Rm[WS(rs, 2)]; | ||
|  | 			 Tl = Tj + Tk; | ||
|  | 			 TY = Tj - Tk; | ||
|  | 			 T14 = Ip[WS(rs, 5)]; | ||
|  | 			 T15 = Im[WS(rs, 2)]; | ||
|  | 			 T16 = T14 + T15; | ||
|  | 			 T2D = T14 - T15; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tn, To, TO, TP; | ||
|  | 			 Tn = Rm[0]; | ||
|  | 			 To = Rp[WS(rs, 7)]; | ||
|  | 			 Tp = Tn + To; | ||
|  | 			 TS = Tn - To; | ||
|  | 			 TO = Ip[WS(rs, 7)]; | ||
|  | 			 TP = Im[0]; | ||
|  | 			 TQ = TO + TP; | ||
|  | 			 T2H = TO - TP; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tq, Tr, TT, TU; | ||
|  | 			 Tq = Rp[WS(rs, 3)]; | ||
|  | 			 Tr = Rm[WS(rs, 4)]; | ||
|  | 			 Ts = Tq + Tr; | ||
|  | 			 TN = Tq - Tr; | ||
|  | 			 TT = Ip[WS(rs, 3)]; | ||
|  | 			 TU = Im[WS(rs, 4)]; | ||
|  | 			 TV = TT + TU; | ||
|  | 			 T2I = TT - TU; | ||
|  | 		    } | ||
|  | 		    T3s = T2C + T2D; | ||
|  | 		    T3t = T2H + T2I; | ||
|  | 		    T3z = T3t - T3s; | ||
|  | 		    T2B = Ti - Tl; | ||
|  | 		    T2E = T2C - T2D; | ||
|  | 		    T2F = T2B - T2E; | ||
|  | 		    T2U = T2B + T2E; | ||
|  | 		    { | ||
|  | 			 E T2G, T2J, Tm, Tt; | ||
|  | 			 T2G = Tp - Ts; | ||
|  | 			 T2J = T2H - T2I; | ||
|  | 			 T2K = T2G + T2J; | ||
|  | 			 T2V = T2J - T2G; | ||
|  | 			 Tm = Ti + Tl; | ||
|  | 			 Tt = Tp + Ts; | ||
|  | 			 Tu = Tm + Tt; | ||
|  | 			 T3E = Tm - Tt; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TR, TW, T1R, T1S; | ||
|  | 			 TR = TN - TQ; | ||
|  | 			 TW = TS - TV; | ||
|  | 			 TX = FNMS(KP414213562, TW, TR); | ||
|  | 			 T1n = FMA(KP414213562, TR, TW); | ||
|  | 			 T1R = T11 - TY; | ||
|  | 			 T1S = T13 + T16; | ||
|  | 			 T1T = FNMS(KP414213562, T1S, T1R); | ||
|  | 			 T24 = FMA(KP414213562, T1R, T1S); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1U, T1V, T12, T17; | ||
|  | 			 T1U = TN + TQ; | ||
|  | 			 T1V = TS + TV; | ||
|  | 			 T1W = FNMS(KP414213562, T1V, T1U); | ||
|  | 			 T25 = FMA(KP414213562, T1U, T1V); | ||
|  | 			 T12 = TY + T11; | ||
|  | 			 T17 = T13 - T16; | ||
|  | 			 T18 = FMA(KP414213562, T17, T12); | ||
|  | 			 T1m = FNMS(KP414213562, T12, T17); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       Rp[0] = Tf + Tu; | ||
|  | 	       { | ||
|  | 		    E T3r, T3u, T3v, T3l, T3n, T3o, T3w, T3m; | ||
|  | 		    T3r = T3p + T3q; | ||
|  | 		    T3u = T3s + T3t; | ||
|  | 		    T3v = T3r - T3u; | ||
|  | 		    T3m = Tf - Tu; | ||
|  | 		    T3l = W[14]; | ||
|  | 		    T3n = T3l * T3m; | ||
|  | 		    T3o = W[15]; | ||
|  | 		    T3w = T3o * T3m; | ||
|  | 		    Rm[0] = T3r + T3u; | ||
|  | 		    Rm[WS(rs, 4)] = FMA(T3l, T3v, T3w); | ||
|  | 		    Rp[WS(rs, 4)] = FNMS(T3o, T3v, T3n); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T3A, T3F, T3B, T3G, T3x, T3C; | ||
|  | 		    T3A = T3y - T3z; | ||
|  | 		    T3F = T3D - T3E; | ||
|  | 		    T3x = W[22]; | ||
|  | 		    T3B = T3x * T3A; | ||
|  | 		    T3G = T3x * T3F; | ||
|  | 		    T3C = W[23]; | ||
|  | 		    Rp[WS(rs, 6)] = FNMS(T3C, T3F, T3B); | ||
|  | 		    Rm[WS(rs, 6)] = FMA(T3C, T3A, T3G); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T3I, T3L, T3J, T3M, T3H, T3K; | ||
|  | 		    T3I = T3y + T3z; | ||
|  | 		    T3L = T3E + T3D; | ||
|  | 		    T3H = W[6]; | ||
|  | 		    T3J = T3H * T3I; | ||
|  | 		    T3M = T3H * T3L; | ||
|  | 		    T3K = W[7]; | ||
|  | 		    Rp[WS(rs, 2)] = FNMS(T3K, T3L, T3J); | ||
|  | 		    Rm[WS(rs, 2)] = FMA(T3K, T3I, T3M); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T38, T3g, T3d, T3j, T37, T3c; | ||
|  | 		    T37 = T2V - T2U; | ||
|  | 		    T38 = FNMS(KP707106781, T37, T36); | ||
|  | 		    T3g = FMA(KP707106781, T37, T36); | ||
|  | 		    T3c = T2F - T2K; | ||
|  | 		    T3d = FNMS(KP707106781, T3c, T3b); | ||
|  | 		    T3j = FMA(KP707106781, T3c, T3b); | ||
|  | 		    { | ||
|  | 			 E T39, T3e, T35, T3a; | ||
|  | 			 T35 = W[26]; | ||
|  | 			 T39 = T35 * T38; | ||
|  | 			 T3e = T35 * T3d; | ||
|  | 			 T3a = W[27]; | ||
|  | 			 Rp[WS(rs, 7)] = FNMS(T3a, T3d, T39); | ||
|  | 			 Rm[WS(rs, 7)] = FMA(T3a, T38, T3e); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3h, T3k, T3f, T3i; | ||
|  | 			 T3f = W[10]; | ||
|  | 			 T3h = T3f * T3g; | ||
|  | 			 T3k = T3f * T3j; | ||
|  | 			 T3i = W[11]; | ||
|  | 			 Rp[WS(rs, 3)] = FNMS(T3i, T3j, T3h); | ||
|  | 			 Rm[WS(rs, 3)] = FMA(T3i, T3g, T3k); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2M, T30, T2X, T33, T2L, T2T, T2W; | ||
|  | 		    T2L = T2F + T2K; | ||
|  | 		    T2M = FNMS(KP707106781, T2L, T2A); | ||
|  | 		    T30 = FMA(KP707106781, T2L, T2A); | ||
|  | 		    T2T = T2P + T2S; | ||
|  | 		    T2W = T2U + T2V; | ||
|  | 		    T2X = FNMS(KP707106781, T2W, T2T); | ||
|  | 		    T33 = FMA(KP707106781, T2W, T2T); | ||
|  | 		    { | ||
|  | 			 E T2v, T2N, T2O, T2Y; | ||
|  | 			 T2v = W[18]; | ||
|  | 			 T2N = T2v * T2M; | ||
|  | 			 T2O = W[19]; | ||
|  | 			 T2Y = T2O * T2M; | ||
|  | 			 Rp[WS(rs, 5)] = FNMS(T2O, T2X, T2N); | ||
|  | 			 Rm[WS(rs, 5)] = FMA(T2v, T2X, T2Y); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2Z, T31, T32, T34; | ||
|  | 			 T2Z = W[2]; | ||
|  | 			 T31 = T2Z * T30; | ||
|  | 			 T32 = W[3]; | ||
|  | 			 T34 = T32 * T30; | ||
|  | 			 Rp[WS(rs, 1)] = FNMS(T32, T33, T31); | ||
|  | 			 Rm[WS(rs, 1)] = FMA(T2Z, T33, T34); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1Y, T2a, T27, T2d; | ||
|  | 		    { | ||
|  | 			 E T1Q, T1X, T23, T26; | ||
|  | 			 T1Q = FNMS(KP707106781, T1P, T1O); | ||
|  | 			 T1X = T1T + T1W; | ||
|  | 			 T1Y = FMA(KP923879532, T1X, T1Q); | ||
|  | 			 T2a = FNMS(KP923879532, T1X, T1Q); | ||
|  | 			 T23 = FMA(KP707106781, T22, T21); | ||
|  | 			 T26 = T24 - T25; | ||
|  | 			 T27 = FNMS(KP923879532, T26, T23); | ||
|  | 			 T2d = FMA(KP923879532, T26, T23); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1N, T1Z, T20, T28; | ||
|  | 			 T1N = W[20]; | ||
|  | 			 T1Z = T1N * T1Y; | ||
|  | 			 T20 = W[21]; | ||
|  | 			 T28 = T20 * T1Y; | ||
|  | 			 Ip[WS(rs, 5)] = FNMS(T20, T27, T1Z); | ||
|  | 			 Im[WS(rs, 5)] = FMA(T1N, T27, T28); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T29, T2b, T2c, T2e; | ||
|  | 			 T29 = W[4]; | ||
|  | 			 T2b = T29 * T2a; | ||
|  | 			 T2c = W[5]; | ||
|  | 			 T2e = T2c * T2a; | ||
|  | 			 Ip[WS(rs, 1)] = FNMS(T2c, T2d, T2b); | ||
|  | 			 Im[WS(rs, 1)] = FMA(T29, T2d, T2e); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1a, T1s, T1p, T1v; | ||
|  | 		    { | ||
|  | 			 E TM, T19, T1l, T1o; | ||
|  | 			 TM = FNMS(KP707106781, TL, TA); | ||
|  | 			 T19 = TX - T18; | ||
|  | 			 T1a = FNMS(KP923879532, T19, TM); | ||
|  | 			 T1s = FMA(KP923879532, T19, TM); | ||
|  | 			 T1l = FNMS(KP707106781, T1k, T1h); | ||
|  | 			 T1o = T1m - T1n; | ||
|  | 			 T1p = FNMS(KP923879532, T1o, T1l); | ||
|  | 			 T1v = FMA(KP923879532, T1o, T1l); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tv, T1b, T1c, T1q; | ||
|  | 			 Tv = W[24]; | ||
|  | 			 T1b = Tv * T1a; | ||
|  | 			 T1c = W[25]; | ||
|  | 			 T1q = T1c * T1a; | ||
|  | 			 Ip[WS(rs, 6)] = FNMS(T1c, T1p, T1b); | ||
|  | 			 Im[WS(rs, 6)] = FMA(Tv, T1p, T1q); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1r, T1t, T1u, T1w; | ||
|  | 			 T1r = W[8]; | ||
|  | 			 T1t = T1r * T1s; | ||
|  | 			 T1u = W[9]; | ||
|  | 			 T1w = T1u * T1s; | ||
|  | 			 Ip[WS(rs, 2)] = FNMS(T1u, T1v, T1t); | ||
|  | 			 Im[WS(rs, 2)] = FMA(T1r, T1v, T1w); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2i, T2q, T2n, T2t; | ||
|  | 		    { | ||
|  | 			 E T2g, T2h, T2l, T2m; | ||
|  | 			 T2g = FMA(KP707106781, T1P, T1O); | ||
|  | 			 T2h = T24 + T25; | ||
|  | 			 T2i = FNMS(KP923879532, T2h, T2g); | ||
|  | 			 T2q = FMA(KP923879532, T2h, T2g); | ||
|  | 			 T2l = FNMS(KP707106781, T22, T21); | ||
|  | 			 T2m = T1W - T1T; | ||
|  | 			 T2n = FMA(KP923879532, T2m, T2l); | ||
|  | 			 T2t = FNMS(KP923879532, T2m, T2l); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2j, T2o, T2f, T2k; | ||
|  | 			 T2f = W[12]; | ||
|  | 			 T2j = T2f * T2i; | ||
|  | 			 T2o = T2f * T2n; | ||
|  | 			 T2k = W[13]; | ||
|  | 			 Ip[WS(rs, 3)] = FNMS(T2k, T2n, T2j); | ||
|  | 			 Im[WS(rs, 3)] = FMA(T2k, T2i, T2o); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2r, T2u, T2p, T2s; | ||
|  | 			 T2p = W[28]; | ||
|  | 			 T2r = T2p * T2q; | ||
|  | 			 T2u = T2p * T2t; | ||
|  | 			 T2s = W[29]; | ||
|  | 			 Ip[WS(rs, 7)] = FNMS(T2s, T2t, T2r); | ||
|  | 			 Im[WS(rs, 7)] = FMA(T2s, T2q, T2u); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1A, T1I, T1F, T1L; | ||
|  | 		    { | ||
|  | 			 E T1y, T1z, T1D, T1E; | ||
|  | 			 T1y = FMA(KP707106781, TL, TA); | ||
|  | 			 T1z = T1m + T1n; | ||
|  | 			 T1A = FNMS(KP923879532, T1z, T1y); | ||
|  | 			 T1I = FMA(KP923879532, T1z, T1y); | ||
|  | 			 T1D = FMA(KP707106781, T1k, T1h); | ||
|  | 			 T1E = T18 + TX; | ||
|  | 			 T1F = FNMS(KP923879532, T1E, T1D); | ||
|  | 			 T1L = FMA(KP923879532, T1E, T1D); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1B, T1G, T1x, T1C; | ||
|  | 			 T1x = W[16]; | ||
|  | 			 T1B = T1x * T1A; | ||
|  | 			 T1G = T1x * T1F; | ||
|  | 			 T1C = W[17]; | ||
|  | 			 Ip[WS(rs, 4)] = FNMS(T1C, T1F, T1B); | ||
|  | 			 Im[WS(rs, 4)] = FMA(T1C, T1A, T1G); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1J, T1M, T1H, T1K; | ||
|  | 			 T1H = W[0]; | ||
|  | 			 T1J = T1H * T1I; | ||
|  | 			 T1M = T1H * T1L; | ||
|  | 			 T1K = W[1]; | ||
|  | 			 Ip[0] = FNMS(T1K, T1L, T1J); | ||
|  | 			 Im[0] = FMA(T1K, T1I, T1M); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 16 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 16, "hc2cb_16", twinstr, &GENUS, { 104, 30, 70, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hc2cb_16) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cb_16, &desc, HC2C_VIA_RDFT); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cb_16 -include rdft/scalar/hc2cb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 174 FP additions, 84 FP multiplications, | ||
|  |  * (or, 136 additions, 46 multiplications, 38 fused multiply/add), | ||
|  |  * 50 stack variables, 3 constants, and 64 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hc2cb.h"
 | ||
|  | 
 | ||
|  | static void hc2cb_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP382683432, +0.382683432365089771728459984030398866761344562); | ||
|  |      DK(KP923879532, +0.923879532511286756128183189396788286822416626); | ||
|  |      DK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) { | ||
|  | 	       E T7, T2K, T2W, Tw, T17, T1S, T2k, T1w, Te, TD, T1x, T10, T2n, T2L, T1Z; | ||
|  | 	       E T2X, Tm, T1z, TN, T19, T2e, T2p, T2P, T2Z, Tt, T1A, TW, T1a, T27, T2q; | ||
|  | 	       E T2S, T30; | ||
|  | 	       { | ||
|  | 		    E T3, T1Q, T13, T2j, T6, T2i, T16, T1R; | ||
|  | 		    { | ||
|  | 			 E T1, T2, T11, T12; | ||
|  | 			 T1 = Rp[0]; | ||
|  | 			 T2 = Rm[WS(rs, 7)]; | ||
|  | 			 T3 = T1 + T2; | ||
|  | 			 T1Q = T1 - T2; | ||
|  | 			 T11 = Ip[0]; | ||
|  | 			 T12 = Im[WS(rs, 7)]; | ||
|  | 			 T13 = T11 - T12; | ||
|  | 			 T2j = T11 + T12; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4, T5, T14, T15; | ||
|  | 			 T4 = Rp[WS(rs, 4)]; | ||
|  | 			 T5 = Rm[WS(rs, 3)]; | ||
|  | 			 T6 = T4 + T5; | ||
|  | 			 T2i = T4 - T5; | ||
|  | 			 T14 = Ip[WS(rs, 4)]; | ||
|  | 			 T15 = Im[WS(rs, 3)]; | ||
|  | 			 T16 = T14 - T15; | ||
|  | 			 T1R = T14 + T15; | ||
|  | 		    } | ||
|  | 		    T7 = T3 + T6; | ||
|  | 		    T2K = T1Q + T1R; | ||
|  | 		    T2W = T2j - T2i; | ||
|  | 		    Tw = T3 - T6; | ||
|  | 		    T17 = T13 - T16; | ||
|  | 		    T1S = T1Q - T1R; | ||
|  | 		    T2k = T2i + T2j; | ||
|  | 		    T1w = T13 + T16; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ta, T1T, TC, T1U, Td, T1W, Tz, T1X; | ||
|  | 		    { | ||
|  | 			 E T8, T9, TA, TB; | ||
|  | 			 T8 = Rp[WS(rs, 2)]; | ||
|  | 			 T9 = Rm[WS(rs, 5)]; | ||
|  | 			 Ta = T8 + T9; | ||
|  | 			 T1T = T8 - T9; | ||
|  | 			 TA = Ip[WS(rs, 2)]; | ||
|  | 			 TB = Im[WS(rs, 5)]; | ||
|  | 			 TC = TA - TB; | ||
|  | 			 T1U = TA + TB; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tb, Tc, Tx, Ty; | ||
|  | 			 Tb = Rm[WS(rs, 1)]; | ||
|  | 			 Tc = Rp[WS(rs, 6)]; | ||
|  | 			 Td = Tb + Tc; | ||
|  | 			 T1W = Tb - Tc; | ||
|  | 			 Tx = Ip[WS(rs, 6)]; | ||
|  | 			 Ty = Im[WS(rs, 1)]; | ||
|  | 			 Tz = Tx - Ty; | ||
|  | 			 T1X = Tx + Ty; | ||
|  | 		    } | ||
|  | 		    Te = Ta + Td; | ||
|  | 		    TD = Tz - TC; | ||
|  | 		    T1x = TC + Tz; | ||
|  | 		    T10 = Ta - Td; | ||
|  | 		    { | ||
|  | 			 E T2l, T2m, T1V, T1Y; | ||
|  | 			 T2l = T1T + T1U; | ||
|  | 			 T2m = T1W + T1X; | ||
|  | 			 T2n = KP707106781 * (T2l - T2m); | ||
|  | 			 T2L = KP707106781 * (T2l + T2m); | ||
|  | 			 T1V = T1T - T1U; | ||
|  | 			 T1Y = T1W - T1X; | ||
|  | 			 T1Z = KP707106781 * (T1V + T1Y); | ||
|  | 			 T2X = KP707106781 * (T1V - T1Y); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ti, T2b, TI, T29, Tl, T28, TL, T2c, TF, TM; | ||
|  | 		    { | ||
|  | 			 E Tg, Th, TG, TH; | ||
|  | 			 Tg = Rp[WS(rs, 1)]; | ||
|  | 			 Th = Rm[WS(rs, 6)]; | ||
|  | 			 Ti = Tg + Th; | ||
|  | 			 T2b = Tg - Th; | ||
|  | 			 TG = Ip[WS(rs, 1)]; | ||
|  | 			 TH = Im[WS(rs, 6)]; | ||
|  | 			 TI = TG - TH; | ||
|  | 			 T29 = TG + TH; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tj, Tk, TJ, TK; | ||
|  | 			 Tj = Rp[WS(rs, 5)]; | ||
|  | 			 Tk = Rm[WS(rs, 2)]; | ||
|  | 			 Tl = Tj + Tk; | ||
|  | 			 T28 = Tj - Tk; | ||
|  | 			 TJ = Ip[WS(rs, 5)]; | ||
|  | 			 TK = Im[WS(rs, 2)]; | ||
|  | 			 TL = TJ - TK; | ||
|  | 			 T2c = TJ + TK; | ||
|  | 		    } | ||
|  | 		    Tm = Ti + Tl; | ||
|  | 		    T1z = TI + TL; | ||
|  | 		    TF = Ti - Tl; | ||
|  | 		    TM = TI - TL; | ||
|  | 		    TN = TF - TM; | ||
|  | 		    T19 = TF + TM; | ||
|  | 		    { | ||
|  | 			 E T2a, T2d, T2N, T2O; | ||
|  | 			 T2a = T28 + T29; | ||
|  | 			 T2d = T2b - T2c; | ||
|  | 			 T2e = FMA(KP923879532, T2a, KP382683432 * T2d); | ||
|  | 			 T2p = FNMS(KP382683432, T2a, KP923879532 * T2d); | ||
|  | 			 T2N = T2b + T2c; | ||
|  | 			 T2O = T29 - T28; | ||
|  | 			 T2P = FNMS(KP923879532, T2O, KP382683432 * T2N); | ||
|  | 			 T2Z = FMA(KP382683432, T2O, KP923879532 * T2N); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tp, T24, TR, T22, Ts, T21, TU, T25, TO, TV; | ||
|  | 		    { | ||
|  | 			 E Tn, To, TP, TQ; | ||
|  | 			 Tn = Rm[0]; | ||
|  | 			 To = Rp[WS(rs, 7)]; | ||
|  | 			 Tp = Tn + To; | ||
|  | 			 T24 = Tn - To; | ||
|  | 			 TP = Ip[WS(rs, 7)]; | ||
|  | 			 TQ = Im[0]; | ||
|  | 			 TR = TP - TQ; | ||
|  | 			 T22 = TP + TQ; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tq, Tr, TS, TT; | ||
|  | 			 Tq = Rp[WS(rs, 3)]; | ||
|  | 			 Tr = Rm[WS(rs, 4)]; | ||
|  | 			 Ts = Tq + Tr; | ||
|  | 			 T21 = Tq - Tr; | ||
|  | 			 TS = Ip[WS(rs, 3)]; | ||
|  | 			 TT = Im[WS(rs, 4)]; | ||
|  | 			 TU = TS - TT; | ||
|  | 			 T25 = TS + TT; | ||
|  | 		    } | ||
|  | 		    Tt = Tp + Ts; | ||
|  | 		    T1A = TR + TU; | ||
|  | 		    TO = Tp - Ts; | ||
|  | 		    TV = TR - TU; | ||
|  | 		    TW = TO + TV; | ||
|  | 		    T1a = TV - TO; | ||
|  | 		    { | ||
|  | 			 E T23, T26, T2Q, T2R; | ||
|  | 			 T23 = T21 - T22; | ||
|  | 			 T26 = T24 - T25; | ||
|  | 			 T27 = FNMS(KP382683432, T26, KP923879532 * T23); | ||
|  | 			 T2q = FMA(KP382683432, T23, KP923879532 * T26); | ||
|  | 			 T2Q = T24 + T25; | ||
|  | 			 T2R = T21 + T22; | ||
|  | 			 T2S = FNMS(KP923879532, T2R, KP382683432 * T2Q); | ||
|  | 			 T30 = FMA(KP382683432, T2R, KP923879532 * T2Q); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tf, Tu, T1u, T1y, T1B, T1C, T1t, T1v; | ||
|  | 		    Tf = T7 + Te; | ||
|  | 		    Tu = Tm + Tt; | ||
|  | 		    T1u = Tf - Tu; | ||
|  | 		    T1y = T1w + T1x; | ||
|  | 		    T1B = T1z + T1A; | ||
|  | 		    T1C = T1y - T1B; | ||
|  | 		    Rp[0] = Tf + Tu; | ||
|  | 		    Rm[0] = T1y + T1B; | ||
|  | 		    T1t = W[14]; | ||
|  | 		    T1v = W[15]; | ||
|  | 		    Rp[WS(rs, 4)] = FNMS(T1v, T1C, T1t * T1u); | ||
|  | 		    Rm[WS(rs, 4)] = FMA(T1v, T1u, T1t * T1C); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2U, T34, T32, T36; | ||
|  | 		    { | ||
|  | 			 E T2M, T2T, T2Y, T31; | ||
|  | 			 T2M = T2K - T2L; | ||
|  | 			 T2T = T2P + T2S; | ||
|  | 			 T2U = T2M - T2T; | ||
|  | 			 T34 = T2M + T2T; | ||
|  | 			 T2Y = T2W + T2X; | ||
|  | 			 T31 = T2Z - T30; | ||
|  | 			 T32 = T2Y - T31; | ||
|  | 			 T36 = T2Y + T31; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2J, T2V, T33, T35; | ||
|  | 			 T2J = W[20]; | ||
|  | 			 T2V = W[21]; | ||
|  | 			 Ip[WS(rs, 5)] = FNMS(T2V, T32, T2J * T2U); | ||
|  | 			 Im[WS(rs, 5)] = FMA(T2V, T2U, T2J * T32); | ||
|  | 			 T33 = W[4]; | ||
|  | 			 T35 = W[5]; | ||
|  | 			 Ip[WS(rs, 1)] = FNMS(T35, T36, T33 * T34); | ||
|  | 			 Im[WS(rs, 1)] = FMA(T35, T34, T33 * T36); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T3a, T3g, T3e, T3i; | ||
|  | 		    { | ||
|  | 			 E T38, T39, T3c, T3d; | ||
|  | 			 T38 = T2K + T2L; | ||
|  | 			 T39 = T2Z + T30; | ||
|  | 			 T3a = T38 - T39; | ||
|  | 			 T3g = T38 + T39; | ||
|  | 			 T3c = T2W - T2X; | ||
|  | 			 T3d = T2P - T2S; | ||
|  | 			 T3e = T3c + T3d; | ||
|  | 			 T3i = T3c - T3d; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T37, T3b, T3f, T3h; | ||
|  | 			 T37 = W[12]; | ||
|  | 			 T3b = W[13]; | ||
|  | 			 Ip[WS(rs, 3)] = FNMS(T3b, T3e, T37 * T3a); | ||
|  | 			 Im[WS(rs, 3)] = FMA(T37, T3e, T3b * T3a); | ||
|  | 			 T3f = W[28]; | ||
|  | 			 T3h = W[29]; | ||
|  | 			 Ip[WS(rs, 7)] = FNMS(T3h, T3i, T3f * T3g); | ||
|  | 			 Im[WS(rs, 7)] = FMA(T3f, T3i, T3h * T3g); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TY, T1e, T1c, T1g; | ||
|  | 		    { | ||
|  | 			 E TE, TX, T18, T1b; | ||
|  | 			 TE = Tw + TD; | ||
|  | 			 TX = KP707106781 * (TN + TW); | ||
|  | 			 TY = TE - TX; | ||
|  | 			 T1e = TE + TX; | ||
|  | 			 T18 = T10 + T17; | ||
|  | 			 T1b = KP707106781 * (T19 + T1a); | ||
|  | 			 T1c = T18 - T1b; | ||
|  | 			 T1g = T18 + T1b; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tv, TZ, T1d, T1f; | ||
|  | 			 Tv = W[18]; | ||
|  | 			 TZ = W[19]; | ||
|  | 			 Rp[WS(rs, 5)] = FNMS(TZ, T1c, Tv * TY); | ||
|  | 			 Rm[WS(rs, 5)] = FMA(TZ, TY, Tv * T1c); | ||
|  | 			 T1d = W[2]; | ||
|  | 			 T1f = W[3]; | ||
|  | 			 Rp[WS(rs, 1)] = FNMS(T1f, T1g, T1d * T1e); | ||
|  | 			 Rm[WS(rs, 1)] = FMA(T1f, T1e, T1d * T1g); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1k, T1q, T1o, T1s; | ||
|  | 		    { | ||
|  | 			 E T1i, T1j, T1m, T1n; | ||
|  | 			 T1i = Tw - TD; | ||
|  | 			 T1j = KP707106781 * (T1a - T19); | ||
|  | 			 T1k = T1i - T1j; | ||
|  | 			 T1q = T1i + T1j; | ||
|  | 			 T1m = T17 - T10; | ||
|  | 			 T1n = KP707106781 * (TN - TW); | ||
|  | 			 T1o = T1m - T1n; | ||
|  | 			 T1s = T1m + T1n; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1h, T1l, T1p, T1r; | ||
|  | 			 T1h = W[26]; | ||
|  | 			 T1l = W[27]; | ||
|  | 			 Rp[WS(rs, 7)] = FNMS(T1l, T1o, T1h * T1k); | ||
|  | 			 Rm[WS(rs, 7)] = FMA(T1h, T1o, T1l * T1k); | ||
|  | 			 T1p = W[10]; | ||
|  | 			 T1r = W[11]; | ||
|  | 			 Rp[WS(rs, 3)] = FNMS(T1r, T1s, T1p * T1q); | ||
|  | 			 Rm[WS(rs, 3)] = FMA(T1p, T1s, T1r * T1q); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2g, T2u, T2s, T2w; | ||
|  | 		    { | ||
|  | 			 E T20, T2f, T2o, T2r; | ||
|  | 			 T20 = T1S - T1Z; | ||
|  | 			 T2f = T27 - T2e; | ||
|  | 			 T2g = T20 - T2f; | ||
|  | 			 T2u = T20 + T2f; | ||
|  | 			 T2o = T2k - T2n; | ||
|  | 			 T2r = T2p - T2q; | ||
|  | 			 T2s = T2o - T2r; | ||
|  | 			 T2w = T2o + T2r; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1P, T2h, T2t, T2v; | ||
|  | 			 T1P = W[24]; | ||
|  | 			 T2h = W[25]; | ||
|  | 			 Ip[WS(rs, 6)] = FNMS(T2h, T2s, T1P * T2g); | ||
|  | 			 Im[WS(rs, 6)] = FMA(T2h, T2g, T1P * T2s); | ||
|  | 			 T2t = W[8]; | ||
|  | 			 T2v = W[9]; | ||
|  | 			 Ip[WS(rs, 2)] = FNMS(T2v, T2w, T2t * T2u); | ||
|  | 			 Im[WS(rs, 2)] = FMA(T2v, T2u, T2t * T2w); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2A, T2G, T2E, T2I; | ||
|  | 		    { | ||
|  | 			 E T2y, T2z, T2C, T2D; | ||
|  | 			 T2y = T1S + T1Z; | ||
|  | 			 T2z = T2p + T2q; | ||
|  | 			 T2A = T2y - T2z; | ||
|  | 			 T2G = T2y + T2z; | ||
|  | 			 T2C = T2k + T2n; | ||
|  | 			 T2D = T2e + T27; | ||
|  | 			 T2E = T2C - T2D; | ||
|  | 			 T2I = T2C + T2D; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2x, T2B, T2F, T2H; | ||
|  | 			 T2x = W[16]; | ||
|  | 			 T2B = W[17]; | ||
|  | 			 Ip[WS(rs, 4)] = FNMS(T2B, T2E, T2x * T2A); | ||
|  | 			 Im[WS(rs, 4)] = FMA(T2x, T2E, T2B * T2A); | ||
|  | 			 T2F = W[0]; | ||
|  | 			 T2H = W[1]; | ||
|  | 			 Ip[0] = FNMS(T2H, T2I, T2F * T2G); | ||
|  | 			 Im[0] = FMA(T2F, T2I, T2H * T2G); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1G, T1M, T1K, T1O; | ||
|  | 		    { | ||
|  | 			 E T1E, T1F, T1I, T1J; | ||
|  | 			 T1E = T7 - Te; | ||
|  | 			 T1F = T1A - T1z; | ||
|  | 			 T1G = T1E - T1F; | ||
|  | 			 T1M = T1E + T1F; | ||
|  | 			 T1I = T1w - T1x; | ||
|  | 			 T1J = Tm - Tt; | ||
|  | 			 T1K = T1I - T1J; | ||
|  | 			 T1O = T1J + T1I; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1D, T1H, T1L, T1N; | ||
|  | 			 T1D = W[22]; | ||
|  | 			 T1H = W[23]; | ||
|  | 			 Rp[WS(rs, 6)] = FNMS(T1H, T1K, T1D * T1G); | ||
|  | 			 Rm[WS(rs, 6)] = FMA(T1D, T1K, T1H * T1G); | ||
|  | 			 T1L = W[6]; | ||
|  | 			 T1N = W[7]; | ||
|  | 			 Rp[WS(rs, 2)] = FNMS(T1N, T1O, T1L * T1M); | ||
|  | 			 Rm[WS(rs, 2)] = FMA(T1L, T1O, T1N * T1M); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 16 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 16, "hc2cb_16", twinstr, &GENUS, { 136, 46, 38, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hc2cb_16) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cb_16, &desc, HC2C_VIA_RDFT); | ||
|  | } | ||
|  | #endif
 |