308 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
		
		
			
		
	
	
			308 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
|   | (*
 | ||
|  |  * Copyright (c) 1997-1999 Massachusetts Institute of Technology | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  *) | ||
|  | 
 | ||
|  | 
 | ||
|  | (* This is the part of the generator that actually computes the FFT
 | ||
|  |    in symbolic form *) | ||
|  | 
 | ||
|  | open Complex | ||
|  | open Util | ||
|  | 
 | ||
|  | (* choose a suitable factor of n *) | ||
|  | let choose_factor n = | ||
|  |   (* first choice: i such that gcd(i, n / i) = 1, i as big as possible *) | ||
|  |   let choose1 n = | ||
|  |     let rec loop i f = | ||
|  |       if (i * i > n) then f | ||
|  |       else if ((n mod i) == 0 && gcd i (n / i) == 1) then loop (i + 1) i | ||
|  |       else loop (i + 1) f | ||
|  |     in loop 1 1 | ||
|  | 
 | ||
|  |   (* second choice: the biggest factor i of n, where i < sqrt(n), if any *) | ||
|  |   and choose2 n = | ||
|  |     let rec loop i f = | ||
|  |       if (i * i > n) then f | ||
|  |       else if ((n mod i) == 0) then loop (i + 1) i | ||
|  |       else loop (i + 1) f | ||
|  |     in loop 1 1 | ||
|  | 
 | ||
|  |   in let i = choose1 n in | ||
|  |   if (i > 1) then i | ||
|  |   else choose2 n | ||
|  | 
 | ||
|  | let is_power_of_two n = (n > 0) && ((n - 1) land n == 0) | ||
|  |    | ||
|  | let rec dft_prime sign n input =  | ||
|  |   let sum filter i = | ||
|  |     sigma 0 n (fun j -> | ||
|  |       let coeff = filter (exp n (sign * i * j)) | ||
|  |       in coeff @* (input j)) in | ||
|  |   let computation_even = array n (sum identity) | ||
|  |   and computation_odd = | ||
|  |     let sumr = array n (sum real) | ||
|  |     and sumi = array n (sum ((times Complex.i) @@ imag)) in | ||
|  |     array n (fun i -> | ||
|  |       if (i = 0) then | ||
|  | 	(* expose some common subexpressions *) | ||
|  | 	input 0 @+  | ||
|  | 	sigma 1 ((n + 1) / 2) (fun j -> input j @+ input (n - j)) | ||
|  |       else | ||
|  | 	let i' = min i (n - i) in | ||
|  | 	if (i < n - i) then  | ||
|  | 	  sumr i' @+ sumi i' | ||
|  | 	else | ||
|  | 	  sumr i' @- sumi i') in | ||
|  |   if (n >= !Magic.rader_min) then | ||
|  |     dft_rader sign n input | ||
|  |   else if (n == 2) then | ||
|  |     computation_even | ||
|  |   else | ||
|  |     computation_odd  | ||
|  | 
 | ||
|  | 
 | ||
|  | and dft_rader sign p input = | ||
|  |   let half =  | ||
|  |     let one_half = inverse_int 2 in | ||
|  |     times one_half | ||
|  | 
 | ||
|  |   and make_product n a b = | ||
|  |     let scale_factor = inverse_int n in | ||
|  |     array n (fun i -> a i @* (scale_factor @* b i)) in | ||
|  | 
 | ||
|  |   (* generates a convolution using ffts.  (all arguments are the
 | ||
|  |      same as to gen_convolution, below) *) | ||
|  |   let gen_convolution_by_fft n a b addtoall = | ||
|  |     let fft_a = dft 1 n a | ||
|  |     and fft_b = dft 1 n b in  | ||
|  | 
 | ||
|  |     let fft_ab = make_product n fft_a fft_b | ||
|  |     and dc_term i = if (i == 0) then addtoall else zero in | ||
|  | 
 | ||
|  |     let fft_ab1 = array n (fun i -> fft_ab i @+ dc_term i) | ||
|  |     and sum = fft_a 0 in | ||
|  |     let conv = dft (-1) n fft_ab1 in | ||
|  |     (sum, conv) | ||
|  | 
 | ||
|  |   (* alternate routine for convolution.  Seems to work better for
 | ||
|  |      small sizes.  I have no idea why. *) | ||
|  |   and gen_convolution_by_fft_alt n a b addtoall = | ||
|  |     let ap = array n (fun i -> half (a i @+ a ((n - i) mod n))) | ||
|  |     and am = array n (fun i -> half (a i @- a ((n - i) mod n))) | ||
|  |     and bp = array n (fun i -> half (b i @+ b ((n - i) mod n))) | ||
|  |     and bm = array n (fun i -> half (b i @- b ((n - i) mod n))) | ||
|  |     in | ||
|  | 
 | ||
|  |     let fft_ap = dft 1 n ap | ||
|  |     and fft_am = dft 1 n am | ||
|  |     and fft_bp = dft 1 n bp | ||
|  |     and fft_bm = dft 1 n bm in | ||
|  | 
 | ||
|  |     let fft_abpp = make_product n fft_ap fft_bp | ||
|  |     and fft_abpm = make_product n fft_ap fft_bm | ||
|  |     and fft_abmp = make_product n fft_am fft_bp | ||
|  |     and fft_abmm = make_product n fft_am fft_bm  | ||
|  |     and sum = fft_ap 0 @+ fft_am 0 | ||
|  |     and dc_term i = if (i == 0) then addtoall else zero in | ||
|  | 
 | ||
|  |     let fft_ab1 = array n (fun i -> (fft_abpp i @+ fft_abmm i) @+ dc_term i) | ||
|  |     and fft_ab2 = array n (fun i -> fft_abpm i @+ fft_abmp i) in | ||
|  |     let conv1 = dft (-1) n fft_ab1  | ||
|  |     and conv2 = dft (-1) n fft_ab2 in | ||
|  |     let conv = array n (fun i -> | ||
|  |       conv1 i @+ conv2 i) in | ||
|  |     (sum, conv)  | ||
|  | 
 | ||
|  |     (* generator of assignment list assigning conv to the convolution of
 | ||
|  |        a and b, all of which are of length n.  addtoall is added to | ||
|  |        all of the elements of the result.  Returns (sum, convolution) pair | ||
|  |        where sum is the sum of the elements of a. *) | ||
|  | 
 | ||
|  |   in let gen_convolution =  | ||
|  |     if (p <= !Magic.alternate_convolution) then  | ||
|  |       gen_convolution_by_fft_alt | ||
|  |     else | ||
|  |       gen_convolution_by_fft | ||
|  | 
 | ||
|  |   (* fft generator for prime n = p using Rader's algorithm for
 | ||
|  |      turning the fft into a convolution, which then can be | ||
|  |      performed in a variety of ways *) | ||
|  |   in   | ||
|  |     let g = find_generator p in | ||
|  |     let ginv = pow_mod g (p - 2) p in | ||
|  |     let input_perm = array p (fun i -> input (pow_mod g i p)) | ||
|  |     and omega_perm = array p (fun i -> exp p (sign * (pow_mod ginv i p))) | ||
|  |     and output_perm = array p (fun i -> pow_mod ginv i p) | ||
|  |     in let (sum, conv) =  | ||
|  |       (gen_convolution (p - 1)  input_perm omega_perm (input 0)) | ||
|  |     in array p (fun i -> | ||
|  |       if (i = 0) then | ||
|  | 	input 0 @+ sum | ||
|  |       else | ||
|  | 	let i' = suchthat 0 (fun i' -> i = output_perm i') | ||
|  | 	in conv i') | ||
|  | 
 | ||
|  | (* our modified version of the conjugate-pair split-radix algorithm,
 | ||
|  |    which reduces the number of multiplications by rescaling the  | ||
|  |    sub-transforms (power-of-two n's only) *) | ||
|  | and newsplit sign n input = | ||
|  |   let rec s n k = (* recursive scale factor *) | ||
|  |     if n <= 4 then | ||
|  |       one | ||
|  |     else  | ||
|  |       let k4 = (abs k) mod (n / 4) in | ||
|  |       let k4' = if k4 <= (n / 8) then k4 else (n/4 - k4) in | ||
|  |       (s (n / 4) k4') @* (real (exp n k4')) | ||
|  | 			   | ||
|  |   and sinv n k = (* 1 / s(n,k) *) | ||
|  |     if n <= 4 then | ||
|  |       one | ||
|  |     else  | ||
|  |       let k4 = (abs k) mod (n / 4) in | ||
|  |       let k4' = if k4 <= (n / 8) then k4 else (n/4 - k4) in | ||
|  |       (sinv (n / 4) k4') @* (sec n k4') | ||
|  | 
 | ||
|  |   in let sdiv2 n k = (s n k) @* (sinv (2*n) k) (* s(n,k) / s(2*n,k) *) | ||
|  |   and sdiv4 n k = (* s(n,k) / s(4*n,k) *) | ||
|  |     let k4 = (abs k) mod n in | ||
|  |     sec (4*n) (if k4 <= (n / 2) then k4 else (n - k4)) | ||
|  |        | ||
|  |   in let t n k = (exp n k) @* (sdiv4 (n/4) k) | ||
|  | 
 | ||
|  |   and dft1 input = input | ||
|  |   and dft2 input = array 2 (fun k -> (input 0) @+ ((input 1) @* exp 2 k)) | ||
|  | 
 | ||
|  |   in let rec newsplit0 sign n input = | ||
|  |     if (n == 1) then dft1 input | ||
|  |     else if (n == 2) then dft2 input | ||
|  |     else let u = newsplit0 sign (n / 2) (fun i -> input (i*2)) | ||
|  |     and z = newsplitS sign (n / 4) (fun i -> input (i*4 + 1)) | ||
|  |     and z' = newsplitS sign (n / 4) (fun i -> input ((n + i*4 - 1) mod n))  | ||
|  |     and twid = array n (fun k -> s (n/4) k @* exp n (sign * k)) in | ||
|  |     let w = array n (fun k -> twid k @* z (k mod (n / 4))) | ||
|  |     and w' = array n (fun k -> conj (twid k) @* z' (k mod (n / 4))) in | ||
|  |     let ww = array n (fun k -> w k @+ w' k) in | ||
|  |     array n (fun k -> u (k mod (n / 2)) @+ ww k) | ||
|  |        | ||
|  |   and newsplitS sign n input = | ||
|  |     if (n == 1) then dft1 input | ||
|  |     else if (n == 2) then dft2 input | ||
|  |     else let u = newsplitS2 sign (n / 2) (fun i -> input (i*2)) | ||
|  |     and z = newsplitS sign (n / 4) (fun i -> input (i*4 + 1)) | ||
|  |     and z' = newsplitS sign (n / 4) (fun i -> input ((n + i*4 - 1) mod n)) in | ||
|  |     let w = array n (fun k -> t n (sign * k) @* z (k mod (n / 4))) | ||
|  |     and w' = array n (fun k -> conj (t n (sign * k)) @* z' (k mod (n / 4))) in | ||
|  |     let ww = array n (fun k -> w k @+ w' k) in | ||
|  |     array n (fun k -> u (k mod (n / 2)) @+ ww k) | ||
|  |        | ||
|  |   and newsplitS2 sign n input = | ||
|  |     if (n == 1) then dft1 input | ||
|  |     else if (n == 2) then dft2 input | ||
|  |     else let u = newsplitS4 sign (n / 2) (fun i -> input (i*2)) | ||
|  |     and z = newsplitS sign (n / 4) (fun i -> input (i*4 + 1)) | ||
|  |     and z' = newsplitS sign (n / 4) (fun i -> input ((n + i*4 - 1) mod n)) in | ||
|  |     let w = array n (fun k -> t n (sign * k) @* z (k mod (n / 4))) | ||
|  |     and w' = array n (fun k -> conj (t n (sign * k)) @* z' (k mod (n / 4))) in | ||
|  |     let ww = array n (fun k -> (w k @+ w' k) @* (sdiv2 n k)) in | ||
|  |     array n (fun k -> u (k mod (n / 2)) @+ ww k) | ||
|  |        | ||
|  |   and newsplitS4 sign n input = | ||
|  |     if (n == 1) then dft1 input | ||
|  |     else if (n == 2) then  | ||
|  |       let f = dft2 input | ||
|  |       in array 2 (fun k -> (f k) @* (sinv 8 k)) | ||
|  |     else let u = newsplitS2 sign (n / 2) (fun i -> input (i*2)) | ||
|  |     and z = newsplitS sign (n / 4) (fun i -> input (i*4 + 1)) | ||
|  |     and z' = newsplitS sign (n / 4) (fun i -> input ((n + i*4 - 1) mod n)) in | ||
|  |     let w = array n (fun k -> t n (sign * k) @* z (k mod (n / 4))) | ||
|  |     and w' = array n (fun k -> conj (t n (sign * k)) @* z' (k mod (n / 4))) in | ||
|  |     let ww = array n (fun k -> w k @+ w' k) in | ||
|  |     array n (fun k -> (u (k mod (n / 2)) @+ ww k) @* (sdiv4 n k)) | ||
|  |        | ||
|  |   in newsplit0 sign n input | ||
|  |   | ||
|  | and dft sign n input = | ||
|  |   let rec cooley_tukey sign n1 n2 input = | ||
|  |     let tmp1 =  | ||
|  |       array n2 (fun i2 ->  | ||
|  | 	dft sign n1 (fun i1 -> input (i1 * n2 + i2))) in | ||
|  |     let tmp2 =   | ||
|  |       array n1 (fun i1 -> | ||
|  | 	array n2 (fun i2 -> | ||
|  | 	  exp n (sign * i1 * i2) @* tmp1 i2 i1)) in | ||
|  |     let tmp3 = array n1 (fun i1 -> dft sign n2 (tmp2 i1)) in | ||
|  |     (fun i -> tmp3 (i mod n1) (i / n1)) | ||
|  | 
 | ||
|  |   (*
 | ||
|  |    * This is "exponent -1" split-radix by Dan Bernstein. | ||
|  |    *) | ||
|  |   and split_radix_dit sign n input = | ||
|  |     let f0 = dft sign (n / 2) (fun i -> input (i * 2)) | ||
|  |     and f10 = dft sign (n / 4) (fun i -> input (i * 4 + 1)) | ||
|  |     and f11 = dft sign (n / 4) (fun i -> input ((n + i * 4 - 1) mod n)) in | ||
|  |     let g10 = array n (fun k -> | ||
|  |       exp n (sign * k) @* f10 (k mod (n / 4))) | ||
|  |     and g11 = array n (fun k -> | ||
|  |       exp n (- sign * k) @* f11 (k mod (n / 4))) in | ||
|  |     let g1 = array n (fun k -> g10 k @+ g11 k) in | ||
|  |     array n (fun k -> f0 (k mod (n / 2)) @+ g1 k) | ||
|  | 
 | ||
|  |   and split_radix_dif sign n input = | ||
|  |     let n2 = n / 2 and n4 = n / 4 in | ||
|  |     let x0 = array n2 (fun i -> input i @+ input (i + n2)) | ||
|  |     and x10 = array n4 (fun i -> input i @- input (i + n2)) | ||
|  |     and x11 = array n4 (fun i -> | ||
|  | 	input (i + n4) @- input (i + n2 + n4)) in | ||
|  |     let x1 k i =  | ||
|  |       exp n (k * i * sign) @* (x10 i @+ exp 4 (k * sign) @* x11 i) in | ||
|  |     let f0 = dft sign n2 x0  | ||
|  |     and f1 = array 4 (fun k -> dft sign n4 (x1 k)) in | ||
|  |     array n (fun k -> | ||
|  |       if k mod 2 = 0 then f0 (k / 2) | ||
|  |       else let k' = k mod 4 in f1 k' ((k - k') / 4)) | ||
|  | 
 | ||
|  |   and prime_factor sign n1 n2 input = | ||
|  |     let tmp1 = array n2 (fun i2 -> | ||
|  |       dft sign n1 (fun i1 -> input ((i1 * n2 + i2 * n1) mod n))) | ||
|  |     in let tmp2 = array n1 (fun i1 -> | ||
|  |       dft sign n2 (fun k2 -> tmp1 k2 i1)) | ||
|  |     in fun i -> tmp2 (i mod n1) (i mod n2) | ||
|  | 
 | ||
|  |   in let algorithm sign n = | ||
|  |     let r = choose_factor n in | ||
|  |     if List.mem n !Magic.rader_list then | ||
|  |       (* special cases *) | ||
|  |       dft_rader sign n | ||
|  |     else if (r == 1) then  (* n is prime *) | ||
|  |       dft_prime sign n | ||
|  |     else if (gcd r (n / r)) == 1 then | ||
|  |       prime_factor sign r (n / r) | ||
|  |     else if (n mod 4 = 0 && n > 4) then | ||
|  |       if !Magic.newsplit && is_power_of_two n then | ||
|  | 	newsplit sign n | ||
|  |       else if !Magic.dif_split_radix then | ||
|  | 	split_radix_dif sign n | ||
|  |       else | ||
|  | 	split_radix_dit sign n | ||
|  |     else  | ||
|  |       cooley_tukey sign r (n / r) | ||
|  |   in | ||
|  |   array n (algorithm sign n input) |