239 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			239 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | 
 | ||
|  | #include "rdft/rdft.h"
 | ||
|  | #include <stddef.h>
 | ||
|  | 
 | ||
|  | static void destroy(problem *ego_) | ||
|  | { | ||
|  |      problem_rdft *ego = (problem_rdft *) ego_; | ||
|  | #if !defined(STRUCT_HACK_C99) && !defined(STRUCT_HACK_KR)
 | ||
|  |      X(ifree0)(ego->kind); | ||
|  | #endif
 | ||
|  |      X(tensor_destroy2)(ego->vecsz, ego->sz); | ||
|  |      X(ifree)(ego_); | ||
|  | } | ||
|  | 
 | ||
|  | static void kind_hash(md5 *m, const rdft_kind *kind, int rnk) | ||
|  | { | ||
|  |      int i; | ||
|  |      for (i = 0; i < rnk; ++i) | ||
|  | 	  X(md5int)(m, kind[i]); | ||
|  | } | ||
|  | 
 | ||
|  | static void hash(const problem *p_, md5 *m) | ||
|  | { | ||
|  |      const problem_rdft *p = (const problem_rdft *) p_; | ||
|  |      X(md5puts)(m, "rdft"); | ||
|  |      X(md5int)(m, p->I == p->O); | ||
|  |      kind_hash(m, p->kind, p->sz->rnk); | ||
|  |      X(md5int)(m, X(ialignment_of)(p->I)); | ||
|  |      X(md5int)(m, X(ialignment_of)(p->O)); | ||
|  |      X(tensor_md5)(m, p->sz); | ||
|  |      X(tensor_md5)(m, p->vecsz); | ||
|  | } | ||
|  | 
 | ||
|  | static void recur(const iodim *dims, int rnk, R *I) | ||
|  | { | ||
|  |      if (rnk == RNK_MINFTY) | ||
|  |           return; | ||
|  |      else if (rnk == 0) | ||
|  |           I[0] = K(0.0); | ||
|  |      else if (rnk > 0) { | ||
|  |           INT i, n = dims[0].n, is = dims[0].is; | ||
|  | 
 | ||
|  | 	  if (rnk == 1) { | ||
|  | 	       /* this case is redundant but faster */ | ||
|  | 	       for (i = 0; i < n; ++i) | ||
|  | 		    I[i * is] = K(0.0); | ||
|  | 	  } else { | ||
|  | 	       for (i = 0; i < n; ++i) | ||
|  | 		    recur(dims + 1, rnk - 1, I + i * is); | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | void X(rdft_zerotens)(tensor *sz, R *I) | ||
|  | { | ||
|  |      recur(sz->dims, sz->rnk, I); | ||
|  | } | ||
|  | 
 | ||
|  | #define KSTR_LEN 8
 | ||
|  | 
 | ||
|  | const char *X(rdft_kind_str)(rdft_kind kind) | ||
|  | { | ||
|  |      static const char kstr[][KSTR_LEN] = { | ||
|  | 	  "r2hc", "r2hc01", "r2hc10", "r2hc11", | ||
|  | 	  "hc2r", "hc2r01", "hc2r10", "hc2r11", | ||
|  | 	  "dht", | ||
|  | 	  "redft00", "redft01", "redft10", "redft11", | ||
|  | 	  "rodft00", "rodft01", "rodft10", "rodft11" | ||
|  |      }; | ||
|  |      A(kind >= 0 && kind < sizeof(kstr) / KSTR_LEN); | ||
|  |      return kstr[kind]; | ||
|  | } | ||
|  | 
 | ||
|  | static void print(const problem *ego_, printer *p) | ||
|  | { | ||
|  |      const problem_rdft *ego = (const problem_rdft *) ego_; | ||
|  |      int i; | ||
|  |      p->print(p, "(rdft %d %D %T %T",  | ||
|  | 	      X(ialignment_of)(ego->I), | ||
|  | 	      (INT)(ego->O - ego->I),  | ||
|  | 	      ego->sz, | ||
|  | 	      ego->vecsz); | ||
|  |      for (i = 0; i < ego->sz->rnk; ++i) | ||
|  | 	  p->print(p, " %d", (int)ego->kind[i]); | ||
|  |      p->print(p, ")"); | ||
|  | } | ||
|  | 
 | ||
|  | static void zero(const problem *ego_) | ||
|  | { | ||
|  |      const problem_rdft *ego = (const problem_rdft *) ego_; | ||
|  |      tensor *sz = X(tensor_append)(ego->vecsz, ego->sz); | ||
|  |      X(rdft_zerotens)(sz, UNTAINT(ego->I)); | ||
|  |      X(tensor_destroy)(sz); | ||
|  | } | ||
|  | 
 | ||
|  | static const problem_adt padt = | ||
|  | { | ||
|  |      PROBLEM_RDFT, | ||
|  |      hash, | ||
|  |      zero, | ||
|  |      print, | ||
|  |      destroy | ||
|  | }; | ||
|  | 
 | ||
|  | /* Dimensions of size 1 that are not REDFT/RODFT are no-ops and can be
 | ||
|  |    eliminated.  REDFT/RODFT unit dimensions often have factors of 2.0 | ||
|  |    and suchlike from normalization and phases, although in principle | ||
|  |    these constant factors from different dimensions could be combined. */ | ||
|  | static int nontrivial(const iodim *d, rdft_kind kind) | ||
|  | { | ||
|  |      return (d->n > 1 || kind == R2HC11 || kind == HC2R11 | ||
|  | 	     || (REODFT_KINDP(kind) && kind != REDFT01 && kind != RODFT01)); | ||
|  | } | ||
|  | 
 | ||
|  | problem *X(mkproblem_rdft)(const tensor *sz, const tensor *vecsz, | ||
|  | 			   R *I, R *O, const rdft_kind *kind) | ||
|  | { | ||
|  |      problem_rdft *ego; | ||
|  |      int rnk = sz->rnk; | ||
|  |      int i; | ||
|  | 
 | ||
|  |      A(X(tensor_kosherp)(sz)); | ||
|  |      A(X(tensor_kosherp)(vecsz)); | ||
|  |      A(FINITE_RNK(sz->rnk)); | ||
|  | 
 | ||
|  |      if (UNTAINT(I) == UNTAINT(O)) | ||
|  | 	  I = O = JOIN_TAINT(I, O); | ||
|  | 
 | ||
|  |      if (I == O && !X(tensor_inplace_locations)(sz, vecsz)) | ||
|  | 	  return X(mkproblem_unsolvable)(); | ||
|  | 
 | ||
|  |      for (i = rnk = 0; i < sz->rnk; ++i) { | ||
|  |           A(sz->dims[i].n > 0); | ||
|  |           if (nontrivial(sz->dims + i, kind[i])) | ||
|  |                ++rnk; | ||
|  |      } | ||
|  | 
 | ||
|  | #if defined(STRUCT_HACK_KR)
 | ||
|  |      ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft) | ||
|  | 					 + sizeof(rdft_kind) | ||
|  | 					 * (rnk > 0 ? rnk - 1u : 0u), &padt); | ||
|  | #elif defined(STRUCT_HACK_C99)
 | ||
|  |      ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft) | ||
|  | 					 + sizeof(rdft_kind) * (unsigned)rnk, &padt); | ||
|  | #else
 | ||
|  |      ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft), &padt); | ||
|  |      ego->kind = (rdft_kind *) MALLOC(sizeof(rdft_kind) * (unsigned)rnk, PROBLEMS); | ||
|  | #endif
 | ||
|  | 
 | ||
|  |      /* do compression and sorting as in X(tensor_compress), but take
 | ||
|  | 	transform kind into account (sigh) */ | ||
|  |      ego->sz = X(mktensor)(rnk); | ||
|  |      for (i = rnk = 0; i < sz->rnk; ++i) { | ||
|  |           if (nontrivial(sz->dims + i, kind[i])) { | ||
|  | 	       ego->kind[rnk] = kind[i]; | ||
|  |                ego->sz->dims[rnk++] = sz->dims[i]; | ||
|  | 	  } | ||
|  |      } | ||
|  |      for (i = 0; i + 1 < rnk; ++i) { | ||
|  | 	  int j; | ||
|  | 	  for (j = i + 1; j < rnk; ++j) | ||
|  | 	       if (X(dimcmp)(ego->sz->dims + i, ego->sz->dims + j) > 0) { | ||
|  | 		    iodim dswap; | ||
|  | 		    rdft_kind kswap; | ||
|  | 		    dswap = ego->sz->dims[i]; | ||
|  | 		    ego->sz->dims[i] = ego->sz->dims[j]; | ||
|  | 		    ego->sz->dims[j] = dswap; | ||
|  | 		    kswap = ego->kind[i]; | ||
|  | 		    ego->kind[i] = ego->kind[j]; | ||
|  | 		    ego->kind[j] = kswap; | ||
|  | 	       } | ||
|  |      } | ||
|  | 
 | ||
|  |      for (i = 0; i < rnk; ++i) | ||
|  | 	  if (ego->sz->dims[i].n == 2 && (ego->kind[i] == REDFT00 | ||
|  | 					  || ego->kind[i] == DHT | ||
|  | 					  || ego->kind[i] == HC2R)) | ||
|  | 	       ego->kind[i] = R2HC; /* size-2 transforms are equivalent */ | ||
|  | 
 | ||
|  |      ego->vecsz = X(tensor_compress_contiguous)(vecsz); | ||
|  |      ego->I = I; | ||
|  |      ego->O = O; | ||
|  | 
 | ||
|  |      A(FINITE_RNK(ego->sz->rnk)); | ||
|  | 
 | ||
|  |      return &(ego->super); | ||
|  | } | ||
|  | 
 | ||
|  | /* Same as X(mkproblem_rdft), but also destroy input tensors. */ | ||
|  | problem *X(mkproblem_rdft_d)(tensor *sz, tensor *vecsz, | ||
|  | 			     R *I, R *O, const rdft_kind *kind) | ||
|  | { | ||
|  |      problem *p = X(mkproblem_rdft)(sz, vecsz, I, O, kind); | ||
|  |      X(tensor_destroy2)(vecsz, sz); | ||
|  |      return p; | ||
|  | } | ||
|  | 
 | ||
|  | /* As above, but for rnk <= 1 only and takes a scalar kind parameter */ | ||
|  | problem *X(mkproblem_rdft_1)(const tensor *sz, const tensor *vecsz, | ||
|  | 			     R *I, R *O, rdft_kind kind) | ||
|  | { | ||
|  |      A(sz->rnk <= 1); | ||
|  |      return X(mkproblem_rdft)(sz, vecsz, I, O, &kind); | ||
|  | } | ||
|  | 
 | ||
|  | problem *X(mkproblem_rdft_1_d)(tensor *sz, tensor *vecsz, | ||
|  | 			       R *I, R *O, rdft_kind kind) | ||
|  | { | ||
|  |      A(sz->rnk <= 1); | ||
|  |      return X(mkproblem_rdft_d)(sz, vecsz, I, O, &kind); | ||
|  | } | ||
|  | 
 | ||
|  | /* create a zero-dimensional problem */ | ||
|  | problem *X(mkproblem_rdft_0_d)(tensor *vecsz, R *I, R *O) | ||
|  | { | ||
|  |      return X(mkproblem_rdft_d)(X(mktensor_0d)(), vecsz, I, O,  | ||
|  | 				(const rdft_kind *)0); | ||
|  | } |