219 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			219 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:46:10 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 12 -name r2cf_12 -include rdft/scalar/r2cf.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 38 FP additions, 10 FP multiplications, | ||
|  |  * (or, 30 additions, 2 multiplications, 8 fused multiply/add), | ||
|  |  * 21 stack variables, 2 constants, and 24 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/r2cf.h"
 | ||
|  | 
 | ||
|  | static void r2cf_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) { | ||
|  | 	       E T5, Tp, Tm, Tk, Ty, Tt, Ta, Tq, Tn, Tf, Tz, Tu, Tl, To; | ||
|  | 	       { | ||
|  | 		    E T1, T2, T3, T4; | ||
|  | 		    T1 = R0[0]; | ||
|  | 		    T2 = R0[WS(rs, 2)]; | ||
|  | 		    T3 = R0[WS(rs, 4)]; | ||
|  | 		    T4 = T2 + T3; | ||
|  | 		    T5 = T1 + T4; | ||
|  | 		    Tp = FNMS(KP500000000, T4, T1); | ||
|  | 		    Tm = T3 - T2; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tg, Th, Ti, Tj; | ||
|  | 		    Tg = R1[WS(rs, 1)]; | ||
|  | 		    Th = R1[WS(rs, 3)]; | ||
|  | 		    Ti = R1[WS(rs, 5)]; | ||
|  | 		    Tj = Th + Ti; | ||
|  | 		    Tk = FNMS(KP500000000, Tj, Tg); | ||
|  | 		    Ty = Ti - Th; | ||
|  | 		    Tt = Tg + Tj; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6, T7, T8, T9; | ||
|  | 		    T6 = R0[WS(rs, 3)]; | ||
|  | 		    T7 = R0[WS(rs, 5)]; | ||
|  | 		    T8 = R0[WS(rs, 1)]; | ||
|  | 		    T9 = T7 + T8; | ||
|  | 		    Ta = T6 + T9; | ||
|  | 		    Tq = FNMS(KP500000000, T9, T6); | ||
|  | 		    Tn = T8 - T7; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tb, Tc, Td, Te; | ||
|  | 		    Tb = R1[WS(rs, 4)]; | ||
|  | 		    Tc = R1[0]; | ||
|  | 		    Td = R1[WS(rs, 2)]; | ||
|  | 		    Te = Tc + Td; | ||
|  | 		    Tf = FNMS(KP500000000, Te, Tb); | ||
|  | 		    Tz = Td - Tc; | ||
|  | 		    Tu = Tb + Te; | ||
|  | 	       } | ||
|  | 	       Cr[WS(csr, 3)] = T5 - Ta; | ||
|  | 	       Ci[WS(csi, 3)] = Tt - Tu; | ||
|  | 	       Tl = Tf - Tk; | ||
|  | 	       To = Tm - Tn; | ||
|  | 	       Ci[WS(csi, 1)] = FMA(KP866025403, To, Tl); | ||
|  | 	       Ci[WS(csi, 5)] = FNMS(KP866025403, To, Tl); | ||
|  | 	       { | ||
|  | 		    E Tx, TA, Tv, Tw; | ||
|  | 		    Tx = Tp - Tq; | ||
|  | 		    TA = Ty - Tz; | ||
|  | 		    Cr[WS(csr, 5)] = FNMS(KP866025403, TA, Tx); | ||
|  | 		    Cr[WS(csr, 1)] = FMA(KP866025403, TA, Tx); | ||
|  | 		    Tv = T5 + Ta; | ||
|  | 		    Tw = Tt + Tu; | ||
|  | 		    Cr[WS(csr, 6)] = Tv - Tw; | ||
|  | 		    Cr[0] = Tv + Tw; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tr, Ts, TB, TC; | ||
|  | 		    Tr = Tp + Tq; | ||
|  | 		    Ts = Tk + Tf; | ||
|  | 		    Cr[WS(csr, 2)] = Tr - Ts; | ||
|  | 		    Cr[WS(csr, 4)] = Tr + Ts; | ||
|  | 		    TB = Ty + Tz; | ||
|  | 		    TC = Tm + Tn; | ||
|  | 		    Ci[WS(csi, 2)] = KP866025403 * (TB - TC); | ||
|  | 		    Ci[WS(csi, 4)] = KP866025403 * (TC + TB); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kr2c_desc desc = { 12, "r2cf_12", { 30, 2, 8, 0 }, &GENUS }; | ||
|  | 
 | ||
|  | void X(codelet_r2cf_12) (planner *p) { X(kr2c_register) (p, r2cf_12, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 12 -name r2cf_12 -include rdft/scalar/r2cf.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 38 FP additions, 8 FP multiplications, | ||
|  |  * (or, 34 additions, 4 multiplications, 4 fused multiply/add), | ||
|  |  * 21 stack variables, 2 constants, and 24 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/r2cf.h"
 | ||
|  | 
 | ||
|  | static void r2cf_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) { | ||
|  | 	       E T5, Tp, Tb, Tn, Ty, Tt, Ta, Tq, Tc, Ti, Tz, Tu, Td, To; | ||
|  | 	       { | ||
|  | 		    E T1, T2, T3, T4; | ||
|  | 		    T1 = R0[0]; | ||
|  | 		    T2 = R0[WS(rs, 2)]; | ||
|  | 		    T3 = R0[WS(rs, 4)]; | ||
|  | 		    T4 = T2 + T3; | ||
|  | 		    T5 = T1 + T4; | ||
|  | 		    Tp = FNMS(KP500000000, T4, T1); | ||
|  | 		    Tb = T3 - T2; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tj, Tk, Tl, Tm; | ||
|  | 		    Tj = R1[WS(rs, 1)]; | ||
|  | 		    Tk = R1[WS(rs, 3)]; | ||
|  | 		    Tl = R1[WS(rs, 5)]; | ||
|  | 		    Tm = Tk + Tl; | ||
|  | 		    Tn = FNMS(KP500000000, Tm, Tj); | ||
|  | 		    Ty = Tl - Tk; | ||
|  | 		    Tt = Tj + Tm; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6, T7, T8, T9; | ||
|  | 		    T6 = R0[WS(rs, 3)]; | ||
|  | 		    T7 = R0[WS(rs, 5)]; | ||
|  | 		    T8 = R0[WS(rs, 1)]; | ||
|  | 		    T9 = T7 + T8; | ||
|  | 		    Ta = T6 + T9; | ||
|  | 		    Tq = FNMS(KP500000000, T9, T6); | ||
|  | 		    Tc = T8 - T7; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Te, Tf, Tg, Th; | ||
|  | 		    Te = R1[WS(rs, 4)]; | ||
|  | 		    Tf = R1[0]; | ||
|  | 		    Tg = R1[WS(rs, 2)]; | ||
|  | 		    Th = Tf + Tg; | ||
|  | 		    Ti = FNMS(KP500000000, Th, Te); | ||
|  | 		    Tz = Tg - Tf; | ||
|  | 		    Tu = Te + Th; | ||
|  | 	       } | ||
|  | 	       Cr[WS(csr, 3)] = T5 - Ta; | ||
|  | 	       Ci[WS(csi, 3)] = Tt - Tu; | ||
|  | 	       Td = KP866025403 * (Tb - Tc); | ||
|  | 	       To = Ti - Tn; | ||
|  | 	       Ci[WS(csi, 1)] = Td + To; | ||
|  | 	       Ci[WS(csi, 5)] = To - Td; | ||
|  | 	       { | ||
|  | 		    E Tx, TA, Tv, Tw; | ||
|  | 		    Tx = Tp - Tq; | ||
|  | 		    TA = KP866025403 * (Ty - Tz); | ||
|  | 		    Cr[WS(csr, 5)] = Tx - TA; | ||
|  | 		    Cr[WS(csr, 1)] = Tx + TA; | ||
|  | 		    Tv = T5 + Ta; | ||
|  | 		    Tw = Tt + Tu; | ||
|  | 		    Cr[WS(csr, 6)] = Tv - Tw; | ||
|  | 		    Cr[0] = Tv + Tw; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tr, Ts, TB, TC; | ||
|  | 		    Tr = Tp + Tq; | ||
|  | 		    Ts = Tn + Ti; | ||
|  | 		    Cr[WS(csr, 2)] = Tr - Ts; | ||
|  | 		    Cr[WS(csr, 4)] = Tr + Ts; | ||
|  | 		    TB = Ty + Tz; | ||
|  | 		    TC = Tb + Tc; | ||
|  | 		    Ci[WS(csi, 2)] = KP866025403 * (TB - TC); | ||
|  | 		    Ci[WS(csi, 4)] = KP866025403 * (TC + TB); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kr2c_desc desc = { 12, "r2cf_12", { 34, 4, 4, 0 }, &GENUS }; | ||
|  | 
 | ||
|  | void X(codelet_r2cf_12) (planner *p) { X(kr2c_register) (p, r2cf_12, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 |