3087 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			3087 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:44:26 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "dft/codelet-dft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 64 -name n1_64 -include dft/scalar/n.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 912 FP additions, 392 FP multiplications, | ||
|  |  * (or, 520 additions, 0 multiplications, 392 fused multiply/add), | ||
|  |  * 172 stack variables, 15 constants, and 256 memory accesses | ||
|  |  */ | ||
|  | #include "dft/scalar/n.h"
 | ||
|  | 
 | ||
|  | static void n1_64(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP956940335, +0.956940335732208864935797886980269969482849206); | ||
|  |      DK(KP881921264, +0.881921264348355029712756863660388349508442621); | ||
|  |      DK(KP534511135, +0.534511135950791641089685961295362908582039528); | ||
|  |      DK(KP303346683, +0.303346683607342391675883946941299872384187453); | ||
|  |      DK(KP995184726, +0.995184726672196886244836953109479921575474869); | ||
|  |      DK(KP773010453, +0.773010453362736960810906609758469800971041293); | ||
|  |      DK(KP820678790, +0.820678790828660330972281985331011598767386482); | ||
|  |      DK(KP098491403, +0.098491403357164253077197521291327432293052451); | ||
|  |      DK(KP980785280, +0.980785280403230449126182236134239036973933731); | ||
|  |      DK(KP831469612, +0.831469612302545237078788377617905756738560812); | ||
|  |      DK(KP668178637, +0.668178637919298919997757686523080761552472251); | ||
|  |      DK(KP198912367, +0.198912367379658006911597622644676228597850501); | ||
|  |      DK(KP923879532, +0.923879532511286756128183189396788286822416626); | ||
|  |      DK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      DK(KP414213562, +0.414213562373095048801688724209698078569671875); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(256, is), MAKE_VOLATILE_STRIDE(256, os)) { | ||
|  | 	       E T37, T7B, T8F, T5Z, Tf, Td9, TbB, TcB, T62, T7C, T2i, TdH, Tah, Tcb, T3e; | ||
|  | 	       E T8G, Tu, TdI, Tak, TbC, Tan, TbD, T2x, Tda, T3m, T65, T7G, T8I, T7J, T8J; | ||
|  | 	       E T3t, T64, TK, Tdd, Tas, Tce, Tav, Tcf, T2N, Tdc, T3G, T6G, T7O, T9k, T7R; | ||
|  | 	       E T9l, T3N, T6H, T1L, TdA, Tbs, Tct, Tdx, Teo, T5j, T6Y, T5Q, T6V, T8y, T9z; | ||
|  | 	       E Tbb, Tcw, T8n, T9C, TZ, Tdf, Taz, Tch, TaC, Tci, T32, Tdg, T3Z, T6J, T7V; | ||
|  | 	       E T9n, T7Y, T9o, T46, T6K, T1g, Tdp, Tb1, Tcm, Tdm, Tej, T4q, T6R, T4X, T6O; | ||
|  | 	       E T8f, T9s, TaK, Tcp, T84, T9v, T1v, Tdn, Tb4, Tcq, Tds, Tek, T4N, T6P, T50; | ||
|  | 	       E T6S, T8i, T9w, TaV, Tcn, T8b, T9t, T20, Tdy, Tbv, Tcx, TdD, Tep, T5G, T6W; | ||
|  | 	       E T5T, T6Z, T8B, T9D, Tbm, Tcu, T8u, T9A; | ||
|  | 	       { | ||
|  | 		    E T3, T35, T26, T5Y, T6, T5X, T29, T36, Ta, T39, T2d, T38, Td, T3b, T2g; | ||
|  | 		    E T3c; | ||
|  | 		    { | ||
|  | 			 E T1, T2, T24, T25; | ||
|  | 			 T1 = ri[0]; | ||
|  | 			 T2 = ri[WS(is, 32)]; | ||
|  | 			 T3 = T1 + T2; | ||
|  | 			 T35 = T1 - T2; | ||
|  | 			 T24 = ii[0]; | ||
|  | 			 T25 = ii[WS(is, 32)]; | ||
|  | 			 T26 = T24 + T25; | ||
|  | 			 T5Y = T24 - T25; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4, T5, T27, T28; | ||
|  | 			 T4 = ri[WS(is, 16)]; | ||
|  | 			 T5 = ri[WS(is, 48)]; | ||
|  | 			 T6 = T4 + T5; | ||
|  | 			 T5X = T4 - T5; | ||
|  | 			 T27 = ii[WS(is, 16)]; | ||
|  | 			 T28 = ii[WS(is, 48)]; | ||
|  | 			 T29 = T27 + T28; | ||
|  | 			 T36 = T27 - T28; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8, T9, T2b, T2c; | ||
|  | 			 T8 = ri[WS(is, 8)]; | ||
|  | 			 T9 = ri[WS(is, 40)]; | ||
|  | 			 Ta = T8 + T9; | ||
|  | 			 T39 = T8 - T9; | ||
|  | 			 T2b = ii[WS(is, 8)]; | ||
|  | 			 T2c = ii[WS(is, 40)]; | ||
|  | 			 T2d = T2b + T2c; | ||
|  | 			 T38 = T2b - T2c; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tb, Tc, T2e, T2f; | ||
|  | 			 Tb = ri[WS(is, 56)]; | ||
|  | 			 Tc = ri[WS(is, 24)]; | ||
|  | 			 Td = Tb + Tc; | ||
|  | 			 T3b = Tb - Tc; | ||
|  | 			 T2e = ii[WS(is, 56)]; | ||
|  | 			 T2f = ii[WS(is, 24)]; | ||
|  | 			 T2g = T2e + T2f; | ||
|  | 			 T3c = T2e - T2f; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7, Te, T2a, T2h; | ||
|  | 			 T37 = T35 - T36; | ||
|  | 			 T7B = T35 + T36; | ||
|  | 			 T8F = T5Y - T5X; | ||
|  | 			 T5Z = T5X + T5Y; | ||
|  | 			 T7 = T3 + T6; | ||
|  | 			 Te = Ta + Td; | ||
|  | 			 Tf = T7 + Te; | ||
|  | 			 Td9 = T7 - Te; | ||
|  | 			 { | ||
|  | 			      E Tbz, TbA, T60, T61; | ||
|  | 			      Tbz = Td - Ta; | ||
|  | 			      TbA = T26 - T29; | ||
|  | 			      TbB = Tbz + TbA; | ||
|  | 			      TcB = TbA - Tbz; | ||
|  | 			      T60 = T3b - T3c; | ||
|  | 			      T61 = T39 + T38; | ||
|  | 			      T62 = T60 - T61; | ||
|  | 			      T7C = T61 + T60; | ||
|  | 			 } | ||
|  | 			 T2a = T26 + T29; | ||
|  | 			 T2h = T2d + T2g; | ||
|  | 			 T2i = T2a + T2h; | ||
|  | 			 TdH = T2a - T2h; | ||
|  | 			 { | ||
|  | 			      E Taf, Tag, T3a, T3d; | ||
|  | 			      Taf = T3 - T6; | ||
|  | 			      Tag = T2d - T2g; | ||
|  | 			      Tah = Taf + Tag; | ||
|  | 			      Tcb = Taf - Tag; | ||
|  | 			      T3a = T38 - T39; | ||
|  | 			      T3d = T3b + T3c; | ||
|  | 			      T3e = T3a - T3d; | ||
|  | 			      T8G = T3a + T3d; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ti, T3j, T2l, T3h, Tl, T3g, T2o, T3k, Tp, T3q, T2s, T3o, Ts, T3n, T2v; | ||
|  | 		    E T3r; | ||
|  | 		    { | ||
|  | 			 E Tg, Th, T2j, T2k; | ||
|  | 			 Tg = ri[WS(is, 4)]; | ||
|  | 			 Th = ri[WS(is, 36)]; | ||
|  | 			 Ti = Tg + Th; | ||
|  | 			 T3j = Tg - Th; | ||
|  | 			 T2j = ii[WS(is, 4)]; | ||
|  | 			 T2k = ii[WS(is, 36)]; | ||
|  | 			 T2l = T2j + T2k; | ||
|  | 			 T3h = T2j - T2k; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tj, Tk, T2m, T2n; | ||
|  | 			 Tj = ri[WS(is, 20)]; | ||
|  | 			 Tk = ri[WS(is, 52)]; | ||
|  | 			 Tl = Tj + Tk; | ||
|  | 			 T3g = Tj - Tk; | ||
|  | 			 T2m = ii[WS(is, 20)]; | ||
|  | 			 T2n = ii[WS(is, 52)]; | ||
|  | 			 T2o = T2m + T2n; | ||
|  | 			 T3k = T2m - T2n; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tn, To, T2q, T2r; | ||
|  | 			 Tn = ri[WS(is, 60)]; | ||
|  | 			 To = ri[WS(is, 28)]; | ||
|  | 			 Tp = Tn + To; | ||
|  | 			 T3q = Tn - To; | ||
|  | 			 T2q = ii[WS(is, 60)]; | ||
|  | 			 T2r = ii[WS(is, 28)]; | ||
|  | 			 T2s = T2q + T2r; | ||
|  | 			 T3o = T2q - T2r; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tq, Tr, T2t, T2u; | ||
|  | 			 Tq = ri[WS(is, 12)]; | ||
|  | 			 Tr = ri[WS(is, 44)]; | ||
|  | 			 Ts = Tq + Tr; | ||
|  | 			 T3n = Tq - Tr; | ||
|  | 			 T2t = ii[WS(is, 12)]; | ||
|  | 			 T2u = ii[WS(is, 44)]; | ||
|  | 			 T2v = T2t + T2u; | ||
|  | 			 T3r = T2t - T2u; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tm, Tt, Tai, Taj; | ||
|  | 			 Tm = Ti + Tl; | ||
|  | 			 Tt = Tp + Ts; | ||
|  | 			 Tu = Tm + Tt; | ||
|  | 			 TdI = Tt - Tm; | ||
|  | 			 Tai = Ti - Tl; | ||
|  | 			 Taj = T2l - T2o; | ||
|  | 			 Tak = Tai + Taj; | ||
|  | 			 TbC = Taj - Tai; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tal, Tam, T2p, T2w; | ||
|  | 			 Tal = Tp - Ts; | ||
|  | 			 Tam = T2s - T2v; | ||
|  | 			 Tan = Tal - Tam; | ||
|  | 			 TbD = Tal + Tam; | ||
|  | 			 T2p = T2l + T2o; | ||
|  | 			 T2w = T2s + T2v; | ||
|  | 			 T2x = T2p + T2w; | ||
|  | 			 Tda = T2p - T2w; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3i, T3l, T7E, T7F; | ||
|  | 			 T3i = T3g + T3h; | ||
|  | 			 T3l = T3j - T3k; | ||
|  | 			 T3m = FMA(KP414213562, T3l, T3i); | ||
|  | 			 T65 = FNMS(KP414213562, T3i, T3l); | ||
|  | 			 T7E = T3j + T3k; | ||
|  | 			 T7F = T3h - T3g; | ||
|  | 			 T7G = FMA(KP414213562, T7F, T7E); | ||
|  | 			 T8I = FNMS(KP414213562, T7E, T7F); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7H, T7I, T3p, T3s; | ||
|  | 			 T7H = T3q + T3r; | ||
|  | 			 T7I = T3o - T3n; | ||
|  | 			 T7J = FNMS(KP414213562, T7I, T7H); | ||
|  | 			 T8J = FMA(KP414213562, T7H, T7I); | ||
|  | 			 T3p = T3n + T3o; | ||
|  | 			 T3s = T3q - T3r; | ||
|  | 			 T3t = FNMS(KP414213562, T3s, T3p); | ||
|  | 			 T64 = FMA(KP414213562, T3p, T3s); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ty, T3H, T2B, T3x, TB, T3w, T2E, T3I, TI, T3K, T2L, T3E, TF, T3L, T2I; | ||
|  | 		    E T3B; | ||
|  | 		    { | ||
|  | 			 E Tw, Tx, T2C, T2D; | ||
|  | 			 Tw = ri[WS(is, 2)]; | ||
|  | 			 Tx = ri[WS(is, 34)]; | ||
|  | 			 Ty = Tw + Tx; | ||
|  | 			 T3H = Tw - Tx; | ||
|  | 			 { | ||
|  | 			      E T2z, T2A, Tz, TA; | ||
|  | 			      T2z = ii[WS(is, 2)]; | ||
|  | 			      T2A = ii[WS(is, 34)]; | ||
|  | 			      T2B = T2z + T2A; | ||
|  | 			      T3x = T2z - T2A; | ||
|  | 			      Tz = ri[WS(is, 18)]; | ||
|  | 			      TA = ri[WS(is, 50)]; | ||
|  | 			      TB = Tz + TA; | ||
|  | 			      T3w = Tz - TA; | ||
|  | 			 } | ||
|  | 			 T2C = ii[WS(is, 18)]; | ||
|  | 			 T2D = ii[WS(is, 50)]; | ||
|  | 			 T2E = T2C + T2D; | ||
|  | 			 T3I = T2C - T2D; | ||
|  | 			 { | ||
|  | 			      E TG, TH, T3C, T2J, T2K, T3D; | ||
|  | 			      TG = ri[WS(is, 58)]; | ||
|  | 			      TH = ri[WS(is, 26)]; | ||
|  | 			      T3C = TG - TH; | ||
|  | 			      T2J = ii[WS(is, 58)]; | ||
|  | 			      T2K = ii[WS(is, 26)]; | ||
|  | 			      T3D = T2J - T2K; | ||
|  | 			      TI = TG + TH; | ||
|  | 			      T3K = T3C + T3D; | ||
|  | 			      T2L = T2J + T2K; | ||
|  | 			      T3E = T3C - T3D; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E TD, TE, T3z, T2G, T2H, T3A; | ||
|  | 			      TD = ri[WS(is, 10)]; | ||
|  | 			      TE = ri[WS(is, 42)]; | ||
|  | 			      T3z = TD - TE; | ||
|  | 			      T2G = ii[WS(is, 10)]; | ||
|  | 			      T2H = ii[WS(is, 42)]; | ||
|  | 			      T3A = T2G - T2H; | ||
|  | 			      TF = TD + TE; | ||
|  | 			      T3L = T3A - T3z; | ||
|  | 			      T2I = T2G + T2H; | ||
|  | 			      T3B = T3z + T3A; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TC, TJ, Taq, Tar; | ||
|  | 			 TC = Ty + TB; | ||
|  | 			 TJ = TF + TI; | ||
|  | 			 TK = TC + TJ; | ||
|  | 			 Tdd = TC - TJ; | ||
|  | 			 Taq = TI - TF; | ||
|  | 			 Tar = T2B - T2E; | ||
|  | 			 Tas = Taq + Tar; | ||
|  | 			 Tce = Tar - Taq; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tat, Tau, T2F, T2M; | ||
|  | 			 Tat = Ty - TB; | ||
|  | 			 Tau = T2I - T2L; | ||
|  | 			 Tav = Tat + Tau; | ||
|  | 			 Tcf = Tat - Tau; | ||
|  | 			 T2F = T2B + T2E; | ||
|  | 			 T2M = T2I + T2L; | ||
|  | 			 T2N = T2F + T2M; | ||
|  | 			 Tdc = T2F - T2M; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3y, T3F, T7M, T7N; | ||
|  | 			 T3y = T3w + T3x; | ||
|  | 			 T3F = T3B - T3E; | ||
|  | 			 T3G = FNMS(KP707106781, T3F, T3y); | ||
|  | 			 T6G = FMA(KP707106781, T3F, T3y); | ||
|  | 			 T7M = T3x - T3w; | ||
|  | 			 T7N = T3L + T3K; | ||
|  | 			 T7O = FMA(KP707106781, T7N, T7M); | ||
|  | 			 T9k = FNMS(KP707106781, T7N, T7M); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7P, T7Q, T3J, T3M; | ||
|  | 			 T7P = T3H + T3I; | ||
|  | 			 T7Q = T3B + T3E; | ||
|  | 			 T7R = FMA(KP707106781, T7Q, T7P); | ||
|  | 			 T9l = FNMS(KP707106781, T7Q, T7P); | ||
|  | 			 T3J = T3H - T3I; | ||
|  | 			 T3M = T3K - T3L; | ||
|  | 			 T3N = FNMS(KP707106781, T3M, T3J); | ||
|  | 			 T6H = FMA(KP707106781, T3M, T3J); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1z, T5I, T56, Tb8, T1C, T53, T5L, Tb9, T1J, Tbq, T5h, T5N, T1G, Tbp, T5c; | ||
|  | 		    E T5O; | ||
|  | 		    { | ||
|  | 			 E T1x, T1y, T5J, T5K; | ||
|  | 			 T1x = ri[WS(is, 63)]; | ||
|  | 			 T1y = ri[WS(is, 31)]; | ||
|  | 			 T1z = T1x + T1y; | ||
|  | 			 T5I = T1x - T1y; | ||
|  | 			 { | ||
|  | 			      E T54, T55, T1A, T1B; | ||
|  | 			      T54 = ii[WS(is, 63)]; | ||
|  | 			      T55 = ii[WS(is, 31)]; | ||
|  | 			      T56 = T54 - T55; | ||
|  | 			      Tb8 = T54 + T55; | ||
|  | 			      T1A = ri[WS(is, 15)]; | ||
|  | 			      T1B = ri[WS(is, 47)]; | ||
|  | 			      T1C = T1A + T1B; | ||
|  | 			      T53 = T1A - T1B; | ||
|  | 			 } | ||
|  | 			 T5J = ii[WS(is, 15)]; | ||
|  | 			 T5K = ii[WS(is, 47)]; | ||
|  | 			 T5L = T5J - T5K; | ||
|  | 			 Tb9 = T5J + T5K; | ||
|  | 			 { | ||
|  | 			      E T1H, T1I, T5d, T5e, T5f, T5g; | ||
|  | 			      T1H = ri[WS(is, 55)]; | ||
|  | 			      T1I = ri[WS(is, 23)]; | ||
|  | 			      T5d = T1H - T1I; | ||
|  | 			      T5e = ii[WS(is, 55)]; | ||
|  | 			      T5f = ii[WS(is, 23)]; | ||
|  | 			      T5g = T5e - T5f; | ||
|  | 			      T1J = T1H + T1I; | ||
|  | 			      Tbq = T5e + T5f; | ||
|  | 			      T5h = T5d - T5g; | ||
|  | 			      T5N = T5d + T5g; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1E, T1F, T58, T59, T5a, T5b; | ||
|  | 			      T1E = ri[WS(is, 7)]; | ||
|  | 			      T1F = ri[WS(is, 39)]; | ||
|  | 			      T58 = T1E - T1F; | ||
|  | 			      T59 = ii[WS(is, 7)]; | ||
|  | 			      T5a = ii[WS(is, 39)]; | ||
|  | 			      T5b = T59 - T5a; | ||
|  | 			      T1G = T1E + T1F; | ||
|  | 			      Tbp = T59 + T5a; | ||
|  | 			      T5c = T58 + T5b; | ||
|  | 			      T5O = T5b - T58; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1D, T1K, Tbo, Tbr; | ||
|  | 			 T1D = T1z + T1C; | ||
|  | 			 T1K = T1G + T1J; | ||
|  | 			 T1L = T1D + T1K; | ||
|  | 			 TdA = T1D - T1K; | ||
|  | 			 Tbo = T1z - T1C; | ||
|  | 			 Tbr = Tbp - Tbq; | ||
|  | 			 Tbs = Tbo + Tbr; | ||
|  | 			 Tct = Tbo - Tbr; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tdv, Tdw, T57, T5i; | ||
|  | 			 Tdv = Tb8 + Tb9; | ||
|  | 			 Tdw = Tbp + Tbq; | ||
|  | 			 Tdx = Tdv - Tdw; | ||
|  | 			 Teo = Tdv + Tdw; | ||
|  | 			 T57 = T53 + T56; | ||
|  | 			 T5i = T5c - T5h; | ||
|  | 			 T5j = FNMS(KP707106781, T5i, T57); | ||
|  | 			 T6Y = FMA(KP707106781, T5i, T57); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5M, T5P, T8w, T8x; | ||
|  | 			 T5M = T5I - T5L; | ||
|  | 			 T5P = T5N - T5O; | ||
|  | 			 T5Q = FNMS(KP707106781, T5P, T5M); | ||
|  | 			 T6V = FMA(KP707106781, T5P, T5M); | ||
|  | 			 T8w = T5I + T5L; | ||
|  | 			 T8x = T5c + T5h; | ||
|  | 			 T8y = FMA(KP707106781, T8x, T8w); | ||
|  | 			 T9z = FNMS(KP707106781, T8x, T8w); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tb7, Tba, T8l, T8m; | ||
|  | 			 Tb7 = T1J - T1G; | ||
|  | 			 Tba = Tb8 - Tb9; | ||
|  | 			 Tbb = Tb7 + Tba; | ||
|  | 			 Tcw = Tba - Tb7; | ||
|  | 			 T8l = T56 - T53; | ||
|  | 			 T8m = T5O + T5N; | ||
|  | 			 T8n = FMA(KP707106781, T8m, T8l); | ||
|  | 			 T9C = FNMS(KP707106781, T8m, T8l); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TN, T40, T2Q, T3Q, TQ, T3P, T2T, T41, TX, T43, T30, T3X, TU, T44, T2X; | ||
|  | 		    E T3U; | ||
|  | 		    { | ||
|  | 			 E TL, TM, T2R, T2S; | ||
|  | 			 TL = ri[WS(is, 62)]; | ||
|  | 			 TM = ri[WS(is, 30)]; | ||
|  | 			 TN = TL + TM; | ||
|  | 			 T40 = TL - TM; | ||
|  | 			 { | ||
|  | 			      E T2O, T2P, TO, TP; | ||
|  | 			      T2O = ii[WS(is, 62)]; | ||
|  | 			      T2P = ii[WS(is, 30)]; | ||
|  | 			      T2Q = T2O + T2P; | ||
|  | 			      T3Q = T2O - T2P; | ||
|  | 			      TO = ri[WS(is, 14)]; | ||
|  | 			      TP = ri[WS(is, 46)]; | ||
|  | 			      TQ = TO + TP; | ||
|  | 			      T3P = TO - TP; | ||
|  | 			 } | ||
|  | 			 T2R = ii[WS(is, 14)]; | ||
|  | 			 T2S = ii[WS(is, 46)]; | ||
|  | 			 T2T = T2R + T2S; | ||
|  | 			 T41 = T2R - T2S; | ||
|  | 			 { | ||
|  | 			      E TV, TW, T3V, T2Y, T2Z, T3W; | ||
|  | 			      TV = ri[WS(is, 54)]; | ||
|  | 			      TW = ri[WS(is, 22)]; | ||
|  | 			      T3V = TV - TW; | ||
|  | 			      T2Y = ii[WS(is, 54)]; | ||
|  | 			      T2Z = ii[WS(is, 22)]; | ||
|  | 			      T3W = T2Y - T2Z; | ||
|  | 			      TX = TV + TW; | ||
|  | 			      T43 = T3V + T3W; | ||
|  | 			      T30 = T2Y + T2Z; | ||
|  | 			      T3X = T3V - T3W; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E TS, TT, T3S, T2V, T2W, T3T; | ||
|  | 			      TS = ri[WS(is, 6)]; | ||
|  | 			      TT = ri[WS(is, 38)]; | ||
|  | 			      T3S = TS - TT; | ||
|  | 			      T2V = ii[WS(is, 6)]; | ||
|  | 			      T2W = ii[WS(is, 38)]; | ||
|  | 			      T3T = T2V - T2W; | ||
|  | 			      TU = TS + TT; | ||
|  | 			      T44 = T3T - T3S; | ||
|  | 			      T2X = T2V + T2W; | ||
|  | 			      T3U = T3S + T3T; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TR, TY, Tax, Tay; | ||
|  | 			 TR = TN + TQ; | ||
|  | 			 TY = TU + TX; | ||
|  | 			 TZ = TR + TY; | ||
|  | 			 Tdf = TR - TY; | ||
|  | 			 Tax = TX - TU; | ||
|  | 			 Tay = T2Q - T2T; | ||
|  | 			 Taz = Tax + Tay; | ||
|  | 			 Tch = Tay - Tax; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TaA, TaB, T2U, T31; | ||
|  | 			 TaA = TN - TQ; | ||
|  | 			 TaB = T2X - T30; | ||
|  | 			 TaC = TaA + TaB; | ||
|  | 			 Tci = TaA - TaB; | ||
|  | 			 T2U = T2Q + T2T; | ||
|  | 			 T31 = T2X + T30; | ||
|  | 			 T32 = T2U + T31; | ||
|  | 			 Tdg = T2U - T31; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3R, T3Y, T7T, T7U; | ||
|  | 			 T3R = T3P + T3Q; | ||
|  | 			 T3Y = T3U - T3X; | ||
|  | 			 T3Z = FNMS(KP707106781, T3Y, T3R); | ||
|  | 			 T6J = FMA(KP707106781, T3Y, T3R); | ||
|  | 			 T7T = T3Q - T3P; | ||
|  | 			 T7U = T44 + T43; | ||
|  | 			 T7V = FMA(KP707106781, T7U, T7T); | ||
|  | 			 T9n = FNMS(KP707106781, T7U, T7T); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7W, T7X, T42, T45; | ||
|  | 			 T7W = T40 + T41; | ||
|  | 			 T7X = T3U + T3X; | ||
|  | 			 T7Y = FMA(KP707106781, T7X, T7W); | ||
|  | 			 T9o = FNMS(KP707106781, T7X, T7W); | ||
|  | 			 T42 = T40 - T41; | ||
|  | 			 T45 = T43 - T44; | ||
|  | 			 T46 = FNMS(KP707106781, T45, T42); | ||
|  | 			 T6K = FMA(KP707106781, T45, T42); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T14, T4P, T4d, TaH, T17, T4a, T4S, TaI, T1e, TaZ, T4o, T4U, T1b, TaY, T4j; | ||
|  | 		    E T4V; | ||
|  | 		    { | ||
|  | 			 E T12, T13, T4Q, T4R; | ||
|  | 			 T12 = ri[WS(is, 1)]; | ||
|  | 			 T13 = ri[WS(is, 33)]; | ||
|  | 			 T14 = T12 + T13; | ||
|  | 			 T4P = T12 - T13; | ||
|  | 			 { | ||
|  | 			      E T4b, T4c, T15, T16; | ||
|  | 			      T4b = ii[WS(is, 1)]; | ||
|  | 			      T4c = ii[WS(is, 33)]; | ||
|  | 			      T4d = T4b - T4c; | ||
|  | 			      TaH = T4b + T4c; | ||
|  | 			      T15 = ri[WS(is, 17)]; | ||
|  | 			      T16 = ri[WS(is, 49)]; | ||
|  | 			      T17 = T15 + T16; | ||
|  | 			      T4a = T15 - T16; | ||
|  | 			 } | ||
|  | 			 T4Q = ii[WS(is, 17)]; | ||
|  | 			 T4R = ii[WS(is, 49)]; | ||
|  | 			 T4S = T4Q - T4R; | ||
|  | 			 TaI = T4Q + T4R; | ||
|  | 			 { | ||
|  | 			      E T1c, T1d, T4k, T4l, T4m, T4n; | ||
|  | 			      T1c = ri[WS(is, 57)]; | ||
|  | 			      T1d = ri[WS(is, 25)]; | ||
|  | 			      T4k = T1c - T1d; | ||
|  | 			      T4l = ii[WS(is, 57)]; | ||
|  | 			      T4m = ii[WS(is, 25)]; | ||
|  | 			      T4n = T4l - T4m; | ||
|  | 			      T1e = T1c + T1d; | ||
|  | 			      TaZ = T4l + T4m; | ||
|  | 			      T4o = T4k - T4n; | ||
|  | 			      T4U = T4k + T4n; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T19, T1a, T4f, T4g, T4h, T4i; | ||
|  | 			      T19 = ri[WS(is, 9)]; | ||
|  | 			      T1a = ri[WS(is, 41)]; | ||
|  | 			      T4f = T19 - T1a; | ||
|  | 			      T4g = ii[WS(is, 9)]; | ||
|  | 			      T4h = ii[WS(is, 41)]; | ||
|  | 			      T4i = T4g - T4h; | ||
|  | 			      T1b = T19 + T1a; | ||
|  | 			      TaY = T4g + T4h; | ||
|  | 			      T4j = T4f + T4i; | ||
|  | 			      T4V = T4i - T4f; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T18, T1f, TaX, Tb0; | ||
|  | 			 T18 = T14 + T17; | ||
|  | 			 T1f = T1b + T1e; | ||
|  | 			 T1g = T18 + T1f; | ||
|  | 			 Tdp = T18 - T1f; | ||
|  | 			 TaX = T14 - T17; | ||
|  | 			 Tb0 = TaY - TaZ; | ||
|  | 			 Tb1 = TaX + Tb0; | ||
|  | 			 Tcm = TaX - Tb0; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tdk, Tdl, T4e, T4p; | ||
|  | 			 Tdk = TaH + TaI; | ||
|  | 			 Tdl = TaY + TaZ; | ||
|  | 			 Tdm = Tdk - Tdl; | ||
|  | 			 Tej = Tdk + Tdl; | ||
|  | 			 T4e = T4a + T4d; | ||
|  | 			 T4p = T4j - T4o; | ||
|  | 			 T4q = FNMS(KP707106781, T4p, T4e); | ||
|  | 			 T6R = FMA(KP707106781, T4p, T4e); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4T, T4W, T8d, T8e; | ||
|  | 			 T4T = T4P - T4S; | ||
|  | 			 T4W = T4U - T4V; | ||
|  | 			 T4X = FNMS(KP707106781, T4W, T4T); | ||
|  | 			 T6O = FMA(KP707106781, T4W, T4T); | ||
|  | 			 T8d = T4P + T4S; | ||
|  | 			 T8e = T4j + T4o; | ||
|  | 			 T8f = FMA(KP707106781, T8e, T8d); | ||
|  | 			 T9s = FNMS(KP707106781, T8e, T8d); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TaG, TaJ, T82, T83; | ||
|  | 			 TaG = T1e - T1b; | ||
|  | 			 TaJ = TaH - TaI; | ||
|  | 			 TaK = TaG + TaJ; | ||
|  | 			 Tcp = TaJ - TaG; | ||
|  | 			 T82 = T4d - T4a; | ||
|  | 			 T83 = T4V + T4U; | ||
|  | 			 T84 = FMA(KP707106781, T83, T82); | ||
|  | 			 T9v = FNMS(KP707106781, T83, T82); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1j, TaL, T1m, TaM, T4G, T4L, TaO, TaN, T86, T85, T1q, TaR, T1t, TaS, T4v; | ||
|  | 		    E T4A, TaT, TaQ, T89, T88; | ||
|  | 		    { | ||
|  | 			 E T4C, T4K, T4H, T4F; | ||
|  | 			 { | ||
|  | 			      E T1h, T1i, T4I, T4J; | ||
|  | 			      T1h = ri[WS(is, 5)]; | ||
|  | 			      T1i = ri[WS(is, 37)]; | ||
|  | 			      T1j = T1h + T1i; | ||
|  | 			      T4C = T1h - T1i; | ||
|  | 			      T4I = ii[WS(is, 5)]; | ||
|  | 			      T4J = ii[WS(is, 37)]; | ||
|  | 			      T4K = T4I - T4J; | ||
|  | 			      TaL = T4I + T4J; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1k, T1l, T4D, T4E; | ||
|  | 			      T1k = ri[WS(is, 21)]; | ||
|  | 			      T1l = ri[WS(is, 53)]; | ||
|  | 			      T1m = T1k + T1l; | ||
|  | 			      T4H = T1k - T1l; | ||
|  | 			      T4D = ii[WS(is, 21)]; | ||
|  | 			      T4E = ii[WS(is, 53)]; | ||
|  | 			      T4F = T4D - T4E; | ||
|  | 			      TaM = T4D + T4E; | ||
|  | 			 } | ||
|  | 			 T4G = T4C - T4F; | ||
|  | 			 T4L = T4H + T4K; | ||
|  | 			 TaO = T1j - T1m; | ||
|  | 			 TaN = TaL - TaM; | ||
|  | 			 T86 = T4C + T4F; | ||
|  | 			 T85 = T4K - T4H; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4r, T4z, T4w, T4u; | ||
|  | 			 { | ||
|  | 			      E T1o, T1p, T4x, T4y; | ||
|  | 			      T1o = ri[WS(is, 61)]; | ||
|  | 			      T1p = ri[WS(is, 29)]; | ||
|  | 			      T1q = T1o + T1p; | ||
|  | 			      T4r = T1o - T1p; | ||
|  | 			      T4x = ii[WS(is, 61)]; | ||
|  | 			      T4y = ii[WS(is, 29)]; | ||
|  | 			      T4z = T4x - T4y; | ||
|  | 			      TaR = T4x + T4y; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1r, T1s, T4s, T4t; | ||
|  | 			      T1r = ri[WS(is, 13)]; | ||
|  | 			      T1s = ri[WS(is, 45)]; | ||
|  | 			      T1t = T1r + T1s; | ||
|  | 			      T4w = T1r - T1s; | ||
|  | 			      T4s = ii[WS(is, 13)]; | ||
|  | 			      T4t = ii[WS(is, 45)]; | ||
|  | 			      T4u = T4s - T4t; | ||
|  | 			      TaS = T4s + T4t; | ||
|  | 			 } | ||
|  | 			 T4v = T4r - T4u; | ||
|  | 			 T4A = T4w + T4z; | ||
|  | 			 TaT = TaR - TaS; | ||
|  | 			 TaQ = T1q - T1t; | ||
|  | 			 T89 = T4r + T4u; | ||
|  | 			 T88 = T4z - T4w; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1n, T1u, Tb2, Tb3; | ||
|  | 			 T1n = T1j + T1m; | ||
|  | 			 T1u = T1q + T1t; | ||
|  | 			 T1v = T1n + T1u; | ||
|  | 			 Tdn = T1u - T1n; | ||
|  | 			 Tb2 = TaO + TaN; | ||
|  | 			 Tb3 = TaQ - TaT; | ||
|  | 			 Tb4 = Tb2 + Tb3; | ||
|  | 			 Tcq = Tb2 - Tb3; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tdq, Tdr, T4B, T4M; | ||
|  | 			 Tdq = TaL + TaM; | ||
|  | 			 Tdr = TaR + TaS; | ||
|  | 			 Tds = Tdq - Tdr; | ||
|  | 			 Tek = Tdq + Tdr; | ||
|  | 			 T4B = FMA(KP414213562, T4A, T4v); | ||
|  | 			 T4M = FNMS(KP414213562, T4L, T4G); | ||
|  | 			 T4N = T4B - T4M; | ||
|  | 			 T6P = T4M + T4B; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4Y, T4Z, T8g, T8h; | ||
|  | 			 T4Y = FMA(KP414213562, T4G, T4L); | ||
|  | 			 T4Z = FNMS(KP414213562, T4v, T4A); | ||
|  | 			 T50 = T4Y - T4Z; | ||
|  | 			 T6S = T4Y + T4Z; | ||
|  | 			 T8g = FMA(KP414213562, T85, T86); | ||
|  | 			 T8h = FNMS(KP414213562, T88, T89); | ||
|  | 			 T8i = T8g + T8h; | ||
|  | 			 T9w = T8g - T8h; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TaP, TaU, T87, T8a; | ||
|  | 			 TaP = TaN - TaO; | ||
|  | 			 TaU = TaQ + TaT; | ||
|  | 			 TaV = TaP + TaU; | ||
|  | 			 Tcn = TaU - TaP; | ||
|  | 			 T87 = FNMS(KP414213562, T86, T85); | ||
|  | 			 T8a = FMA(KP414213562, T89, T88); | ||
|  | 			 T8b = T87 + T8a; | ||
|  | 			 T9t = T8a - T87; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1O, Tbc, T1R, Tbd, T5z, T5E, Tbf, Tbe, T8p, T8o, T1V, Tbi, T1Y, Tbj, T5o; | ||
|  | 		    E T5t, Tbk, Tbh, T8s, T8r; | ||
|  | 		    { | ||
|  | 			 E T5v, T5D, T5A, T5y; | ||
|  | 			 { | ||
|  | 			      E T1M, T1N, T5B, T5C; | ||
|  | 			      T1M = ri[WS(is, 3)]; | ||
|  | 			      T1N = ri[WS(is, 35)]; | ||
|  | 			      T1O = T1M + T1N; | ||
|  | 			      T5v = T1M - T1N; | ||
|  | 			      T5B = ii[WS(is, 3)]; | ||
|  | 			      T5C = ii[WS(is, 35)]; | ||
|  | 			      T5D = T5B - T5C; | ||
|  | 			      Tbc = T5B + T5C; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1P, T1Q, T5w, T5x; | ||
|  | 			      T1P = ri[WS(is, 19)]; | ||
|  | 			      T1Q = ri[WS(is, 51)]; | ||
|  | 			      T1R = T1P + T1Q; | ||
|  | 			      T5A = T1P - T1Q; | ||
|  | 			      T5w = ii[WS(is, 19)]; | ||
|  | 			      T5x = ii[WS(is, 51)]; | ||
|  | 			      T5y = T5w - T5x; | ||
|  | 			      Tbd = T5w + T5x; | ||
|  | 			 } | ||
|  | 			 T5z = T5v - T5y; | ||
|  | 			 T5E = T5A + T5D; | ||
|  | 			 Tbf = T1O - T1R; | ||
|  | 			 Tbe = Tbc - Tbd; | ||
|  | 			 T8p = T5v + T5y; | ||
|  | 			 T8o = T5D - T5A; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5k, T5s, T5p, T5n; | ||
|  | 			 { | ||
|  | 			      E T1T, T1U, T5q, T5r; | ||
|  | 			      T1T = ri[WS(is, 59)]; | ||
|  | 			      T1U = ri[WS(is, 27)]; | ||
|  | 			      T1V = T1T + T1U; | ||
|  | 			      T5k = T1T - T1U; | ||
|  | 			      T5q = ii[WS(is, 59)]; | ||
|  | 			      T5r = ii[WS(is, 27)]; | ||
|  | 			      T5s = T5q - T5r; | ||
|  | 			      Tbi = T5q + T5r; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1W, T1X, T5l, T5m; | ||
|  | 			      T1W = ri[WS(is, 11)]; | ||
|  | 			      T1X = ri[WS(is, 43)]; | ||
|  | 			      T1Y = T1W + T1X; | ||
|  | 			      T5p = T1W - T1X; | ||
|  | 			      T5l = ii[WS(is, 11)]; | ||
|  | 			      T5m = ii[WS(is, 43)]; | ||
|  | 			      T5n = T5l - T5m; | ||
|  | 			      Tbj = T5l + T5m; | ||
|  | 			 } | ||
|  | 			 T5o = T5k - T5n; | ||
|  | 			 T5t = T5p + T5s; | ||
|  | 			 Tbk = Tbi - Tbj; | ||
|  | 			 Tbh = T1V - T1Y; | ||
|  | 			 T8s = T5k + T5n; | ||
|  | 			 T8r = T5s - T5p; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1S, T1Z, Tbt, Tbu; | ||
|  | 			 T1S = T1O + T1R; | ||
|  | 			 T1Z = T1V + T1Y; | ||
|  | 			 T20 = T1S + T1Z; | ||
|  | 			 Tdy = T1Z - T1S; | ||
|  | 			 Tbt = Tbf + Tbe; | ||
|  | 			 Tbu = Tbh - Tbk; | ||
|  | 			 Tbv = Tbt + Tbu; | ||
|  | 			 Tcx = Tbt - Tbu; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TdB, TdC, T5u, T5F; | ||
|  | 			 TdB = Tbc + Tbd; | ||
|  | 			 TdC = Tbi + Tbj; | ||
|  | 			 TdD = TdB - TdC; | ||
|  | 			 Tep = TdB + TdC; | ||
|  | 			 T5u = FMA(KP414213562, T5t, T5o); | ||
|  | 			 T5F = FNMS(KP414213562, T5E, T5z); | ||
|  | 			 T5G = T5u - T5F; | ||
|  | 			 T6W = T5F + T5u; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5R, T5S, T8z, T8A; | ||
|  | 			 T5R = FMA(KP414213562, T5z, T5E); | ||
|  | 			 T5S = FNMS(KP414213562, T5o, T5t); | ||
|  | 			 T5T = T5R - T5S; | ||
|  | 			 T6Z = T5R + T5S; | ||
|  | 			 T8z = FMA(KP414213562, T8o, T8p); | ||
|  | 			 T8A = FNMS(KP414213562, T8r, T8s); | ||
|  | 			 T8B = T8z + T8A; | ||
|  | 			 T9D = T8z - T8A; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tbg, Tbl, T8q, T8t; | ||
|  | 			 Tbg = Tbe - Tbf; | ||
|  | 			 Tbl = Tbh + Tbk; | ||
|  | 			 Tbm = Tbg + Tbl; | ||
|  | 			 Tcu = Tbl - Tbg; | ||
|  | 			 T8q = FNMS(KP414213562, T8p, T8o); | ||
|  | 			 T8t = FMA(KP414213562, T8s, T8r); | ||
|  | 			 T8u = T8q + T8t; | ||
|  | 			 T9A = T8t - T8q; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T11, TeD, TeG, TeI, T22, T23, T34, TeH; | ||
|  | 		    { | ||
|  | 			 E Tv, T10, TeE, TeF; | ||
|  | 			 Tv = Tf + Tu; | ||
|  | 			 T10 = TK + TZ; | ||
|  | 			 T11 = Tv + T10; | ||
|  | 			 TeD = Tv - T10; | ||
|  | 			 TeE = Tej + Tek; | ||
|  | 			 TeF = Teo + Tep; | ||
|  | 			 TeG = TeE - TeF; | ||
|  | 			 TeI = TeE + TeF; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1w, T21, T2y, T33; | ||
|  | 			 T1w = T1g + T1v; | ||
|  | 			 T21 = T1L + T20; | ||
|  | 			 T22 = T1w + T21; | ||
|  | 			 T23 = T21 - T1w; | ||
|  | 			 T2y = T2i + T2x; | ||
|  | 			 T33 = T2N + T32; | ||
|  | 			 T34 = T2y - T33; | ||
|  | 			 TeH = T2y + T33; | ||
|  | 		    } | ||
|  | 		    ro[WS(os, 32)] = T11 - T22; | ||
|  | 		    io[WS(os, 32)] = TeH - TeI; | ||
|  | 		    ro[0] = T11 + T22; | ||
|  | 		    io[0] = TeH + TeI; | ||
|  | 		    io[WS(os, 16)] = T23 + T34; | ||
|  | 		    ro[WS(os, 16)] = TeD + TeG; | ||
|  | 		    io[WS(os, 48)] = T34 - T23; | ||
|  | 		    ro[WS(os, 48)] = TeD - TeG; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Teh, Tex, Tev, TeB, Tem, Tey, Ter, Tez; | ||
|  | 		    { | ||
|  | 			 E Tef, Teg, Tet, Teu; | ||
|  | 			 Tef = Tf - Tu; | ||
|  | 			 Teg = T2N - T32; | ||
|  | 			 Teh = Tef + Teg; | ||
|  | 			 Tex = Tef - Teg; | ||
|  | 			 Tet = T2i - T2x; | ||
|  | 			 Teu = TZ - TK; | ||
|  | 			 Tev = Tet - Teu; | ||
|  | 			 TeB = Teu + Tet; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tei, Tel, Ten, Teq; | ||
|  | 			 Tei = T1g - T1v; | ||
|  | 			 Tel = Tej - Tek; | ||
|  | 			 Tem = Tei + Tel; | ||
|  | 			 Tey = Tel - Tei; | ||
|  | 			 Ten = T1L - T20; | ||
|  | 			 Teq = Teo - Tep; | ||
|  | 			 Ter = Ten - Teq; | ||
|  | 			 Tez = Ten + Teq; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tes, TeC, Tew, TeA; | ||
|  | 			 Tes = Tem + Ter; | ||
|  | 			 ro[WS(os, 40)] = FNMS(KP707106781, Tes, Teh); | ||
|  | 			 ro[WS(os, 8)] = FMA(KP707106781, Tes, Teh); | ||
|  | 			 TeC = Tey + Tez; | ||
|  | 			 io[WS(os, 40)] = FNMS(KP707106781, TeC, TeB); | ||
|  | 			 io[WS(os, 8)] = FMA(KP707106781, TeC, TeB); | ||
|  | 			 Tew = Ter - Tem; | ||
|  | 			 io[WS(os, 56)] = FNMS(KP707106781, Tew, Tev); | ||
|  | 			 io[WS(os, 24)] = FMA(KP707106781, Tew, Tev); | ||
|  | 			 TeA = Tey - Tez; | ||
|  | 			 ro[WS(os, 56)] = FNMS(KP707106781, TeA, Tex); | ||
|  | 			 ro[WS(os, 24)] = FMA(KP707106781, TeA, Tex); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tdb, TdV, Te5, TdJ, Tdi, Te6, Te3, Teb, TdM, TdW, Tdu, TdR, Te0, Tea, TdF; | ||
|  | 		    E TdQ; | ||
|  | 		    { | ||
|  | 			 E Tde, Tdh, Tdo, Tdt; | ||
|  | 			 Tdb = Td9 - Tda; | ||
|  | 			 TdV = Td9 + Tda; | ||
|  | 			 Te5 = TdI + TdH; | ||
|  | 			 TdJ = TdH - TdI; | ||
|  | 			 Tde = Tdc - Tdd; | ||
|  | 			 Tdh = Tdf + Tdg; | ||
|  | 			 Tdi = Tde - Tdh; | ||
|  | 			 Te6 = Tde + Tdh; | ||
|  | 			 { | ||
|  | 			      E Te1, Te2, TdK, TdL; | ||
|  | 			      Te1 = TdA + TdD; | ||
|  | 			      Te2 = Tdy + Tdx; | ||
|  | 			      Te3 = FNMS(KP414213562, Te2, Te1); | ||
|  | 			      Teb = FMA(KP414213562, Te1, Te2); | ||
|  | 			      TdK = Tdf - Tdg; | ||
|  | 			      TdL = Tdd + Tdc; | ||
|  | 			      TdM = TdK - TdL; | ||
|  | 			      TdW = TdL + TdK; | ||
|  | 			 } | ||
|  | 			 Tdo = Tdm - Tdn; | ||
|  | 			 Tdt = Tdp - Tds; | ||
|  | 			 Tdu = FMA(KP414213562, Tdt, Tdo); | ||
|  | 			 TdR = FNMS(KP414213562, Tdo, Tdt); | ||
|  | 			 { | ||
|  | 			      E TdY, TdZ, Tdz, TdE; | ||
|  | 			      TdY = Tdp + Tds; | ||
|  | 			      TdZ = Tdn + Tdm; | ||
|  | 			      Te0 = FMA(KP414213562, TdZ, TdY); | ||
|  | 			      Tea = FNMS(KP414213562, TdY, TdZ); | ||
|  | 			      Tdz = Tdx - Tdy; | ||
|  | 			      TdE = TdA - TdD; | ||
|  | 			      TdF = FNMS(KP414213562, TdE, Tdz); | ||
|  | 			      TdQ = FMA(KP414213562, Tdz, TdE); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tdj, TdG, TdP, TdS; | ||
|  | 			 Tdj = FMA(KP707106781, Tdi, Tdb); | ||
|  | 			 TdG = Tdu - TdF; | ||
|  | 			 ro[WS(os, 44)] = FNMS(KP923879532, TdG, Tdj); | ||
|  | 			 ro[WS(os, 12)] = FMA(KP923879532, TdG, Tdj); | ||
|  | 			 TdP = FMA(KP707106781, TdM, TdJ); | ||
|  | 			 TdS = TdQ - TdR; | ||
|  | 			 io[WS(os, 44)] = FNMS(KP923879532, TdS, TdP); | ||
|  | 			 io[WS(os, 12)] = FMA(KP923879532, TdS, TdP); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TdN, TdO, TdT, TdU; | ||
|  | 			 TdN = FNMS(KP707106781, TdM, TdJ); | ||
|  | 			 TdO = Tdu + TdF; | ||
|  | 			 io[WS(os, 28)] = FNMS(KP923879532, TdO, TdN); | ||
|  | 			 io[WS(os, 60)] = FMA(KP923879532, TdO, TdN); | ||
|  | 			 TdT = FNMS(KP707106781, Tdi, Tdb); | ||
|  | 			 TdU = TdR + TdQ; | ||
|  | 			 ro[WS(os, 28)] = FNMS(KP923879532, TdU, TdT); | ||
|  | 			 ro[WS(os, 60)] = FMA(KP923879532, TdU, TdT); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TdX, Te4, Ted, Tee; | ||
|  | 			 TdX = FMA(KP707106781, TdW, TdV); | ||
|  | 			 Te4 = Te0 + Te3; | ||
|  | 			 ro[WS(os, 36)] = FNMS(KP923879532, Te4, TdX); | ||
|  | 			 ro[WS(os, 4)] = FMA(KP923879532, Te4, TdX); | ||
|  | 			 Ted = FMA(KP707106781, Te6, Te5); | ||
|  | 			 Tee = Tea + Teb; | ||
|  | 			 io[WS(os, 36)] = FNMS(KP923879532, Tee, Ted); | ||
|  | 			 io[WS(os, 4)] = FMA(KP923879532, Tee, Ted); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Te7, Te8, Te9, Tec; | ||
|  | 			 Te7 = FNMS(KP707106781, Te6, Te5); | ||
|  | 			 Te8 = Te3 - Te0; | ||
|  | 			 io[WS(os, 52)] = FNMS(KP923879532, Te8, Te7); | ||
|  | 			 io[WS(os, 20)] = FMA(KP923879532, Te8, Te7); | ||
|  | 			 Te9 = FNMS(KP707106781, TdW, TdV); | ||
|  | 			 Tec = Tea - Teb; | ||
|  | 			 ro[WS(os, 52)] = FNMS(KP923879532, Tec, Te9); | ||
|  | 			 ro[WS(os, 20)] = FMA(KP923879532, Tec, Te9); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tcd, TcP, TcD, TcZ, Tck, Td0, TcX, Td4, Tcs, TcK, TcG, TcQ, TcU, Td5, Tcz; | ||
|  | 		    E TcL, Tcc, TcC; | ||
|  | 		    Tcc = TbC - TbD; | ||
|  | 		    Tcd = FMA(KP707106781, Tcc, Tcb); | ||
|  | 		    TcP = FNMS(KP707106781, Tcc, Tcb); | ||
|  | 		    TcC = Tan - Tak; | ||
|  | 		    TcD = FMA(KP707106781, TcC, TcB); | ||
|  | 		    TcZ = FNMS(KP707106781, TcC, TcB); | ||
|  | 		    { | ||
|  | 			 E Tcg, Tcj, TcV, TcW; | ||
|  | 			 Tcg = FMA(KP414213562, Tcf, Tce); | ||
|  | 			 Tcj = FNMS(KP414213562, Tci, Tch); | ||
|  | 			 Tck = Tcg - Tcj; | ||
|  | 			 Td0 = Tcg + Tcj; | ||
|  | 			 TcV = FMA(KP707106781, Tcx, Tcw); | ||
|  | 			 TcW = FMA(KP707106781, Tcu, Tct); | ||
|  | 			 TcX = FNMS(KP198912367, TcW, TcV); | ||
|  | 			 Td4 = FMA(KP198912367, TcV, TcW); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tco, Tcr, TcE, TcF; | ||
|  | 			 Tco = FNMS(KP707106781, Tcn, Tcm); | ||
|  | 			 Tcr = FNMS(KP707106781, Tcq, Tcp); | ||
|  | 			 Tcs = FMA(KP668178637, Tcr, Tco); | ||
|  | 			 TcK = FNMS(KP668178637, Tco, Tcr); | ||
|  | 			 TcE = FMA(KP414213562, Tch, Tci); | ||
|  | 			 TcF = FNMS(KP414213562, Tce, Tcf); | ||
|  | 			 TcG = TcE - TcF; | ||
|  | 			 TcQ = TcF + TcE; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TcS, TcT, Tcv, Tcy; | ||
|  | 			 TcS = FMA(KP707106781, Tcq, Tcp); | ||
|  | 			 TcT = FMA(KP707106781, Tcn, Tcm); | ||
|  | 			 TcU = FMA(KP198912367, TcT, TcS); | ||
|  | 			 Td5 = FNMS(KP198912367, TcS, TcT); | ||
|  | 			 Tcv = FNMS(KP707106781, Tcu, Tct); | ||
|  | 			 Tcy = FNMS(KP707106781, Tcx, Tcw); | ||
|  | 			 Tcz = FNMS(KP668178637, Tcy, Tcv); | ||
|  | 			 TcL = FMA(KP668178637, Tcv, Tcy); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tcl, TcA, TcN, TcO; | ||
|  | 			 Tcl = FMA(KP923879532, Tck, Tcd); | ||
|  | 			 TcA = Tcs + Tcz; | ||
|  | 			 ro[WS(os, 38)] = FNMS(KP831469612, TcA, Tcl); | ||
|  | 			 ro[WS(os, 6)] = FMA(KP831469612, TcA, Tcl); | ||
|  | 			 TcN = FMA(KP923879532, TcG, TcD); | ||
|  | 			 TcO = TcK + TcL; | ||
|  | 			 io[WS(os, 38)] = FNMS(KP831469612, TcO, TcN); | ||
|  | 			 io[WS(os, 6)] = FMA(KP831469612, TcO, TcN); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TcH, TcI, TcJ, TcM; | ||
|  | 			 TcH = FNMS(KP923879532, TcG, TcD); | ||
|  | 			 TcI = Tcz - Tcs; | ||
|  | 			 io[WS(os, 54)] = FNMS(KP831469612, TcI, TcH); | ||
|  | 			 io[WS(os, 22)] = FMA(KP831469612, TcI, TcH); | ||
|  | 			 TcJ = FNMS(KP923879532, Tck, Tcd); | ||
|  | 			 TcM = TcK - TcL; | ||
|  | 			 ro[WS(os, 54)] = FNMS(KP831469612, TcM, TcJ); | ||
|  | 			 ro[WS(os, 22)] = FMA(KP831469612, TcM, TcJ); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TcR, TcY, Td3, Td6; | ||
|  | 			 TcR = FNMS(KP923879532, TcQ, TcP); | ||
|  | 			 TcY = TcU - TcX; | ||
|  | 			 ro[WS(os, 46)] = FNMS(KP980785280, TcY, TcR); | ||
|  | 			 ro[WS(os, 14)] = FMA(KP980785280, TcY, TcR); | ||
|  | 			 Td3 = FNMS(KP923879532, Td0, TcZ); | ||
|  | 			 Td6 = Td4 - Td5; | ||
|  | 			 io[WS(os, 46)] = FNMS(KP980785280, Td6, Td3); | ||
|  | 			 io[WS(os, 14)] = FMA(KP980785280, Td6, Td3); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Td1, Td2, Td7, Td8; | ||
|  | 			 Td1 = FMA(KP923879532, Td0, TcZ); | ||
|  | 			 Td2 = TcU + TcX; | ||
|  | 			 io[WS(os, 30)] = FNMS(KP980785280, Td2, Td1); | ||
|  | 			 io[WS(os, 62)] = FMA(KP980785280, Td2, Td1); | ||
|  | 			 Td7 = FMA(KP923879532, TcQ, TcP); | ||
|  | 			 Td8 = Td5 + Td4; | ||
|  | 			 ro[WS(os, 30)] = FNMS(KP980785280, Td8, Td7); | ||
|  | 			 ro[WS(os, 62)] = FMA(KP980785280, Td8, Td7); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tap, TbR, TbF, Tc1, TaE, Tc2, TbZ, Tc7, Tb6, TbN, TbI, TbS, TbW, Tc6, Tbx; | ||
|  | 		    E TbM, Tao, TbE; | ||
|  | 		    Tao = Tak + Tan; | ||
|  | 		    Tap = FNMS(KP707106781, Tao, Tah); | ||
|  | 		    TbR = FMA(KP707106781, Tao, Tah); | ||
|  | 		    TbE = TbC + TbD; | ||
|  | 		    TbF = FNMS(KP707106781, TbE, TbB); | ||
|  | 		    Tc1 = FMA(KP707106781, TbE, TbB); | ||
|  | 		    { | ||
|  | 			 E Taw, TaD, TbX, TbY; | ||
|  | 			 Taw = FNMS(KP414213562, Tav, Tas); | ||
|  | 			 TaD = FMA(KP414213562, TaC, Taz); | ||
|  | 			 TaE = Taw - TaD; | ||
|  | 			 Tc2 = Taw + TaD; | ||
|  | 			 TbX = FMA(KP707106781, Tbv, Tbs); | ||
|  | 			 TbY = FMA(KP707106781, Tbm, Tbb); | ||
|  | 			 TbZ = FNMS(KP198912367, TbY, TbX); | ||
|  | 			 Tc7 = FMA(KP198912367, TbX, TbY); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TaW, Tb5, TbG, TbH; | ||
|  | 			 TaW = FNMS(KP707106781, TaV, TaK); | ||
|  | 			 Tb5 = FNMS(KP707106781, Tb4, Tb1); | ||
|  | 			 Tb6 = FMA(KP668178637, Tb5, TaW); | ||
|  | 			 TbN = FNMS(KP668178637, TaW, Tb5); | ||
|  | 			 TbG = FNMS(KP414213562, Taz, TaC); | ||
|  | 			 TbH = FMA(KP414213562, Tas, Tav); | ||
|  | 			 TbI = TbG - TbH; | ||
|  | 			 TbS = TbH + TbG; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TbU, TbV, Tbn, Tbw; | ||
|  | 			 TbU = FMA(KP707106781, Tb4, Tb1); | ||
|  | 			 TbV = FMA(KP707106781, TaV, TaK); | ||
|  | 			 TbW = FMA(KP198912367, TbV, TbU); | ||
|  | 			 Tc6 = FNMS(KP198912367, TbU, TbV); | ||
|  | 			 Tbn = FNMS(KP707106781, Tbm, Tbb); | ||
|  | 			 Tbw = FNMS(KP707106781, Tbv, Tbs); | ||
|  | 			 Tbx = FNMS(KP668178637, Tbw, Tbn); | ||
|  | 			 TbM = FMA(KP668178637, Tbn, Tbw); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TaF, Tby, TbL, TbO; | ||
|  | 			 TaF = FMA(KP923879532, TaE, Tap); | ||
|  | 			 Tby = Tb6 - Tbx; | ||
|  | 			 ro[WS(os, 42)] = FNMS(KP831469612, Tby, TaF); | ||
|  | 			 ro[WS(os, 10)] = FMA(KP831469612, Tby, TaF); | ||
|  | 			 TbL = FMA(KP923879532, TbI, TbF); | ||
|  | 			 TbO = TbM - TbN; | ||
|  | 			 io[WS(os, 42)] = FNMS(KP831469612, TbO, TbL); | ||
|  | 			 io[WS(os, 10)] = FMA(KP831469612, TbO, TbL); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TbJ, TbK, TbP, TbQ; | ||
|  | 			 TbJ = FNMS(KP923879532, TbI, TbF); | ||
|  | 			 TbK = Tb6 + Tbx; | ||
|  | 			 io[WS(os, 26)] = FNMS(KP831469612, TbK, TbJ); | ||
|  | 			 io[WS(os, 58)] = FMA(KP831469612, TbK, TbJ); | ||
|  | 			 TbP = FNMS(KP923879532, TaE, Tap); | ||
|  | 			 TbQ = TbN + TbM; | ||
|  | 			 ro[WS(os, 26)] = FNMS(KP831469612, TbQ, TbP); | ||
|  | 			 ro[WS(os, 58)] = FMA(KP831469612, TbQ, TbP); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TbT, Tc0, Tc9, Tca; | ||
|  | 			 TbT = FMA(KP923879532, TbS, TbR); | ||
|  | 			 Tc0 = TbW + TbZ; | ||
|  | 			 ro[WS(os, 34)] = FNMS(KP980785280, Tc0, TbT); | ||
|  | 			 ro[WS(os, 2)] = FMA(KP980785280, Tc0, TbT); | ||
|  | 			 Tc9 = FMA(KP923879532, Tc2, Tc1); | ||
|  | 			 Tca = Tc6 + Tc7; | ||
|  | 			 io[WS(os, 34)] = FNMS(KP980785280, Tca, Tc9); | ||
|  | 			 io[WS(os, 2)] = FMA(KP980785280, Tca, Tc9); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tc3, Tc4, Tc5, Tc8; | ||
|  | 			 Tc3 = FNMS(KP923879532, Tc2, Tc1); | ||
|  | 			 Tc4 = TbZ - TbW; | ||
|  | 			 io[WS(os, 50)] = FNMS(KP980785280, Tc4, Tc3); | ||
|  | 			 io[WS(os, 18)] = FMA(KP980785280, Tc4, Tc3); | ||
|  | 			 Tc5 = FNMS(KP923879532, TbS, TbR); | ||
|  | 			 Tc8 = Tc6 - Tc7; | ||
|  | 			 ro[WS(os, 50)] = FNMS(KP980785280, Tc8, Tc5); | ||
|  | 			 ro[WS(os, 18)] = FMA(KP980785280, Tc8, Tc5); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6F, T7h, T7m, T7x, T7p, T7w, T6M, T7s, T6U, T7c, T75, T7r, T78, T7i, T71; | ||
|  | 		    E T7d; | ||
|  | 		    { | ||
|  | 			 E T6D, T6E, T7k, T7l; | ||
|  | 			 T6D = FNMS(KP707106781, T3e, T37); | ||
|  | 			 T6E = T65 + T64; | ||
|  | 			 T6F = FNMS(KP923879532, T6E, T6D); | ||
|  | 			 T7h = FMA(KP923879532, T6E, T6D); | ||
|  | 			 T7k = FMA(KP923879532, T6S, T6R); | ||
|  | 			 T7l = FMA(KP923879532, T6P, T6O); | ||
|  | 			 T7m = FMA(KP098491403, T7l, T7k); | ||
|  | 			 T7x = FNMS(KP098491403, T7k, T7l); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7n, T7o, T6I, T6L; | ||
|  | 			 T7n = FMA(KP923879532, T6Z, T6Y); | ||
|  | 			 T7o = FMA(KP923879532, T6W, T6V); | ||
|  | 			 T7p = FNMS(KP098491403, T7o, T7n); | ||
|  | 			 T7w = FMA(KP098491403, T7n, T7o); | ||
|  | 			 T6I = FMA(KP198912367, T6H, T6G); | ||
|  | 			 T6L = FNMS(KP198912367, T6K, T6J); | ||
|  | 			 T6M = T6I - T6L; | ||
|  | 			 T7s = T6I + T6L; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6Q, T6T, T73, T74; | ||
|  | 			 T6Q = FNMS(KP923879532, T6P, T6O); | ||
|  | 			 T6T = FNMS(KP923879532, T6S, T6R); | ||
|  | 			 T6U = FMA(KP820678790, T6T, T6Q); | ||
|  | 			 T7c = FNMS(KP820678790, T6Q, T6T); | ||
|  | 			 T73 = FNMS(KP707106781, T62, T5Z); | ||
|  | 			 T74 = T3m + T3t; | ||
|  | 			 T75 = FNMS(KP923879532, T74, T73); | ||
|  | 			 T7r = FMA(KP923879532, T74, T73); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T76, T77, T6X, T70; | ||
|  | 			 T76 = FMA(KP198912367, T6J, T6K); | ||
|  | 			 T77 = FNMS(KP198912367, T6G, T6H); | ||
|  | 			 T78 = T76 - T77; | ||
|  | 			 T7i = T77 + T76; | ||
|  | 			 T6X = FNMS(KP923879532, T6W, T6V); | ||
|  | 			 T70 = FNMS(KP923879532, T6Z, T6Y); | ||
|  | 			 T71 = FNMS(KP820678790, T70, T6X); | ||
|  | 			 T7d = FMA(KP820678790, T6X, T70); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6N, T72, T7f, T7g; | ||
|  | 			 T6N = FMA(KP980785280, T6M, T6F); | ||
|  | 			 T72 = T6U + T71; | ||
|  | 			 ro[WS(os, 39)] = FNMS(KP773010453, T72, T6N); | ||
|  | 			 ro[WS(os, 7)] = FMA(KP773010453, T72, T6N); | ||
|  | 			 T7f = FMA(KP980785280, T78, T75); | ||
|  | 			 T7g = T7c + T7d; | ||
|  | 			 io[WS(os, 39)] = FNMS(KP773010453, T7g, T7f); | ||
|  | 			 io[WS(os, 7)] = FMA(KP773010453, T7g, T7f); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T79, T7a, T7b, T7e; | ||
|  | 			 T79 = FNMS(KP980785280, T78, T75); | ||
|  | 			 T7a = T71 - T6U; | ||
|  | 			 io[WS(os, 55)] = FNMS(KP773010453, T7a, T79); | ||
|  | 			 io[WS(os, 23)] = FMA(KP773010453, T7a, T79); | ||
|  | 			 T7b = FNMS(KP980785280, T6M, T6F); | ||
|  | 			 T7e = T7c - T7d; | ||
|  | 			 ro[WS(os, 55)] = FNMS(KP773010453, T7e, T7b); | ||
|  | 			 ro[WS(os, 23)] = FMA(KP773010453, T7e, T7b); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7j, T7q, T7v, T7y; | ||
|  | 			 T7j = FNMS(KP980785280, T7i, T7h); | ||
|  | 			 T7q = T7m - T7p; | ||
|  | 			 ro[WS(os, 47)] = FNMS(KP995184726, T7q, T7j); | ||
|  | 			 ro[WS(os, 15)] = FMA(KP995184726, T7q, T7j); | ||
|  | 			 T7v = FNMS(KP980785280, T7s, T7r); | ||
|  | 			 T7y = T7w - T7x; | ||
|  | 			 io[WS(os, 47)] = FNMS(KP995184726, T7y, T7v); | ||
|  | 			 io[WS(os, 15)] = FMA(KP995184726, T7y, T7v); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7t, T7u, T7z, T7A; | ||
|  | 			 T7t = FMA(KP980785280, T7s, T7r); | ||
|  | 			 T7u = T7m + T7p; | ||
|  | 			 io[WS(os, 31)] = FNMS(KP995184726, T7u, T7t); | ||
|  | 			 io[WS(os, 63)] = FMA(KP995184726, T7u, T7t); | ||
|  | 			 T7z = FMA(KP980785280, T7i, T7h); | ||
|  | 			 T7A = T7x + T7w; | ||
|  | 			 ro[WS(os, 31)] = FNMS(KP995184726, T7A, T7z); | ||
|  | 			 ro[WS(os, 63)] = FMA(KP995184726, T7A, T7z); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T9j, T9V, Ta0, Tab, Ta3, Taa, T9q, Ta6, T9y, T9Q, T9J, Ta5, T9M, T9W, T9F; | ||
|  | 		    E T9R; | ||
|  | 		    { | ||
|  | 			 E T9h, T9i, T9Y, T9Z; | ||
|  | 			 T9h = FNMS(KP707106781, T7C, T7B); | ||
|  | 			 T9i = T8I - T8J; | ||
|  | 			 T9j = FMA(KP923879532, T9i, T9h); | ||
|  | 			 T9V = FNMS(KP923879532, T9i, T9h); | ||
|  | 			 T9Y = FMA(KP923879532, T9w, T9v); | ||
|  | 			 T9Z = FMA(KP923879532, T9t, T9s); | ||
|  | 			 Ta0 = FMA(KP303346683, T9Z, T9Y); | ||
|  | 			 Tab = FNMS(KP303346683, T9Y, T9Z); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Ta1, Ta2, T9m, T9p; | ||
|  | 			 Ta1 = FMA(KP923879532, T9D, T9C); | ||
|  | 			 Ta2 = FMA(KP923879532, T9A, T9z); | ||
|  | 			 Ta3 = FNMS(KP303346683, Ta2, Ta1); | ||
|  | 			 Taa = FMA(KP303346683, Ta1, Ta2); | ||
|  | 			 T9m = FMA(KP668178637, T9l, T9k); | ||
|  | 			 T9p = FNMS(KP668178637, T9o, T9n); | ||
|  | 			 T9q = T9m - T9p; | ||
|  | 			 Ta6 = T9m + T9p; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9u, T9x, T9H, T9I; | ||
|  | 			 T9u = FNMS(KP923879532, T9t, T9s); | ||
|  | 			 T9x = FNMS(KP923879532, T9w, T9v); | ||
|  | 			 T9y = FMA(KP534511135, T9x, T9u); | ||
|  | 			 T9Q = FNMS(KP534511135, T9u, T9x); | ||
|  | 			 T9H = FNMS(KP707106781, T8G, T8F); | ||
|  | 			 T9I = T7J - T7G; | ||
|  | 			 T9J = FMA(KP923879532, T9I, T9H); | ||
|  | 			 Ta5 = FNMS(KP923879532, T9I, T9H); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9K, T9L, T9B, T9E; | ||
|  | 			 T9K = FMA(KP668178637, T9n, T9o); | ||
|  | 			 T9L = FNMS(KP668178637, T9k, T9l); | ||
|  | 			 T9M = T9K - T9L; | ||
|  | 			 T9W = T9L + T9K; | ||
|  | 			 T9B = FNMS(KP923879532, T9A, T9z); | ||
|  | 			 T9E = FNMS(KP923879532, T9D, T9C); | ||
|  | 			 T9F = FNMS(KP534511135, T9E, T9B); | ||
|  | 			 T9R = FMA(KP534511135, T9B, T9E); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9r, T9G, T9T, T9U; | ||
|  | 			 T9r = FMA(KP831469612, T9q, T9j); | ||
|  | 			 T9G = T9y + T9F; | ||
|  | 			 ro[WS(os, 37)] = FNMS(KP881921264, T9G, T9r); | ||
|  | 			 ro[WS(os, 5)] = FMA(KP881921264, T9G, T9r); | ||
|  | 			 T9T = FMA(KP831469612, T9M, T9J); | ||
|  | 			 T9U = T9Q + T9R; | ||
|  | 			 io[WS(os, 37)] = FNMS(KP881921264, T9U, T9T); | ||
|  | 			 io[WS(os, 5)] = FMA(KP881921264, T9U, T9T); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9N, T9O, T9P, T9S; | ||
|  | 			 T9N = FNMS(KP831469612, T9M, T9J); | ||
|  | 			 T9O = T9F - T9y; | ||
|  | 			 io[WS(os, 53)] = FNMS(KP881921264, T9O, T9N); | ||
|  | 			 io[WS(os, 21)] = FMA(KP881921264, T9O, T9N); | ||
|  | 			 T9P = FNMS(KP831469612, T9q, T9j); | ||
|  | 			 T9S = T9Q - T9R; | ||
|  | 			 ro[WS(os, 53)] = FNMS(KP881921264, T9S, T9P); | ||
|  | 			 ro[WS(os, 21)] = FMA(KP881921264, T9S, T9P); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9X, Ta4, Ta9, Tac; | ||
|  | 			 T9X = FNMS(KP831469612, T9W, T9V); | ||
|  | 			 Ta4 = Ta0 - Ta3; | ||
|  | 			 ro[WS(os, 45)] = FNMS(KP956940335, Ta4, T9X); | ||
|  | 			 ro[WS(os, 13)] = FMA(KP956940335, Ta4, T9X); | ||
|  | 			 Ta9 = FNMS(KP831469612, Ta6, Ta5); | ||
|  | 			 Tac = Taa - Tab; | ||
|  | 			 io[WS(os, 45)] = FNMS(KP956940335, Tac, Ta9); | ||
|  | 			 io[WS(os, 13)] = FMA(KP956940335, Tac, Ta9); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Ta7, Ta8, Tad, Tae; | ||
|  | 			 Ta7 = FMA(KP831469612, Ta6, Ta5); | ||
|  | 			 Ta8 = Ta0 + Ta3; | ||
|  | 			 io[WS(os, 29)] = FNMS(KP956940335, Ta8, Ta7); | ||
|  | 			 io[WS(os, 61)] = FMA(KP956940335, Ta8, Ta7); | ||
|  | 			 Tad = FMA(KP831469612, T9W, T9V); | ||
|  | 			 Tae = Tab + Taa; | ||
|  | 			 ro[WS(os, 29)] = FNMS(KP956940335, Tae, Tad); | ||
|  | 			 ro[WS(os, 61)] = FMA(KP956940335, Tae, Tad); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T3v, T6j, T6o, T6y, T6r, T6z, T48, T6u, T52, T6f, T67, T6t, T6a, T6k, T5V; | ||
|  | 		    E T6e; | ||
|  | 		    { | ||
|  | 			 E T3f, T3u, T6m, T6n; | ||
|  | 			 T3f = FMA(KP707106781, T3e, T37); | ||
|  | 			 T3u = T3m - T3t; | ||
|  | 			 T3v = FNMS(KP923879532, T3u, T3f); | ||
|  | 			 T6j = FMA(KP923879532, T3u, T3f); | ||
|  | 			 T6m = FMA(KP923879532, T50, T4X); | ||
|  | 			 T6n = FMA(KP923879532, T4N, T4q); | ||
|  | 			 T6o = FMA(KP303346683, T6n, T6m); | ||
|  | 			 T6y = FNMS(KP303346683, T6m, T6n); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6p, T6q, T3O, T47; | ||
|  | 			 T6p = FMA(KP923879532, T5T, T5Q); | ||
|  | 			 T6q = FMA(KP923879532, T5G, T5j); | ||
|  | 			 T6r = FNMS(KP303346683, T6q, T6p); | ||
|  | 			 T6z = FMA(KP303346683, T6p, T6q); | ||
|  | 			 T3O = FNMS(KP668178637, T3N, T3G); | ||
|  | 			 T47 = FMA(KP668178637, T46, T3Z); | ||
|  | 			 T48 = T3O - T47; | ||
|  | 			 T6u = T3O + T47; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4O, T51, T63, T66; | ||
|  | 			 T4O = FNMS(KP923879532, T4N, T4q); | ||
|  | 			 T51 = FNMS(KP923879532, T50, T4X); | ||
|  | 			 T52 = FMA(KP534511135, T51, T4O); | ||
|  | 			 T6f = FNMS(KP534511135, T4O, T51); | ||
|  | 			 T63 = FMA(KP707106781, T62, T5Z); | ||
|  | 			 T66 = T64 - T65; | ||
|  | 			 T67 = FNMS(KP923879532, T66, T63); | ||
|  | 			 T6t = FMA(KP923879532, T66, T63); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T68, T69, T5H, T5U; | ||
|  | 			 T68 = FNMS(KP668178637, T3Z, T46); | ||
|  | 			 T69 = FMA(KP668178637, T3G, T3N); | ||
|  | 			 T6a = T68 - T69; | ||
|  | 			 T6k = T69 + T68; | ||
|  | 			 T5H = FNMS(KP923879532, T5G, T5j); | ||
|  | 			 T5U = FNMS(KP923879532, T5T, T5Q); | ||
|  | 			 T5V = FNMS(KP534511135, T5U, T5H); | ||
|  | 			 T6e = FMA(KP534511135, T5H, T5U); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T49, T5W, T6d, T6g; | ||
|  | 			 T49 = FMA(KP831469612, T48, T3v); | ||
|  | 			 T5W = T52 - T5V; | ||
|  | 			 ro[WS(os, 43)] = FNMS(KP881921264, T5W, T49); | ||
|  | 			 ro[WS(os, 11)] = FMA(KP881921264, T5W, T49); | ||
|  | 			 T6d = FMA(KP831469612, T6a, T67); | ||
|  | 			 T6g = T6e - T6f; | ||
|  | 			 io[WS(os, 43)] = FNMS(KP881921264, T6g, T6d); | ||
|  | 			 io[WS(os, 11)] = FMA(KP881921264, T6g, T6d); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6b, T6c, T6h, T6i; | ||
|  | 			 T6b = FNMS(KP831469612, T6a, T67); | ||
|  | 			 T6c = T52 + T5V; | ||
|  | 			 io[WS(os, 27)] = FNMS(KP881921264, T6c, T6b); | ||
|  | 			 io[WS(os, 59)] = FMA(KP881921264, T6c, T6b); | ||
|  | 			 T6h = FNMS(KP831469612, T48, T3v); | ||
|  | 			 T6i = T6f + T6e; | ||
|  | 			 ro[WS(os, 27)] = FNMS(KP881921264, T6i, T6h); | ||
|  | 			 ro[WS(os, 59)] = FMA(KP881921264, T6i, T6h); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6l, T6s, T6B, T6C; | ||
|  | 			 T6l = FMA(KP831469612, T6k, T6j); | ||
|  | 			 T6s = T6o + T6r; | ||
|  | 			 ro[WS(os, 35)] = FNMS(KP956940335, T6s, T6l); | ||
|  | 			 ro[WS(os, 3)] = FMA(KP956940335, T6s, T6l); | ||
|  | 			 T6B = FMA(KP831469612, T6u, T6t); | ||
|  | 			 T6C = T6y + T6z; | ||
|  | 			 io[WS(os, 35)] = FNMS(KP956940335, T6C, T6B); | ||
|  | 			 io[WS(os, 3)] = FMA(KP956940335, T6C, T6B); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6v, T6w, T6x, T6A; | ||
|  | 			 T6v = FNMS(KP831469612, T6u, T6t); | ||
|  | 			 T6w = T6r - T6o; | ||
|  | 			 io[WS(os, 51)] = FNMS(KP956940335, T6w, T6v); | ||
|  | 			 io[WS(os, 19)] = FMA(KP956940335, T6w, T6v); | ||
|  | 			 T6x = FNMS(KP831469612, T6k, T6j); | ||
|  | 			 T6A = T6y - T6z; | ||
|  | 			 ro[WS(os, 51)] = FNMS(KP956940335, T6A, T6x); | ||
|  | 			 ro[WS(os, 19)] = FMA(KP956940335, T6A, T6x); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T7L, T8X, T92, T9c, T95, T9d, T80, T98, T8k, T8T, T8L, T97, T8O, T8Y, T8D; | ||
|  | 		    E T8S; | ||
|  | 		    { | ||
|  | 			 E T7D, T7K, T90, T91; | ||
|  | 			 T7D = FMA(KP707106781, T7C, T7B); | ||
|  | 			 T7K = T7G + T7J; | ||
|  | 			 T7L = FNMS(KP923879532, T7K, T7D); | ||
|  | 			 T8X = FMA(KP923879532, T7K, T7D); | ||
|  | 			 T90 = FMA(KP923879532, T8i, T8f); | ||
|  | 			 T91 = FMA(KP923879532, T8b, T84); | ||
|  | 			 T92 = FMA(KP098491403, T91, T90); | ||
|  | 			 T9c = FNMS(KP098491403, T90, T91); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T93, T94, T7S, T7Z; | ||
|  | 			 T93 = FMA(KP923879532, T8B, T8y); | ||
|  | 			 T94 = FMA(KP923879532, T8u, T8n); | ||
|  | 			 T95 = FNMS(KP098491403, T94, T93); | ||
|  | 			 T9d = FMA(KP098491403, T93, T94); | ||
|  | 			 T7S = FNMS(KP198912367, T7R, T7O); | ||
|  | 			 T7Z = FMA(KP198912367, T7Y, T7V); | ||
|  | 			 T80 = T7S - T7Z; | ||
|  | 			 T98 = T7S + T7Z; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8c, T8j, T8H, T8K; | ||
|  | 			 T8c = FNMS(KP923879532, T8b, T84); | ||
|  | 			 T8j = FNMS(KP923879532, T8i, T8f); | ||
|  | 			 T8k = FMA(KP820678790, T8j, T8c); | ||
|  | 			 T8T = FNMS(KP820678790, T8c, T8j); | ||
|  | 			 T8H = FMA(KP707106781, T8G, T8F); | ||
|  | 			 T8K = T8I + T8J; | ||
|  | 			 T8L = FNMS(KP923879532, T8K, T8H); | ||
|  | 			 T97 = FMA(KP923879532, T8K, T8H); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8M, T8N, T8v, T8C; | ||
|  | 			 T8M = FNMS(KP198912367, T7V, T7Y); | ||
|  | 			 T8N = FMA(KP198912367, T7O, T7R); | ||
|  | 			 T8O = T8M - T8N; | ||
|  | 			 T8Y = T8N + T8M; | ||
|  | 			 T8v = FNMS(KP923879532, T8u, T8n); | ||
|  | 			 T8C = FNMS(KP923879532, T8B, T8y); | ||
|  | 			 T8D = FNMS(KP820678790, T8C, T8v); | ||
|  | 			 T8S = FMA(KP820678790, T8v, T8C); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T81, T8E, T8R, T8U; | ||
|  | 			 T81 = FMA(KP980785280, T80, T7L); | ||
|  | 			 T8E = T8k - T8D; | ||
|  | 			 ro[WS(os, 41)] = FNMS(KP773010453, T8E, T81); | ||
|  | 			 ro[WS(os, 9)] = FMA(KP773010453, T8E, T81); | ||
|  | 			 T8R = FMA(KP980785280, T8O, T8L); | ||
|  | 			 T8U = T8S - T8T; | ||
|  | 			 io[WS(os, 41)] = FNMS(KP773010453, T8U, T8R); | ||
|  | 			 io[WS(os, 9)] = FMA(KP773010453, T8U, T8R); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8P, T8Q, T8V, T8W; | ||
|  | 			 T8P = FNMS(KP980785280, T8O, T8L); | ||
|  | 			 T8Q = T8k + T8D; | ||
|  | 			 io[WS(os, 25)] = FNMS(KP773010453, T8Q, T8P); | ||
|  | 			 io[WS(os, 57)] = FMA(KP773010453, T8Q, T8P); | ||
|  | 			 T8V = FNMS(KP980785280, T80, T7L); | ||
|  | 			 T8W = T8T + T8S; | ||
|  | 			 ro[WS(os, 25)] = FNMS(KP773010453, T8W, T8V); | ||
|  | 			 ro[WS(os, 57)] = FMA(KP773010453, T8W, T8V); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8Z, T96, T9f, T9g; | ||
|  | 			 T8Z = FMA(KP980785280, T8Y, T8X); | ||
|  | 			 T96 = T92 + T95; | ||
|  | 			 ro[WS(os, 33)] = FNMS(KP995184726, T96, T8Z); | ||
|  | 			 ro[WS(os, 1)] = FMA(KP995184726, T96, T8Z); | ||
|  | 			 T9f = FMA(KP980785280, T98, T97); | ||
|  | 			 T9g = T9c + T9d; | ||
|  | 			 io[WS(os, 33)] = FNMS(KP995184726, T9g, T9f); | ||
|  | 			 io[WS(os, 1)] = FMA(KP995184726, T9g, T9f); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T99, T9a, T9b, T9e; | ||
|  | 			 T99 = FNMS(KP980785280, T98, T97); | ||
|  | 			 T9a = T95 - T92; | ||
|  | 			 io[WS(os, 49)] = FNMS(KP995184726, T9a, T99); | ||
|  | 			 io[WS(os, 17)] = FMA(KP995184726, T9a, T99); | ||
|  | 			 T9b = FNMS(KP980785280, T8Y, T8X); | ||
|  | 			 T9e = T9c - T9d; | ||
|  | 			 ro[WS(os, 49)] = FNMS(KP995184726, T9e, T9b); | ||
|  | 			 ro[WS(os, 17)] = FMA(KP995184726, T9e, T9b); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kdft_desc desc = { 64, "n1_64", { 520, 0, 392, 0 }, &GENUS, 0, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void X(codelet_n1_64) (planner *p) { X(kdft_register) (p, n1_64, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 64 -name n1_64 -include dft/scalar/n.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 912 FP additions, 248 FP multiplications, | ||
|  |  * (or, 808 additions, 144 multiplications, 104 fused multiply/add), | ||
|  |  * 172 stack variables, 15 constants, and 256 memory accesses | ||
|  |  */ | ||
|  | #include "dft/scalar/n.h"
 | ||
|  | 
 | ||
|  | static void n1_64(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP773010453, +0.773010453362736960810906609758469800971041293); | ||
|  |      DK(KP634393284, +0.634393284163645498215171613225493370675687095); | ||
|  |      DK(KP098017140, +0.098017140329560601994195563888641845861136673); | ||
|  |      DK(KP995184726, +0.995184726672196886244836953109479921575474869); | ||
|  |      DK(KP881921264, +0.881921264348355029712756863660388349508442621); | ||
|  |      DK(KP471396736, +0.471396736825997648556387625905254377657460319); | ||
|  |      DK(KP290284677, +0.290284677254462367636192375817395274691476278); | ||
|  |      DK(KP956940335, +0.956940335732208864935797886980269969482849206); | ||
|  |      DK(KP831469612, +0.831469612302545237078788377617905756738560812); | ||
|  |      DK(KP555570233, +0.555570233019602224742830813948532874374937191); | ||
|  |      DK(KP195090322, +0.195090322016128267848284868477022240927691618); | ||
|  |      DK(KP980785280, +0.980785280403230449126182236134239036973933731); | ||
|  |      DK(KP923879532, +0.923879532511286756128183189396788286822416626); | ||
|  |      DK(KP382683432, +0.382683432365089771728459984030398866761344562); | ||
|  |      DK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(256, is), MAKE_VOLATILE_STRIDE(256, os)) { | ||
|  | 	       E T37, T7B, T8F, T5Z, Tf, Td9, TbB, TcB, T62, T7C, T2i, TdH, Tah, Tcb, T3e; | ||
|  | 	       E T8G, Tu, TdI, Tak, TbD, Tan, TbC, T2x, Tda, T3m, T65, T7G, T8J, T7J, T8I; | ||
|  | 	       E T3t, T64, TK, Tdd, Tas, Tce, Tav, Tcf, T2N, Tdc, T3G, T6G, T7O, T9k, T7R; | ||
|  | 	       E T9l, T3N, T6H, T1L, Tdv, Tbs, Tcw, TdC, Teo, T5j, T6V, T5Q, T6Y, T8y, T9C; | ||
|  | 	       E Tbb, Tct, T8n, T9z, TZ, Tdf, Taz, Tch, TaC, Tci, T32, Tdg, T3Z, T6J, T7V; | ||
|  | 	       E T9n, T7Y, T9o, T46, T6K, T1g, Tdp, Tb1, Tcm, Tdm, Tej, T4q, T6R, T4X, T6O; | ||
|  | 	       E T8f, T9s, TaK, Tcp, T84, T9v, T1v, Tdn, Tb4, Tcq, Tds, Tek, T4N, T6P, T50; | ||
|  | 	       E T6S, T8i, T9w, TaV, Tcn, T8b, T9t, T20, TdD, Tbv, Tcu, Tdy, Tep, T5G, T6Z; | ||
|  | 	       E T5T, T6W, T8B, T9A, Tbm, Tcx, T8u, T9D; | ||
|  | 	       { | ||
|  | 		    E T3, T35, T26, T5Y, T6, T5X, T29, T36, Ta, T39, T2d, T38, Td, T3b, T2g; | ||
|  | 		    E T3c; | ||
|  | 		    { | ||
|  | 			 E T1, T2, T24, T25; | ||
|  | 			 T1 = ri[0]; | ||
|  | 			 T2 = ri[WS(is, 32)]; | ||
|  | 			 T3 = T1 + T2; | ||
|  | 			 T35 = T1 - T2; | ||
|  | 			 T24 = ii[0]; | ||
|  | 			 T25 = ii[WS(is, 32)]; | ||
|  | 			 T26 = T24 + T25; | ||
|  | 			 T5Y = T24 - T25; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4, T5, T27, T28; | ||
|  | 			 T4 = ri[WS(is, 16)]; | ||
|  | 			 T5 = ri[WS(is, 48)]; | ||
|  | 			 T6 = T4 + T5; | ||
|  | 			 T5X = T4 - T5; | ||
|  | 			 T27 = ii[WS(is, 16)]; | ||
|  | 			 T28 = ii[WS(is, 48)]; | ||
|  | 			 T29 = T27 + T28; | ||
|  | 			 T36 = T27 - T28; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8, T9, T2b, T2c; | ||
|  | 			 T8 = ri[WS(is, 8)]; | ||
|  | 			 T9 = ri[WS(is, 40)]; | ||
|  | 			 Ta = T8 + T9; | ||
|  | 			 T39 = T8 - T9; | ||
|  | 			 T2b = ii[WS(is, 8)]; | ||
|  | 			 T2c = ii[WS(is, 40)]; | ||
|  | 			 T2d = T2b + T2c; | ||
|  | 			 T38 = T2b - T2c; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tb, Tc, T2e, T2f; | ||
|  | 			 Tb = ri[WS(is, 56)]; | ||
|  | 			 Tc = ri[WS(is, 24)]; | ||
|  | 			 Td = Tb + Tc; | ||
|  | 			 T3b = Tb - Tc; | ||
|  | 			 T2e = ii[WS(is, 56)]; | ||
|  | 			 T2f = ii[WS(is, 24)]; | ||
|  | 			 T2g = T2e + T2f; | ||
|  | 			 T3c = T2e - T2f; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7, Te, T2a, T2h; | ||
|  | 			 T37 = T35 - T36; | ||
|  | 			 T7B = T35 + T36; | ||
|  | 			 T8F = T5Y - T5X; | ||
|  | 			 T5Z = T5X + T5Y; | ||
|  | 			 T7 = T3 + T6; | ||
|  | 			 Te = Ta + Td; | ||
|  | 			 Tf = T7 + Te; | ||
|  | 			 Td9 = T7 - Te; | ||
|  | 			 { | ||
|  | 			      E Tbz, TbA, T60, T61; | ||
|  | 			      Tbz = T26 - T29; | ||
|  | 			      TbA = Td - Ta; | ||
|  | 			      TbB = Tbz - TbA; | ||
|  | 			      TcB = TbA + Tbz; | ||
|  | 			      T60 = T3b - T3c; | ||
|  | 			      T61 = T39 + T38; | ||
|  | 			      T62 = KP707106781 * (T60 - T61); | ||
|  | 			      T7C = KP707106781 * (T61 + T60); | ||
|  | 			 } | ||
|  | 			 T2a = T26 + T29; | ||
|  | 			 T2h = T2d + T2g; | ||
|  | 			 T2i = T2a + T2h; | ||
|  | 			 TdH = T2a - T2h; | ||
|  | 			 { | ||
|  | 			      E Taf, Tag, T3a, T3d; | ||
|  | 			      Taf = T3 - T6; | ||
|  | 			      Tag = T2d - T2g; | ||
|  | 			      Tah = Taf - Tag; | ||
|  | 			      Tcb = Taf + Tag; | ||
|  | 			      T3a = T38 - T39; | ||
|  | 			      T3d = T3b + T3c; | ||
|  | 			      T3e = KP707106781 * (T3a - T3d); | ||
|  | 			      T8G = KP707106781 * (T3a + T3d); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ti, T3j, T2l, T3h, Tl, T3g, T2o, T3k, Tp, T3q, T2s, T3o, Ts, T3n, T2v; | ||
|  | 		    E T3r; | ||
|  | 		    { | ||
|  | 			 E Tg, Th, T2j, T2k; | ||
|  | 			 Tg = ri[WS(is, 4)]; | ||
|  | 			 Th = ri[WS(is, 36)]; | ||
|  | 			 Ti = Tg + Th; | ||
|  | 			 T3j = Tg - Th; | ||
|  | 			 T2j = ii[WS(is, 4)]; | ||
|  | 			 T2k = ii[WS(is, 36)]; | ||
|  | 			 T2l = T2j + T2k; | ||
|  | 			 T3h = T2j - T2k; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tj, Tk, T2m, T2n; | ||
|  | 			 Tj = ri[WS(is, 20)]; | ||
|  | 			 Tk = ri[WS(is, 52)]; | ||
|  | 			 Tl = Tj + Tk; | ||
|  | 			 T3g = Tj - Tk; | ||
|  | 			 T2m = ii[WS(is, 20)]; | ||
|  | 			 T2n = ii[WS(is, 52)]; | ||
|  | 			 T2o = T2m + T2n; | ||
|  | 			 T3k = T2m - T2n; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tn, To, T2q, T2r; | ||
|  | 			 Tn = ri[WS(is, 60)]; | ||
|  | 			 To = ri[WS(is, 28)]; | ||
|  | 			 Tp = Tn + To; | ||
|  | 			 T3q = Tn - To; | ||
|  | 			 T2q = ii[WS(is, 60)]; | ||
|  | 			 T2r = ii[WS(is, 28)]; | ||
|  | 			 T2s = T2q + T2r; | ||
|  | 			 T3o = T2q - T2r; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tq, Tr, T2t, T2u; | ||
|  | 			 Tq = ri[WS(is, 12)]; | ||
|  | 			 Tr = ri[WS(is, 44)]; | ||
|  | 			 Ts = Tq + Tr; | ||
|  | 			 T3n = Tq - Tr; | ||
|  | 			 T2t = ii[WS(is, 12)]; | ||
|  | 			 T2u = ii[WS(is, 44)]; | ||
|  | 			 T2v = T2t + T2u; | ||
|  | 			 T3r = T2t - T2u; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tm, Tt, Tai, Taj; | ||
|  | 			 Tm = Ti + Tl; | ||
|  | 			 Tt = Tp + Ts; | ||
|  | 			 Tu = Tm + Tt; | ||
|  | 			 TdI = Tt - Tm; | ||
|  | 			 Tai = T2l - T2o; | ||
|  | 			 Taj = Ti - Tl; | ||
|  | 			 Tak = Tai - Taj; | ||
|  | 			 TbD = Taj + Tai; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tal, Tam, T2p, T2w; | ||
|  | 			 Tal = Tp - Ts; | ||
|  | 			 Tam = T2s - T2v; | ||
|  | 			 Tan = Tal + Tam; | ||
|  | 			 TbC = Tal - Tam; | ||
|  | 			 T2p = T2l + T2o; | ||
|  | 			 T2w = T2s + T2v; | ||
|  | 			 T2x = T2p + T2w; | ||
|  | 			 Tda = T2p - T2w; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3i, T3l, T7E, T7F; | ||
|  | 			 T3i = T3g + T3h; | ||
|  | 			 T3l = T3j - T3k; | ||
|  | 			 T3m = FNMS(KP923879532, T3l, KP382683432 * T3i); | ||
|  | 			 T65 = FMA(KP923879532, T3i, KP382683432 * T3l); | ||
|  | 			 T7E = T3h - T3g; | ||
|  | 			 T7F = T3j + T3k; | ||
|  | 			 T7G = FNMS(KP382683432, T7F, KP923879532 * T7E); | ||
|  | 			 T8J = FMA(KP382683432, T7E, KP923879532 * T7F); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7H, T7I, T3p, T3s; | ||
|  | 			 T7H = T3o - T3n; | ||
|  | 			 T7I = T3q + T3r; | ||
|  | 			 T7J = FMA(KP923879532, T7H, KP382683432 * T7I); | ||
|  | 			 T8I = FNMS(KP382683432, T7H, KP923879532 * T7I); | ||
|  | 			 T3p = T3n + T3o; | ||
|  | 			 T3s = T3q - T3r; | ||
|  | 			 T3t = FMA(KP382683432, T3p, KP923879532 * T3s); | ||
|  | 			 T64 = FNMS(KP923879532, T3p, KP382683432 * T3s); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ty, T3H, T2B, T3x, TB, T3w, T2E, T3I, TI, T3L, T2L, T3B, TF, T3K, T2I; | ||
|  | 		    E T3E; | ||
|  | 		    { | ||
|  | 			 E Tw, Tx, T2C, T2D; | ||
|  | 			 Tw = ri[WS(is, 2)]; | ||
|  | 			 Tx = ri[WS(is, 34)]; | ||
|  | 			 Ty = Tw + Tx; | ||
|  | 			 T3H = Tw - Tx; | ||
|  | 			 { | ||
|  | 			      E T2z, T2A, Tz, TA; | ||
|  | 			      T2z = ii[WS(is, 2)]; | ||
|  | 			      T2A = ii[WS(is, 34)]; | ||
|  | 			      T2B = T2z + T2A; | ||
|  | 			      T3x = T2z - T2A; | ||
|  | 			      Tz = ri[WS(is, 18)]; | ||
|  | 			      TA = ri[WS(is, 50)]; | ||
|  | 			      TB = Tz + TA; | ||
|  | 			      T3w = Tz - TA; | ||
|  | 			 } | ||
|  | 			 T2C = ii[WS(is, 18)]; | ||
|  | 			 T2D = ii[WS(is, 50)]; | ||
|  | 			 T2E = T2C + T2D; | ||
|  | 			 T3I = T2C - T2D; | ||
|  | 			 { | ||
|  | 			      E TG, TH, T3z, T2J, T2K, T3A; | ||
|  | 			      TG = ri[WS(is, 58)]; | ||
|  | 			      TH = ri[WS(is, 26)]; | ||
|  | 			      T3z = TG - TH; | ||
|  | 			      T2J = ii[WS(is, 58)]; | ||
|  | 			      T2K = ii[WS(is, 26)]; | ||
|  | 			      T3A = T2J - T2K; | ||
|  | 			      TI = TG + TH; | ||
|  | 			      T3L = T3z + T3A; | ||
|  | 			      T2L = T2J + T2K; | ||
|  | 			      T3B = T3z - T3A; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E TD, TE, T3C, T2G, T2H, T3D; | ||
|  | 			      TD = ri[WS(is, 10)]; | ||
|  | 			      TE = ri[WS(is, 42)]; | ||
|  | 			      T3C = TD - TE; | ||
|  | 			      T2G = ii[WS(is, 10)]; | ||
|  | 			      T2H = ii[WS(is, 42)]; | ||
|  | 			      T3D = T2G - T2H; | ||
|  | 			      TF = TD + TE; | ||
|  | 			      T3K = T3D - T3C; | ||
|  | 			      T2I = T2G + T2H; | ||
|  | 			      T3E = T3C + T3D; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TC, TJ, Taq, Tar; | ||
|  | 			 TC = Ty + TB; | ||
|  | 			 TJ = TF + TI; | ||
|  | 			 TK = TC + TJ; | ||
|  | 			 Tdd = TC - TJ; | ||
|  | 			 Taq = T2B - T2E; | ||
|  | 			 Tar = TI - TF; | ||
|  | 			 Tas = Taq - Tar; | ||
|  | 			 Tce = Tar + Taq; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tat, Tau, T2F, T2M; | ||
|  | 			 Tat = Ty - TB; | ||
|  | 			 Tau = T2I - T2L; | ||
|  | 			 Tav = Tat - Tau; | ||
|  | 			 Tcf = Tat + Tau; | ||
|  | 			 T2F = T2B + T2E; | ||
|  | 			 T2M = T2I + T2L; | ||
|  | 			 T2N = T2F + T2M; | ||
|  | 			 Tdc = T2F - T2M; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3y, T3F, T7M, T7N; | ||
|  | 			 T3y = T3w + T3x; | ||
|  | 			 T3F = KP707106781 * (T3B - T3E); | ||
|  | 			 T3G = T3y - T3F; | ||
|  | 			 T6G = T3y + T3F; | ||
|  | 			 T7M = T3x - T3w; | ||
|  | 			 T7N = KP707106781 * (T3K + T3L); | ||
|  | 			 T7O = T7M - T7N; | ||
|  | 			 T9k = T7M + T7N; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7P, T7Q, T3J, T3M; | ||
|  | 			 T7P = T3H + T3I; | ||
|  | 			 T7Q = KP707106781 * (T3E + T3B); | ||
|  | 			 T7R = T7P - T7Q; | ||
|  | 			 T9l = T7P + T7Q; | ||
|  | 			 T3J = T3H - T3I; | ||
|  | 			 T3M = KP707106781 * (T3K - T3L); | ||
|  | 			 T3N = T3J - T3M; | ||
|  | 			 T6H = T3J + T3M; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1z, T53, T5L, Tbo, T1C, T5I, T56, Tbp, T1J, Tb9, T5h, T5N, T1G, Tb8, T5c; | ||
|  | 		    E T5O; | ||
|  | 		    { | ||
|  | 			 E T1x, T1y, T54, T55; | ||
|  | 			 T1x = ri[WS(is, 63)]; | ||
|  | 			 T1y = ri[WS(is, 31)]; | ||
|  | 			 T1z = T1x + T1y; | ||
|  | 			 T53 = T1x - T1y; | ||
|  | 			 { | ||
|  | 			      E T5J, T5K, T1A, T1B; | ||
|  | 			      T5J = ii[WS(is, 63)]; | ||
|  | 			      T5K = ii[WS(is, 31)]; | ||
|  | 			      T5L = T5J - T5K; | ||
|  | 			      Tbo = T5J + T5K; | ||
|  | 			      T1A = ri[WS(is, 15)]; | ||
|  | 			      T1B = ri[WS(is, 47)]; | ||
|  | 			      T1C = T1A + T1B; | ||
|  | 			      T5I = T1A - T1B; | ||
|  | 			 } | ||
|  | 			 T54 = ii[WS(is, 15)]; | ||
|  | 			 T55 = ii[WS(is, 47)]; | ||
|  | 			 T56 = T54 - T55; | ||
|  | 			 Tbp = T54 + T55; | ||
|  | 			 { | ||
|  | 			      E T1H, T1I, T5d, T5e, T5f, T5g; | ||
|  | 			      T1H = ri[WS(is, 55)]; | ||
|  | 			      T1I = ri[WS(is, 23)]; | ||
|  | 			      T5d = T1H - T1I; | ||
|  | 			      T5e = ii[WS(is, 55)]; | ||
|  | 			      T5f = ii[WS(is, 23)]; | ||
|  | 			      T5g = T5e - T5f; | ||
|  | 			      T1J = T1H + T1I; | ||
|  | 			      Tb9 = T5e + T5f; | ||
|  | 			      T5h = T5d + T5g; | ||
|  | 			      T5N = T5d - T5g; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1E, T1F, T5b, T58, T59, T5a; | ||
|  | 			      T1E = ri[WS(is, 7)]; | ||
|  | 			      T1F = ri[WS(is, 39)]; | ||
|  | 			      T5b = T1E - T1F; | ||
|  | 			      T58 = ii[WS(is, 7)]; | ||
|  | 			      T59 = ii[WS(is, 39)]; | ||
|  | 			      T5a = T58 - T59; | ||
|  | 			      T1G = T1E + T1F; | ||
|  | 			      Tb8 = T58 + T59; | ||
|  | 			      T5c = T5a - T5b; | ||
|  | 			      T5O = T5b + T5a; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1D, T1K, Tbq, Tbr; | ||
|  | 			 T1D = T1z + T1C; | ||
|  | 			 T1K = T1G + T1J; | ||
|  | 			 T1L = T1D + T1K; | ||
|  | 			 Tdv = T1D - T1K; | ||
|  | 			 Tbq = Tbo - Tbp; | ||
|  | 			 Tbr = T1J - T1G; | ||
|  | 			 Tbs = Tbq - Tbr; | ||
|  | 			 Tcw = Tbr + Tbq; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TdA, TdB, T57, T5i; | ||
|  | 			 TdA = Tbo + Tbp; | ||
|  | 			 TdB = Tb8 + Tb9; | ||
|  | 			 TdC = TdA - TdB; | ||
|  | 			 Teo = TdA + TdB; | ||
|  | 			 T57 = T53 - T56; | ||
|  | 			 T5i = KP707106781 * (T5c - T5h); | ||
|  | 			 T5j = T57 - T5i; | ||
|  | 			 T6V = T57 + T5i; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5M, T5P, T8w, T8x; | ||
|  | 			 T5M = T5I + T5L; | ||
|  | 			 T5P = KP707106781 * (T5N - T5O); | ||
|  | 			 T5Q = T5M - T5P; | ||
|  | 			 T6Y = T5M + T5P; | ||
|  | 			 T8w = T5L - T5I; | ||
|  | 			 T8x = KP707106781 * (T5c + T5h); | ||
|  | 			 T8y = T8w - T8x; | ||
|  | 			 T9C = T8w + T8x; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tb7, Tba, T8l, T8m; | ||
|  | 			 Tb7 = T1z - T1C; | ||
|  | 			 Tba = Tb8 - Tb9; | ||
|  | 			 Tbb = Tb7 - Tba; | ||
|  | 			 Tct = Tb7 + Tba; | ||
|  | 			 T8l = T53 + T56; | ||
|  | 			 T8m = KP707106781 * (T5O + T5N); | ||
|  | 			 T8n = T8l - T8m; | ||
|  | 			 T9z = T8l + T8m; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TN, T40, T2Q, T3Q, TQ, T3P, T2T, T41, TX, T44, T30, T3U, TU, T43, T2X; | ||
|  | 		    E T3X; | ||
|  | 		    { | ||
|  | 			 E TL, TM, T2R, T2S; | ||
|  | 			 TL = ri[WS(is, 62)]; | ||
|  | 			 TM = ri[WS(is, 30)]; | ||
|  | 			 TN = TL + TM; | ||
|  | 			 T40 = TL - TM; | ||
|  | 			 { | ||
|  | 			      E T2O, T2P, TO, TP; | ||
|  | 			      T2O = ii[WS(is, 62)]; | ||
|  | 			      T2P = ii[WS(is, 30)]; | ||
|  | 			      T2Q = T2O + T2P; | ||
|  | 			      T3Q = T2O - T2P; | ||
|  | 			      TO = ri[WS(is, 14)]; | ||
|  | 			      TP = ri[WS(is, 46)]; | ||
|  | 			      TQ = TO + TP; | ||
|  | 			      T3P = TO - TP; | ||
|  | 			 } | ||
|  | 			 T2R = ii[WS(is, 14)]; | ||
|  | 			 T2S = ii[WS(is, 46)]; | ||
|  | 			 T2T = T2R + T2S; | ||
|  | 			 T41 = T2R - T2S; | ||
|  | 			 { | ||
|  | 			      E TV, TW, T3S, T2Y, T2Z, T3T; | ||
|  | 			      TV = ri[WS(is, 54)]; | ||
|  | 			      TW = ri[WS(is, 22)]; | ||
|  | 			      T3S = TV - TW; | ||
|  | 			      T2Y = ii[WS(is, 54)]; | ||
|  | 			      T2Z = ii[WS(is, 22)]; | ||
|  | 			      T3T = T2Y - T2Z; | ||
|  | 			      TX = TV + TW; | ||
|  | 			      T44 = T3S + T3T; | ||
|  | 			      T30 = T2Y + T2Z; | ||
|  | 			      T3U = T3S - T3T; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E TS, TT, T3V, T2V, T2W, T3W; | ||
|  | 			      TS = ri[WS(is, 6)]; | ||
|  | 			      TT = ri[WS(is, 38)]; | ||
|  | 			      T3V = TS - TT; | ||
|  | 			      T2V = ii[WS(is, 6)]; | ||
|  | 			      T2W = ii[WS(is, 38)]; | ||
|  | 			      T3W = T2V - T2W; | ||
|  | 			      TU = TS + TT; | ||
|  | 			      T43 = T3W - T3V; | ||
|  | 			      T2X = T2V + T2W; | ||
|  | 			      T3X = T3V + T3W; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TR, TY, Tax, Tay; | ||
|  | 			 TR = TN + TQ; | ||
|  | 			 TY = TU + TX; | ||
|  | 			 TZ = TR + TY; | ||
|  | 			 Tdf = TR - TY; | ||
|  | 			 Tax = T2Q - T2T; | ||
|  | 			 Tay = TX - TU; | ||
|  | 			 Taz = Tax - Tay; | ||
|  | 			 Tch = Tay + Tax; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TaA, TaB, T2U, T31; | ||
|  | 			 TaA = TN - TQ; | ||
|  | 			 TaB = T2X - T30; | ||
|  | 			 TaC = TaA - TaB; | ||
|  | 			 Tci = TaA + TaB; | ||
|  | 			 T2U = T2Q + T2T; | ||
|  | 			 T31 = T2X + T30; | ||
|  | 			 T32 = T2U + T31; | ||
|  | 			 Tdg = T2U - T31; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3R, T3Y, T7T, T7U; | ||
|  | 			 T3R = T3P + T3Q; | ||
|  | 			 T3Y = KP707106781 * (T3U - T3X); | ||
|  | 			 T3Z = T3R - T3Y; | ||
|  | 			 T6J = T3R + T3Y; | ||
|  | 			 T7T = T40 + T41; | ||
|  | 			 T7U = KP707106781 * (T3X + T3U); | ||
|  | 			 T7V = T7T - T7U; | ||
|  | 			 T9n = T7T + T7U; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7W, T7X, T42, T45; | ||
|  | 			 T7W = T3Q - T3P; | ||
|  | 			 T7X = KP707106781 * (T43 + T44); | ||
|  | 			 T7Y = T7W - T7X; | ||
|  | 			 T9o = T7W + T7X; | ||
|  | 			 T42 = T40 - T41; | ||
|  | 			 T45 = KP707106781 * (T43 - T44); | ||
|  | 			 T46 = T42 - T45; | ||
|  | 			 T6K = T42 + T45; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T14, T4P, T4d, TaG, T17, T4a, T4S, TaH, T1e, TaZ, T4j, T4V, T1b, TaY, T4o; | ||
|  | 		    E T4U; | ||
|  | 		    { | ||
|  | 			 E T12, T13, T4Q, T4R; | ||
|  | 			 T12 = ri[WS(is, 1)]; | ||
|  | 			 T13 = ri[WS(is, 33)]; | ||
|  | 			 T14 = T12 + T13; | ||
|  | 			 T4P = T12 - T13; | ||
|  | 			 { | ||
|  | 			      E T4b, T4c, T15, T16; | ||
|  | 			      T4b = ii[WS(is, 1)]; | ||
|  | 			      T4c = ii[WS(is, 33)]; | ||
|  | 			      T4d = T4b - T4c; | ||
|  | 			      TaG = T4b + T4c; | ||
|  | 			      T15 = ri[WS(is, 17)]; | ||
|  | 			      T16 = ri[WS(is, 49)]; | ||
|  | 			      T17 = T15 + T16; | ||
|  | 			      T4a = T15 - T16; | ||
|  | 			 } | ||
|  | 			 T4Q = ii[WS(is, 17)]; | ||
|  | 			 T4R = ii[WS(is, 49)]; | ||
|  | 			 T4S = T4Q - T4R; | ||
|  | 			 TaH = T4Q + T4R; | ||
|  | 			 { | ||
|  | 			      E T1c, T1d, T4f, T4g, T4h, T4i; | ||
|  | 			      T1c = ri[WS(is, 57)]; | ||
|  | 			      T1d = ri[WS(is, 25)]; | ||
|  | 			      T4f = T1c - T1d; | ||
|  | 			      T4g = ii[WS(is, 57)]; | ||
|  | 			      T4h = ii[WS(is, 25)]; | ||
|  | 			      T4i = T4g - T4h; | ||
|  | 			      T1e = T1c + T1d; | ||
|  | 			      TaZ = T4g + T4h; | ||
|  | 			      T4j = T4f - T4i; | ||
|  | 			      T4V = T4f + T4i; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T19, T1a, T4k, T4l, T4m, T4n; | ||
|  | 			      T19 = ri[WS(is, 9)]; | ||
|  | 			      T1a = ri[WS(is, 41)]; | ||
|  | 			      T4k = T19 - T1a; | ||
|  | 			      T4l = ii[WS(is, 9)]; | ||
|  | 			      T4m = ii[WS(is, 41)]; | ||
|  | 			      T4n = T4l - T4m; | ||
|  | 			      T1b = T19 + T1a; | ||
|  | 			      TaY = T4l + T4m; | ||
|  | 			      T4o = T4k + T4n; | ||
|  | 			      T4U = T4n - T4k; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T18, T1f, TaX, Tb0; | ||
|  | 			 T18 = T14 + T17; | ||
|  | 			 T1f = T1b + T1e; | ||
|  | 			 T1g = T18 + T1f; | ||
|  | 			 Tdp = T18 - T1f; | ||
|  | 			 TaX = T14 - T17; | ||
|  | 			 Tb0 = TaY - TaZ; | ||
|  | 			 Tb1 = TaX - Tb0; | ||
|  | 			 Tcm = TaX + Tb0; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tdk, Tdl, T4e, T4p; | ||
|  | 			 Tdk = TaG + TaH; | ||
|  | 			 Tdl = TaY + TaZ; | ||
|  | 			 Tdm = Tdk - Tdl; | ||
|  | 			 Tej = Tdk + Tdl; | ||
|  | 			 T4e = T4a + T4d; | ||
|  | 			 T4p = KP707106781 * (T4j - T4o); | ||
|  | 			 T4q = T4e - T4p; | ||
|  | 			 T6R = T4e + T4p; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4T, T4W, T8d, T8e; | ||
|  | 			 T4T = T4P - T4S; | ||
|  | 			 T4W = KP707106781 * (T4U - T4V); | ||
|  | 			 T4X = T4T - T4W; | ||
|  | 			 T6O = T4T + T4W; | ||
|  | 			 T8d = T4P + T4S; | ||
|  | 			 T8e = KP707106781 * (T4o + T4j); | ||
|  | 			 T8f = T8d - T8e; | ||
|  | 			 T9s = T8d + T8e; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TaI, TaJ, T82, T83; | ||
|  | 			 TaI = TaG - TaH; | ||
|  | 			 TaJ = T1e - T1b; | ||
|  | 			 TaK = TaI - TaJ; | ||
|  | 			 Tcp = TaJ + TaI; | ||
|  | 			 T82 = T4d - T4a; | ||
|  | 			 T83 = KP707106781 * (T4U + T4V); | ||
|  | 			 T84 = T82 - T83; | ||
|  | 			 T9v = T82 + T83; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1j, TaR, T1m, TaS, T4G, T4L, TaT, TaQ, T89, T88, T1q, TaM, T1t, TaN, T4v; | ||
|  | 		    E T4A, TaO, TaL, T86, T85; | ||
|  | 		    { | ||
|  | 			 E T4H, T4F, T4C, T4K; | ||
|  | 			 { | ||
|  | 			      E T1h, T1i, T4D, T4E; | ||
|  | 			      T1h = ri[WS(is, 5)]; | ||
|  | 			      T1i = ri[WS(is, 37)]; | ||
|  | 			      T1j = T1h + T1i; | ||
|  | 			      T4H = T1h - T1i; | ||
|  | 			      T4D = ii[WS(is, 5)]; | ||
|  | 			      T4E = ii[WS(is, 37)]; | ||
|  | 			      T4F = T4D - T4E; | ||
|  | 			      TaR = T4D + T4E; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1k, T1l, T4I, T4J; | ||
|  | 			      T1k = ri[WS(is, 21)]; | ||
|  | 			      T1l = ri[WS(is, 53)]; | ||
|  | 			      T1m = T1k + T1l; | ||
|  | 			      T4C = T1k - T1l; | ||
|  | 			      T4I = ii[WS(is, 21)]; | ||
|  | 			      T4J = ii[WS(is, 53)]; | ||
|  | 			      T4K = T4I - T4J; | ||
|  | 			      TaS = T4I + T4J; | ||
|  | 			 } | ||
|  | 			 T4G = T4C + T4F; | ||
|  | 			 T4L = T4H - T4K; | ||
|  | 			 TaT = TaR - TaS; | ||
|  | 			 TaQ = T1j - T1m; | ||
|  | 			 T89 = T4H + T4K; | ||
|  | 			 T88 = T4F - T4C; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4r, T4z, T4w, T4u; | ||
|  | 			 { | ||
|  | 			      E T1o, T1p, T4x, T4y; | ||
|  | 			      T1o = ri[WS(is, 61)]; | ||
|  | 			      T1p = ri[WS(is, 29)]; | ||
|  | 			      T1q = T1o + T1p; | ||
|  | 			      T4r = T1o - T1p; | ||
|  | 			      T4x = ii[WS(is, 61)]; | ||
|  | 			      T4y = ii[WS(is, 29)]; | ||
|  | 			      T4z = T4x - T4y; | ||
|  | 			      TaM = T4x + T4y; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1r, T1s, T4s, T4t; | ||
|  | 			      T1r = ri[WS(is, 13)]; | ||
|  | 			      T1s = ri[WS(is, 45)]; | ||
|  | 			      T1t = T1r + T1s; | ||
|  | 			      T4w = T1r - T1s; | ||
|  | 			      T4s = ii[WS(is, 13)]; | ||
|  | 			      T4t = ii[WS(is, 45)]; | ||
|  | 			      T4u = T4s - T4t; | ||
|  | 			      TaN = T4s + T4t; | ||
|  | 			 } | ||
|  | 			 T4v = T4r - T4u; | ||
|  | 			 T4A = T4w + T4z; | ||
|  | 			 TaO = TaM - TaN; | ||
|  | 			 TaL = T1q - T1t; | ||
|  | 			 T86 = T4z - T4w; | ||
|  | 			 T85 = T4r + T4u; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1n, T1u, Tb2, Tb3; | ||
|  | 			 T1n = T1j + T1m; | ||
|  | 			 T1u = T1q + T1t; | ||
|  | 			 T1v = T1n + T1u; | ||
|  | 			 Tdn = T1u - T1n; | ||
|  | 			 Tb2 = TaT - TaQ; | ||
|  | 			 Tb3 = TaL + TaO; | ||
|  | 			 Tb4 = KP707106781 * (Tb2 - Tb3); | ||
|  | 			 Tcq = KP707106781 * (Tb2 + Tb3); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tdq, Tdr, T4B, T4M; | ||
|  | 			 Tdq = TaR + TaS; | ||
|  | 			 Tdr = TaM + TaN; | ||
|  | 			 Tds = Tdq - Tdr; | ||
|  | 			 Tek = Tdq + Tdr; | ||
|  | 			 T4B = FNMS(KP923879532, T4A, KP382683432 * T4v); | ||
|  | 			 T4M = FMA(KP923879532, T4G, KP382683432 * T4L); | ||
|  | 			 T4N = T4B - T4M; | ||
|  | 			 T6P = T4M + T4B; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4Y, T4Z, T8g, T8h; | ||
|  | 			 T4Y = FNMS(KP923879532, T4L, KP382683432 * T4G); | ||
|  | 			 T4Z = FMA(KP382683432, T4A, KP923879532 * T4v); | ||
|  | 			 T50 = T4Y - T4Z; | ||
|  | 			 T6S = T4Y + T4Z; | ||
|  | 			 T8g = FNMS(KP382683432, T89, KP923879532 * T88); | ||
|  | 			 T8h = FMA(KP923879532, T86, KP382683432 * T85); | ||
|  | 			 T8i = T8g - T8h; | ||
|  | 			 T9w = T8g + T8h; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TaP, TaU, T87, T8a; | ||
|  | 			 TaP = TaL - TaO; | ||
|  | 			 TaU = TaQ + TaT; | ||
|  | 			 TaV = KP707106781 * (TaP - TaU); | ||
|  | 			 Tcn = KP707106781 * (TaU + TaP); | ||
|  | 			 T87 = FNMS(KP382683432, T86, KP923879532 * T85); | ||
|  | 			 T8a = FMA(KP382683432, T88, KP923879532 * T89); | ||
|  | 			 T8b = T87 - T8a; | ||
|  | 			 T9t = T8a + T87; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1O, Tbc, T1R, Tbd, T5o, T5t, Tbf, Tbe, T8p, T8o, T1V, Tbi, T1Y, Tbj, T5z; | ||
|  | 		    E T5E, Tbk, Tbh, T8s, T8r; | ||
|  | 		    { | ||
|  | 			 E T5p, T5n, T5k, T5s; | ||
|  | 			 { | ||
|  | 			      E T1M, T1N, T5l, T5m; | ||
|  | 			      T1M = ri[WS(is, 3)]; | ||
|  | 			      T1N = ri[WS(is, 35)]; | ||
|  | 			      T1O = T1M + T1N; | ||
|  | 			      T5p = T1M - T1N; | ||
|  | 			      T5l = ii[WS(is, 3)]; | ||
|  | 			      T5m = ii[WS(is, 35)]; | ||
|  | 			      T5n = T5l - T5m; | ||
|  | 			      Tbc = T5l + T5m; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1P, T1Q, T5q, T5r; | ||
|  | 			      T1P = ri[WS(is, 19)]; | ||
|  | 			      T1Q = ri[WS(is, 51)]; | ||
|  | 			      T1R = T1P + T1Q; | ||
|  | 			      T5k = T1P - T1Q; | ||
|  | 			      T5q = ii[WS(is, 19)]; | ||
|  | 			      T5r = ii[WS(is, 51)]; | ||
|  | 			      T5s = T5q - T5r; | ||
|  | 			      Tbd = T5q + T5r; | ||
|  | 			 } | ||
|  | 			 T5o = T5k + T5n; | ||
|  | 			 T5t = T5p - T5s; | ||
|  | 			 Tbf = T1O - T1R; | ||
|  | 			 Tbe = Tbc - Tbd; | ||
|  | 			 T8p = T5p + T5s; | ||
|  | 			 T8o = T5n - T5k; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5A, T5y, T5v, T5D; | ||
|  | 			 { | ||
|  | 			      E T1T, T1U, T5w, T5x; | ||
|  | 			      T1T = ri[WS(is, 59)]; | ||
|  | 			      T1U = ri[WS(is, 27)]; | ||
|  | 			      T1V = T1T + T1U; | ||
|  | 			      T5A = T1T - T1U; | ||
|  | 			      T5w = ii[WS(is, 59)]; | ||
|  | 			      T5x = ii[WS(is, 27)]; | ||
|  | 			      T5y = T5w - T5x; | ||
|  | 			      Tbi = T5w + T5x; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1W, T1X, T5B, T5C; | ||
|  | 			      T1W = ri[WS(is, 11)]; | ||
|  | 			      T1X = ri[WS(is, 43)]; | ||
|  | 			      T1Y = T1W + T1X; | ||
|  | 			      T5v = T1W - T1X; | ||
|  | 			      T5B = ii[WS(is, 11)]; | ||
|  | 			      T5C = ii[WS(is, 43)]; | ||
|  | 			      T5D = T5B - T5C; | ||
|  | 			      Tbj = T5B + T5C; | ||
|  | 			 } | ||
|  | 			 T5z = T5v + T5y; | ||
|  | 			 T5E = T5A - T5D; | ||
|  | 			 Tbk = Tbi - Tbj; | ||
|  | 			 Tbh = T1V - T1Y; | ||
|  | 			 T8s = T5A + T5D; | ||
|  | 			 T8r = T5y - T5v; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1S, T1Z, Tbt, Tbu; | ||
|  | 			 T1S = T1O + T1R; | ||
|  | 			 T1Z = T1V + T1Y; | ||
|  | 			 T20 = T1S + T1Z; | ||
|  | 			 TdD = T1Z - T1S; | ||
|  | 			 Tbt = Tbh - Tbk; | ||
|  | 			 Tbu = Tbf + Tbe; | ||
|  | 			 Tbv = KP707106781 * (Tbt - Tbu); | ||
|  | 			 Tcu = KP707106781 * (Tbu + Tbt); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tdw, Tdx, T5u, T5F; | ||
|  | 			 Tdw = Tbc + Tbd; | ||
|  | 			 Tdx = Tbi + Tbj; | ||
|  | 			 Tdy = Tdw - Tdx; | ||
|  | 			 Tep = Tdw + Tdx; | ||
|  | 			 T5u = FNMS(KP923879532, T5t, KP382683432 * T5o); | ||
|  | 			 T5F = FMA(KP382683432, T5z, KP923879532 * T5E); | ||
|  | 			 T5G = T5u - T5F; | ||
|  | 			 T6Z = T5u + T5F; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5R, T5S, T8z, T8A; | ||
|  | 			 T5R = FNMS(KP923879532, T5z, KP382683432 * T5E); | ||
|  | 			 T5S = FMA(KP923879532, T5o, KP382683432 * T5t); | ||
|  | 			 T5T = T5R - T5S; | ||
|  | 			 T6W = T5S + T5R; | ||
|  | 			 T8z = FNMS(KP382683432, T8r, KP923879532 * T8s); | ||
|  | 			 T8A = FMA(KP382683432, T8o, KP923879532 * T8p); | ||
|  | 			 T8B = T8z - T8A; | ||
|  | 			 T9A = T8A + T8z; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tbg, Tbl, T8q, T8t; | ||
|  | 			 Tbg = Tbe - Tbf; | ||
|  | 			 Tbl = Tbh + Tbk; | ||
|  | 			 Tbm = KP707106781 * (Tbg - Tbl); | ||
|  | 			 Tcx = KP707106781 * (Tbg + Tbl); | ||
|  | 			 T8q = FNMS(KP382683432, T8p, KP923879532 * T8o); | ||
|  | 			 T8t = FMA(KP923879532, T8r, KP382683432 * T8s); | ||
|  | 			 T8u = T8q - T8t; | ||
|  | 			 T9D = T8q + T8t; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T11, TeD, TeG, TeI, T22, T23, T34, TeH; | ||
|  | 		    { | ||
|  | 			 E Tv, T10, TeE, TeF; | ||
|  | 			 Tv = Tf + Tu; | ||
|  | 			 T10 = TK + TZ; | ||
|  | 			 T11 = Tv + T10; | ||
|  | 			 TeD = Tv - T10; | ||
|  | 			 TeE = Tej + Tek; | ||
|  | 			 TeF = Teo + Tep; | ||
|  | 			 TeG = TeE - TeF; | ||
|  | 			 TeI = TeE + TeF; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1w, T21, T2y, T33; | ||
|  | 			 T1w = T1g + T1v; | ||
|  | 			 T21 = T1L + T20; | ||
|  | 			 T22 = T1w + T21; | ||
|  | 			 T23 = T21 - T1w; | ||
|  | 			 T2y = T2i + T2x; | ||
|  | 			 T33 = T2N + T32; | ||
|  | 			 T34 = T2y - T33; | ||
|  | 			 TeH = T2y + T33; | ||
|  | 		    } | ||
|  | 		    ro[WS(os, 32)] = T11 - T22; | ||
|  | 		    io[WS(os, 32)] = TeH - TeI; | ||
|  | 		    ro[0] = T11 + T22; | ||
|  | 		    io[0] = TeH + TeI; | ||
|  | 		    io[WS(os, 16)] = T23 + T34; | ||
|  | 		    ro[WS(os, 16)] = TeD + TeG; | ||
|  | 		    io[WS(os, 48)] = T34 - T23; | ||
|  | 		    ro[WS(os, 48)] = TeD - TeG; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Teh, Tex, Tev, TeB, Tem, Tey, Ter, Tez; | ||
|  | 		    { | ||
|  | 			 E Tef, Teg, Tet, Teu; | ||
|  | 			 Tef = Tf - Tu; | ||
|  | 			 Teg = T2N - T32; | ||
|  | 			 Teh = Tef + Teg; | ||
|  | 			 Tex = Tef - Teg; | ||
|  | 			 Tet = T2i - T2x; | ||
|  | 			 Teu = TZ - TK; | ||
|  | 			 Tev = Tet - Teu; | ||
|  | 			 TeB = Teu + Tet; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tei, Tel, Ten, Teq; | ||
|  | 			 Tei = T1g - T1v; | ||
|  | 			 Tel = Tej - Tek; | ||
|  | 			 Tem = Tei + Tel; | ||
|  | 			 Tey = Tel - Tei; | ||
|  | 			 Ten = T1L - T20; | ||
|  | 			 Teq = Teo - Tep; | ||
|  | 			 Ter = Ten - Teq; | ||
|  | 			 Tez = Ten + Teq; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tes, TeC, Tew, TeA; | ||
|  | 			 Tes = KP707106781 * (Tem + Ter); | ||
|  | 			 ro[WS(os, 40)] = Teh - Tes; | ||
|  | 			 ro[WS(os, 8)] = Teh + Tes; | ||
|  | 			 TeC = KP707106781 * (Tey + Tez); | ||
|  | 			 io[WS(os, 40)] = TeB - TeC; | ||
|  | 			 io[WS(os, 8)] = TeB + TeC; | ||
|  | 			 Tew = KP707106781 * (Ter - Tem); | ||
|  | 			 io[WS(os, 56)] = Tev - Tew; | ||
|  | 			 io[WS(os, 24)] = Tev + Tew; | ||
|  | 			 TeA = KP707106781 * (Tey - Tez); | ||
|  | 			 ro[WS(os, 56)] = Tex - TeA; | ||
|  | 			 ro[WS(os, 24)] = Tex + TeA; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tdb, TdV, Te5, TdJ, Tdi, Te6, Te3, Teb, TdM, TdW, Tdu, TdQ, Te0, Tea, TdF; | ||
|  | 		    E TdR; | ||
|  | 		    { | ||
|  | 			 E Tde, Tdh, Tdo, Tdt; | ||
|  | 			 Tdb = Td9 - Tda; | ||
|  | 			 TdV = Td9 + Tda; | ||
|  | 			 Te5 = TdI + TdH; | ||
|  | 			 TdJ = TdH - TdI; | ||
|  | 			 Tde = Tdc - Tdd; | ||
|  | 			 Tdh = Tdf + Tdg; | ||
|  | 			 Tdi = KP707106781 * (Tde - Tdh); | ||
|  | 			 Te6 = KP707106781 * (Tde + Tdh); | ||
|  | 			 { | ||
|  | 			      E Te1, Te2, TdK, TdL; | ||
|  | 			      Te1 = Tdv + Tdy; | ||
|  | 			      Te2 = TdD + TdC; | ||
|  | 			      Te3 = FNMS(KP382683432, Te2, KP923879532 * Te1); | ||
|  | 			      Teb = FMA(KP923879532, Te2, KP382683432 * Te1); | ||
|  | 			      TdK = Tdf - Tdg; | ||
|  | 			      TdL = Tdd + Tdc; | ||
|  | 			      TdM = KP707106781 * (TdK - TdL); | ||
|  | 			      TdW = KP707106781 * (TdL + TdK); | ||
|  | 			 } | ||
|  | 			 Tdo = Tdm - Tdn; | ||
|  | 			 Tdt = Tdp - Tds; | ||
|  | 			 Tdu = FMA(KP923879532, Tdo, KP382683432 * Tdt); | ||
|  | 			 TdQ = FNMS(KP923879532, Tdt, KP382683432 * Tdo); | ||
|  | 			 { | ||
|  | 			      E TdY, TdZ, Tdz, TdE; | ||
|  | 			      TdY = Tdn + Tdm; | ||
|  | 			      TdZ = Tdp + Tds; | ||
|  | 			      Te0 = FMA(KP382683432, TdY, KP923879532 * TdZ); | ||
|  | 			      Tea = FNMS(KP382683432, TdZ, KP923879532 * TdY); | ||
|  | 			      Tdz = Tdv - Tdy; | ||
|  | 			      TdE = TdC - TdD; | ||
|  | 			      TdF = FNMS(KP923879532, TdE, KP382683432 * Tdz); | ||
|  | 			      TdR = FMA(KP382683432, TdE, KP923879532 * Tdz); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tdj, TdG, TdT, TdU; | ||
|  | 			 Tdj = Tdb + Tdi; | ||
|  | 			 TdG = Tdu + TdF; | ||
|  | 			 ro[WS(os, 44)] = Tdj - TdG; | ||
|  | 			 ro[WS(os, 12)] = Tdj + TdG; | ||
|  | 			 TdT = TdJ + TdM; | ||
|  | 			 TdU = TdQ + TdR; | ||
|  | 			 io[WS(os, 44)] = TdT - TdU; | ||
|  | 			 io[WS(os, 12)] = TdT + TdU; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TdN, TdO, TdP, TdS; | ||
|  | 			 TdN = TdJ - TdM; | ||
|  | 			 TdO = TdF - Tdu; | ||
|  | 			 io[WS(os, 60)] = TdN - TdO; | ||
|  | 			 io[WS(os, 28)] = TdN + TdO; | ||
|  | 			 TdP = Tdb - Tdi; | ||
|  | 			 TdS = TdQ - TdR; | ||
|  | 			 ro[WS(os, 60)] = TdP - TdS; | ||
|  | 			 ro[WS(os, 28)] = TdP + TdS; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TdX, Te4, Ted, Tee; | ||
|  | 			 TdX = TdV + TdW; | ||
|  | 			 Te4 = Te0 + Te3; | ||
|  | 			 ro[WS(os, 36)] = TdX - Te4; | ||
|  | 			 ro[WS(os, 4)] = TdX + Te4; | ||
|  | 			 Ted = Te5 + Te6; | ||
|  | 			 Tee = Tea + Teb; | ||
|  | 			 io[WS(os, 36)] = Ted - Tee; | ||
|  | 			 io[WS(os, 4)] = Ted + Tee; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Te7, Te8, Te9, Tec; | ||
|  | 			 Te7 = Te5 - Te6; | ||
|  | 			 Te8 = Te3 - Te0; | ||
|  | 			 io[WS(os, 52)] = Te7 - Te8; | ||
|  | 			 io[WS(os, 20)] = Te7 + Te8; | ||
|  | 			 Te9 = TdV - TdW; | ||
|  | 			 Tec = Tea - Teb; | ||
|  | 			 ro[WS(os, 52)] = Te9 - Tec; | ||
|  | 			 ro[WS(os, 20)] = Te9 + Tec; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tcd, TcP, TcD, TcZ, Tck, Td0, TcX, Td5, Tcs, TcK, TcG, TcQ, TcU, Td4, Tcz; | ||
|  | 		    E TcL, Tcc, TcC; | ||
|  | 		    Tcc = KP707106781 * (TbD + TbC); | ||
|  | 		    Tcd = Tcb - Tcc; | ||
|  | 		    TcP = Tcb + Tcc; | ||
|  | 		    TcC = KP707106781 * (Tak + Tan); | ||
|  | 		    TcD = TcB - TcC; | ||
|  | 		    TcZ = TcB + TcC; | ||
|  | 		    { | ||
|  | 			 E Tcg, Tcj, TcV, TcW; | ||
|  | 			 Tcg = FNMS(KP382683432, Tcf, KP923879532 * Tce); | ||
|  | 			 Tcj = FMA(KP923879532, Tch, KP382683432 * Tci); | ||
|  | 			 Tck = Tcg - Tcj; | ||
|  | 			 Td0 = Tcg + Tcj; | ||
|  | 			 TcV = Tct + Tcu; | ||
|  | 			 TcW = Tcw + Tcx; | ||
|  | 			 TcX = FNMS(KP195090322, TcW, KP980785280 * TcV); | ||
|  | 			 Td5 = FMA(KP195090322, TcV, KP980785280 * TcW); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tco, Tcr, TcE, TcF; | ||
|  | 			 Tco = Tcm - Tcn; | ||
|  | 			 Tcr = Tcp - Tcq; | ||
|  | 			 Tcs = FMA(KP555570233, Tco, KP831469612 * Tcr); | ||
|  | 			 TcK = FNMS(KP831469612, Tco, KP555570233 * Tcr); | ||
|  | 			 TcE = FNMS(KP382683432, Tch, KP923879532 * Tci); | ||
|  | 			 TcF = FMA(KP382683432, Tce, KP923879532 * Tcf); | ||
|  | 			 TcG = TcE - TcF; | ||
|  | 			 TcQ = TcF + TcE; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TcS, TcT, Tcv, Tcy; | ||
|  | 			 TcS = Tcm + Tcn; | ||
|  | 			 TcT = Tcp + Tcq; | ||
|  | 			 TcU = FMA(KP980785280, TcS, KP195090322 * TcT); | ||
|  | 			 Td4 = FNMS(KP195090322, TcS, KP980785280 * TcT); | ||
|  | 			 Tcv = Tct - Tcu; | ||
|  | 			 Tcy = Tcw - Tcx; | ||
|  | 			 Tcz = FNMS(KP831469612, Tcy, KP555570233 * Tcv); | ||
|  | 			 TcL = FMA(KP831469612, Tcv, KP555570233 * Tcy); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tcl, TcA, TcN, TcO; | ||
|  | 			 Tcl = Tcd + Tck; | ||
|  | 			 TcA = Tcs + Tcz; | ||
|  | 			 ro[WS(os, 42)] = Tcl - TcA; | ||
|  | 			 ro[WS(os, 10)] = Tcl + TcA; | ||
|  | 			 TcN = TcD + TcG; | ||
|  | 			 TcO = TcK + TcL; | ||
|  | 			 io[WS(os, 42)] = TcN - TcO; | ||
|  | 			 io[WS(os, 10)] = TcN + TcO; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TcH, TcI, TcJ, TcM; | ||
|  | 			 TcH = TcD - TcG; | ||
|  | 			 TcI = Tcz - Tcs; | ||
|  | 			 io[WS(os, 58)] = TcH - TcI; | ||
|  | 			 io[WS(os, 26)] = TcH + TcI; | ||
|  | 			 TcJ = Tcd - Tck; | ||
|  | 			 TcM = TcK - TcL; | ||
|  | 			 ro[WS(os, 58)] = TcJ - TcM; | ||
|  | 			 ro[WS(os, 26)] = TcJ + TcM; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TcR, TcY, Td7, Td8; | ||
|  | 			 TcR = TcP + TcQ; | ||
|  | 			 TcY = TcU + TcX; | ||
|  | 			 ro[WS(os, 34)] = TcR - TcY; | ||
|  | 			 ro[WS(os, 2)] = TcR + TcY; | ||
|  | 			 Td7 = TcZ + Td0; | ||
|  | 			 Td8 = Td4 + Td5; | ||
|  | 			 io[WS(os, 34)] = Td7 - Td8; | ||
|  | 			 io[WS(os, 2)] = Td7 + Td8; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Td1, Td2, Td3, Td6; | ||
|  | 			 Td1 = TcZ - Td0; | ||
|  | 			 Td2 = TcX - TcU; | ||
|  | 			 io[WS(os, 50)] = Td1 - Td2; | ||
|  | 			 io[WS(os, 18)] = Td1 + Td2; | ||
|  | 			 Td3 = TcP - TcQ; | ||
|  | 			 Td6 = Td4 - Td5; | ||
|  | 			 ro[WS(os, 50)] = Td3 - Td6; | ||
|  | 			 ro[WS(os, 18)] = Td3 + Td6; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tap, TbR, TbF, Tc1, TaE, Tc2, TbZ, Tc7, Tb6, TbM, TbI, TbS, TbW, Tc6, Tbx; | ||
|  | 		    E TbN, Tao, TbE; | ||
|  | 		    Tao = KP707106781 * (Tak - Tan); | ||
|  | 		    Tap = Tah - Tao; | ||
|  | 		    TbR = Tah + Tao; | ||
|  | 		    TbE = KP707106781 * (TbC - TbD); | ||
|  | 		    TbF = TbB - TbE; | ||
|  | 		    Tc1 = TbB + TbE; | ||
|  | 		    { | ||
|  | 			 E Taw, TaD, TbX, TbY; | ||
|  | 			 Taw = FNMS(KP923879532, Tav, KP382683432 * Tas); | ||
|  | 			 TaD = FMA(KP382683432, Taz, KP923879532 * TaC); | ||
|  | 			 TaE = Taw - TaD; | ||
|  | 			 Tc2 = Taw + TaD; | ||
|  | 			 TbX = Tbb + Tbm; | ||
|  | 			 TbY = Tbs + Tbv; | ||
|  | 			 TbZ = FNMS(KP555570233, TbY, KP831469612 * TbX); | ||
|  | 			 Tc7 = FMA(KP831469612, TbY, KP555570233 * TbX); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TaW, Tb5, TbG, TbH; | ||
|  | 			 TaW = TaK - TaV; | ||
|  | 			 Tb5 = Tb1 - Tb4; | ||
|  | 			 Tb6 = FMA(KP980785280, TaW, KP195090322 * Tb5); | ||
|  | 			 TbM = FNMS(KP980785280, Tb5, KP195090322 * TaW); | ||
|  | 			 TbG = FNMS(KP923879532, Taz, KP382683432 * TaC); | ||
|  | 			 TbH = FMA(KP923879532, Tas, KP382683432 * Tav); | ||
|  | 			 TbI = TbG - TbH; | ||
|  | 			 TbS = TbH + TbG; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TbU, TbV, Tbn, Tbw; | ||
|  | 			 TbU = TaK + TaV; | ||
|  | 			 TbV = Tb1 + Tb4; | ||
|  | 			 TbW = FMA(KP555570233, TbU, KP831469612 * TbV); | ||
|  | 			 Tc6 = FNMS(KP555570233, TbV, KP831469612 * TbU); | ||
|  | 			 Tbn = Tbb - Tbm; | ||
|  | 			 Tbw = Tbs - Tbv; | ||
|  | 			 Tbx = FNMS(KP980785280, Tbw, KP195090322 * Tbn); | ||
|  | 			 TbN = FMA(KP195090322, Tbw, KP980785280 * Tbn); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TaF, Tby, TbP, TbQ; | ||
|  | 			 TaF = Tap + TaE; | ||
|  | 			 Tby = Tb6 + Tbx; | ||
|  | 			 ro[WS(os, 46)] = TaF - Tby; | ||
|  | 			 ro[WS(os, 14)] = TaF + Tby; | ||
|  | 			 TbP = TbF + TbI; | ||
|  | 			 TbQ = TbM + TbN; | ||
|  | 			 io[WS(os, 46)] = TbP - TbQ; | ||
|  | 			 io[WS(os, 14)] = TbP + TbQ; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TbJ, TbK, TbL, TbO; | ||
|  | 			 TbJ = TbF - TbI; | ||
|  | 			 TbK = Tbx - Tb6; | ||
|  | 			 io[WS(os, 62)] = TbJ - TbK; | ||
|  | 			 io[WS(os, 30)] = TbJ + TbK; | ||
|  | 			 TbL = Tap - TaE; | ||
|  | 			 TbO = TbM - TbN; | ||
|  | 			 ro[WS(os, 62)] = TbL - TbO; | ||
|  | 			 ro[WS(os, 30)] = TbL + TbO; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TbT, Tc0, Tc9, Tca; | ||
|  | 			 TbT = TbR + TbS; | ||
|  | 			 Tc0 = TbW + TbZ; | ||
|  | 			 ro[WS(os, 38)] = TbT - Tc0; | ||
|  | 			 ro[WS(os, 6)] = TbT + Tc0; | ||
|  | 			 Tc9 = Tc1 + Tc2; | ||
|  | 			 Tca = Tc6 + Tc7; | ||
|  | 			 io[WS(os, 38)] = Tc9 - Tca; | ||
|  | 			 io[WS(os, 6)] = Tc9 + Tca; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tc3, Tc4, Tc5, Tc8; | ||
|  | 			 Tc3 = Tc1 - Tc2; | ||
|  | 			 Tc4 = TbZ - TbW; | ||
|  | 			 io[WS(os, 54)] = Tc3 - Tc4; | ||
|  | 			 io[WS(os, 22)] = Tc3 + Tc4; | ||
|  | 			 Tc5 = TbR - TbS; | ||
|  | 			 Tc8 = Tc6 - Tc7; | ||
|  | 			 ro[WS(os, 54)] = Tc5 - Tc8; | ||
|  | 			 ro[WS(os, 22)] = Tc5 + Tc8; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6F, T7h, T7m, T7w, T7p, T7x, T6M, T7s, T6U, T7c, T75, T7r, T78, T7i, T71; | ||
|  | 		    E T7d; | ||
|  | 		    { | ||
|  | 			 E T6D, T6E, T7k, T7l; | ||
|  | 			 T6D = T37 + T3e; | ||
|  | 			 T6E = T65 + T64; | ||
|  | 			 T6F = T6D - T6E; | ||
|  | 			 T7h = T6D + T6E; | ||
|  | 			 T7k = T6O + T6P; | ||
|  | 			 T7l = T6R + T6S; | ||
|  | 			 T7m = FMA(KP956940335, T7k, KP290284677 * T7l); | ||
|  | 			 T7w = FNMS(KP290284677, T7k, KP956940335 * T7l); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7n, T7o, T6I, T6L; | ||
|  | 			 T7n = T6V + T6W; | ||
|  | 			 T7o = T6Y + T6Z; | ||
|  | 			 T7p = FNMS(KP290284677, T7o, KP956940335 * T7n); | ||
|  | 			 T7x = FMA(KP290284677, T7n, KP956940335 * T7o); | ||
|  | 			 T6I = FNMS(KP555570233, T6H, KP831469612 * T6G); | ||
|  | 			 T6L = FMA(KP831469612, T6J, KP555570233 * T6K); | ||
|  | 			 T6M = T6I - T6L; | ||
|  | 			 T7s = T6I + T6L; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6Q, T6T, T73, T74; | ||
|  | 			 T6Q = T6O - T6P; | ||
|  | 			 T6T = T6R - T6S; | ||
|  | 			 T6U = FMA(KP471396736, T6Q, KP881921264 * T6T); | ||
|  | 			 T7c = FNMS(KP881921264, T6Q, KP471396736 * T6T); | ||
|  | 			 T73 = T5Z + T62; | ||
|  | 			 T74 = T3m + T3t; | ||
|  | 			 T75 = T73 - T74; | ||
|  | 			 T7r = T73 + T74; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T76, T77, T6X, T70; | ||
|  | 			 T76 = FNMS(KP555570233, T6J, KP831469612 * T6K); | ||
|  | 			 T77 = FMA(KP555570233, T6G, KP831469612 * T6H); | ||
|  | 			 T78 = T76 - T77; | ||
|  | 			 T7i = T77 + T76; | ||
|  | 			 T6X = T6V - T6W; | ||
|  | 			 T70 = T6Y - T6Z; | ||
|  | 			 T71 = FNMS(KP881921264, T70, KP471396736 * T6X); | ||
|  | 			 T7d = FMA(KP881921264, T6X, KP471396736 * T70); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6N, T72, T7f, T7g; | ||
|  | 			 T6N = T6F + T6M; | ||
|  | 			 T72 = T6U + T71; | ||
|  | 			 ro[WS(os, 43)] = T6N - T72; | ||
|  | 			 ro[WS(os, 11)] = T6N + T72; | ||
|  | 			 T7f = T75 + T78; | ||
|  | 			 T7g = T7c + T7d; | ||
|  | 			 io[WS(os, 43)] = T7f - T7g; | ||
|  | 			 io[WS(os, 11)] = T7f + T7g; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T79, T7a, T7b, T7e; | ||
|  | 			 T79 = T75 - T78; | ||
|  | 			 T7a = T71 - T6U; | ||
|  | 			 io[WS(os, 59)] = T79 - T7a; | ||
|  | 			 io[WS(os, 27)] = T79 + T7a; | ||
|  | 			 T7b = T6F - T6M; | ||
|  | 			 T7e = T7c - T7d; | ||
|  | 			 ro[WS(os, 59)] = T7b - T7e; | ||
|  | 			 ro[WS(os, 27)] = T7b + T7e; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7j, T7q, T7z, T7A; | ||
|  | 			 T7j = T7h + T7i; | ||
|  | 			 T7q = T7m + T7p; | ||
|  | 			 ro[WS(os, 35)] = T7j - T7q; | ||
|  | 			 ro[WS(os, 3)] = T7j + T7q; | ||
|  | 			 T7z = T7r + T7s; | ||
|  | 			 T7A = T7w + T7x; | ||
|  | 			 io[WS(os, 35)] = T7z - T7A; | ||
|  | 			 io[WS(os, 3)] = T7z + T7A; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7t, T7u, T7v, T7y; | ||
|  | 			 T7t = T7r - T7s; | ||
|  | 			 T7u = T7p - T7m; | ||
|  | 			 io[WS(os, 51)] = T7t - T7u; | ||
|  | 			 io[WS(os, 19)] = T7t + T7u; | ||
|  | 			 T7v = T7h - T7i; | ||
|  | 			 T7y = T7w - T7x; | ||
|  | 			 ro[WS(os, 51)] = T7v - T7y; | ||
|  | 			 ro[WS(os, 19)] = T7v + T7y; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T9j, T9V, Ta0, Taa, Ta3, Tab, T9q, Ta6, T9y, T9Q, T9J, Ta5, T9M, T9W, T9F; | ||
|  | 		    E T9R; | ||
|  | 		    { | ||
|  | 			 E T9h, T9i, T9Y, T9Z; | ||
|  | 			 T9h = T7B + T7C; | ||
|  | 			 T9i = T8J + T8I; | ||
|  | 			 T9j = T9h - T9i; | ||
|  | 			 T9V = T9h + T9i; | ||
|  | 			 T9Y = T9s + T9t; | ||
|  | 			 T9Z = T9v + T9w; | ||
|  | 			 Ta0 = FMA(KP995184726, T9Y, KP098017140 * T9Z); | ||
|  | 			 Taa = FNMS(KP098017140, T9Y, KP995184726 * T9Z); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Ta1, Ta2, T9m, T9p; | ||
|  | 			 Ta1 = T9z + T9A; | ||
|  | 			 Ta2 = T9C + T9D; | ||
|  | 			 Ta3 = FNMS(KP098017140, Ta2, KP995184726 * Ta1); | ||
|  | 			 Tab = FMA(KP098017140, Ta1, KP995184726 * Ta2); | ||
|  | 			 T9m = FNMS(KP195090322, T9l, KP980785280 * T9k); | ||
|  | 			 T9p = FMA(KP195090322, T9n, KP980785280 * T9o); | ||
|  | 			 T9q = T9m - T9p; | ||
|  | 			 Ta6 = T9m + T9p; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9u, T9x, T9H, T9I; | ||
|  | 			 T9u = T9s - T9t; | ||
|  | 			 T9x = T9v - T9w; | ||
|  | 			 T9y = FMA(KP634393284, T9u, KP773010453 * T9x); | ||
|  | 			 T9Q = FNMS(KP773010453, T9u, KP634393284 * T9x); | ||
|  | 			 T9H = T8F + T8G; | ||
|  | 			 T9I = T7G + T7J; | ||
|  | 			 T9J = T9H - T9I; | ||
|  | 			 Ta5 = T9H + T9I; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9K, T9L, T9B, T9E; | ||
|  | 			 T9K = FNMS(KP195090322, T9o, KP980785280 * T9n); | ||
|  | 			 T9L = FMA(KP980785280, T9l, KP195090322 * T9k); | ||
|  | 			 T9M = T9K - T9L; | ||
|  | 			 T9W = T9L + T9K; | ||
|  | 			 T9B = T9z - T9A; | ||
|  | 			 T9E = T9C - T9D; | ||
|  | 			 T9F = FNMS(KP773010453, T9E, KP634393284 * T9B); | ||
|  | 			 T9R = FMA(KP773010453, T9B, KP634393284 * T9E); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9r, T9G, T9T, T9U; | ||
|  | 			 T9r = T9j + T9q; | ||
|  | 			 T9G = T9y + T9F; | ||
|  | 			 ro[WS(os, 41)] = T9r - T9G; | ||
|  | 			 ro[WS(os, 9)] = T9r + T9G; | ||
|  | 			 T9T = T9J + T9M; | ||
|  | 			 T9U = T9Q + T9R; | ||
|  | 			 io[WS(os, 41)] = T9T - T9U; | ||
|  | 			 io[WS(os, 9)] = T9T + T9U; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9N, T9O, T9P, T9S; | ||
|  | 			 T9N = T9J - T9M; | ||
|  | 			 T9O = T9F - T9y; | ||
|  | 			 io[WS(os, 57)] = T9N - T9O; | ||
|  | 			 io[WS(os, 25)] = T9N + T9O; | ||
|  | 			 T9P = T9j - T9q; | ||
|  | 			 T9S = T9Q - T9R; | ||
|  | 			 ro[WS(os, 57)] = T9P - T9S; | ||
|  | 			 ro[WS(os, 25)] = T9P + T9S; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9X, Ta4, Tad, Tae; | ||
|  | 			 T9X = T9V + T9W; | ||
|  | 			 Ta4 = Ta0 + Ta3; | ||
|  | 			 ro[WS(os, 33)] = T9X - Ta4; | ||
|  | 			 ro[WS(os, 1)] = T9X + Ta4; | ||
|  | 			 Tad = Ta5 + Ta6; | ||
|  | 			 Tae = Taa + Tab; | ||
|  | 			 io[WS(os, 33)] = Tad - Tae; | ||
|  | 			 io[WS(os, 1)] = Tad + Tae; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Ta7, Ta8, Ta9, Tac; | ||
|  | 			 Ta7 = Ta5 - Ta6; | ||
|  | 			 Ta8 = Ta3 - Ta0; | ||
|  | 			 io[WS(os, 49)] = Ta7 - Ta8; | ||
|  | 			 io[WS(os, 17)] = Ta7 + Ta8; | ||
|  | 			 Ta9 = T9V - T9W; | ||
|  | 			 Tac = Taa - Tab; | ||
|  | 			 ro[WS(os, 49)] = Ta9 - Tac; | ||
|  | 			 ro[WS(os, 17)] = Ta9 + Tac; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T3v, T6j, T6o, T6y, T6r, T6z, T48, T6u, T52, T6e, T67, T6t, T6a, T6k, T5V; | ||
|  | 		    E T6f; | ||
|  | 		    { | ||
|  | 			 E T3f, T3u, T6m, T6n; | ||
|  | 			 T3f = T37 - T3e; | ||
|  | 			 T3u = T3m - T3t; | ||
|  | 			 T3v = T3f - T3u; | ||
|  | 			 T6j = T3f + T3u; | ||
|  | 			 T6m = T4q + T4N; | ||
|  | 			 T6n = T4X + T50; | ||
|  | 			 T6o = FMA(KP634393284, T6m, KP773010453 * T6n); | ||
|  | 			 T6y = FNMS(KP634393284, T6n, KP773010453 * T6m); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6p, T6q, T3O, T47; | ||
|  | 			 T6p = T5j + T5G; | ||
|  | 			 T6q = T5Q + T5T; | ||
|  | 			 T6r = FNMS(KP634393284, T6q, KP773010453 * T6p); | ||
|  | 			 T6z = FMA(KP773010453, T6q, KP634393284 * T6p); | ||
|  | 			 T3O = FNMS(KP980785280, T3N, KP195090322 * T3G); | ||
|  | 			 T47 = FMA(KP195090322, T3Z, KP980785280 * T46); | ||
|  | 			 T48 = T3O - T47; | ||
|  | 			 T6u = T3O + T47; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4O, T51, T63, T66; | ||
|  | 			 T4O = T4q - T4N; | ||
|  | 			 T51 = T4X - T50; | ||
|  | 			 T52 = FMA(KP995184726, T4O, KP098017140 * T51); | ||
|  | 			 T6e = FNMS(KP995184726, T51, KP098017140 * T4O); | ||
|  | 			 T63 = T5Z - T62; | ||
|  | 			 T66 = T64 - T65; | ||
|  | 			 T67 = T63 - T66; | ||
|  | 			 T6t = T63 + T66; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T68, T69, T5H, T5U; | ||
|  | 			 T68 = FNMS(KP980785280, T3Z, KP195090322 * T46); | ||
|  | 			 T69 = FMA(KP980785280, T3G, KP195090322 * T3N); | ||
|  | 			 T6a = T68 - T69; | ||
|  | 			 T6k = T69 + T68; | ||
|  | 			 T5H = T5j - T5G; | ||
|  | 			 T5U = T5Q - T5T; | ||
|  | 			 T5V = FNMS(KP995184726, T5U, KP098017140 * T5H); | ||
|  | 			 T6f = FMA(KP098017140, T5U, KP995184726 * T5H); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T49, T5W, T6h, T6i; | ||
|  | 			 T49 = T3v + T48; | ||
|  | 			 T5W = T52 + T5V; | ||
|  | 			 ro[WS(os, 47)] = T49 - T5W; | ||
|  | 			 ro[WS(os, 15)] = T49 + T5W; | ||
|  | 			 T6h = T67 + T6a; | ||
|  | 			 T6i = T6e + T6f; | ||
|  | 			 io[WS(os, 47)] = T6h - T6i; | ||
|  | 			 io[WS(os, 15)] = T6h + T6i; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6b, T6c, T6d, T6g; | ||
|  | 			 T6b = T67 - T6a; | ||
|  | 			 T6c = T5V - T52; | ||
|  | 			 io[WS(os, 63)] = T6b - T6c; | ||
|  | 			 io[WS(os, 31)] = T6b + T6c; | ||
|  | 			 T6d = T3v - T48; | ||
|  | 			 T6g = T6e - T6f; | ||
|  | 			 ro[WS(os, 63)] = T6d - T6g; | ||
|  | 			 ro[WS(os, 31)] = T6d + T6g; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6l, T6s, T6B, T6C; | ||
|  | 			 T6l = T6j + T6k; | ||
|  | 			 T6s = T6o + T6r; | ||
|  | 			 ro[WS(os, 39)] = T6l - T6s; | ||
|  | 			 ro[WS(os, 7)] = T6l + T6s; | ||
|  | 			 T6B = T6t + T6u; | ||
|  | 			 T6C = T6y + T6z; | ||
|  | 			 io[WS(os, 39)] = T6B - T6C; | ||
|  | 			 io[WS(os, 7)] = T6B + T6C; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6v, T6w, T6x, T6A; | ||
|  | 			 T6v = T6t - T6u; | ||
|  | 			 T6w = T6r - T6o; | ||
|  | 			 io[WS(os, 55)] = T6v - T6w; | ||
|  | 			 io[WS(os, 23)] = T6v + T6w; | ||
|  | 			 T6x = T6j - T6k; | ||
|  | 			 T6A = T6y - T6z; | ||
|  | 			 ro[WS(os, 55)] = T6x - T6A; | ||
|  | 			 ro[WS(os, 23)] = T6x + T6A; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T7L, T8X, T92, T9c, T95, T9d, T80, T98, T8k, T8S, T8L, T97, T8O, T8Y, T8D; | ||
|  | 		    E T8T; | ||
|  | 		    { | ||
|  | 			 E T7D, T7K, T90, T91; | ||
|  | 			 T7D = T7B - T7C; | ||
|  | 			 T7K = T7G - T7J; | ||
|  | 			 T7L = T7D - T7K; | ||
|  | 			 T8X = T7D + T7K; | ||
|  | 			 T90 = T84 + T8b; | ||
|  | 			 T91 = T8f + T8i; | ||
|  | 			 T92 = FMA(KP471396736, T90, KP881921264 * T91); | ||
|  | 			 T9c = FNMS(KP471396736, T91, KP881921264 * T90); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T93, T94, T7S, T7Z; | ||
|  | 			 T93 = T8n + T8u; | ||
|  | 			 T94 = T8y + T8B; | ||
|  | 			 T95 = FNMS(KP471396736, T94, KP881921264 * T93); | ||
|  | 			 T9d = FMA(KP881921264, T94, KP471396736 * T93); | ||
|  | 			 T7S = FNMS(KP831469612, T7R, KP555570233 * T7O); | ||
|  | 			 T7Z = FMA(KP831469612, T7V, KP555570233 * T7Y); | ||
|  | 			 T80 = T7S - T7Z; | ||
|  | 			 T98 = T7S + T7Z; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8c, T8j, T8H, T8K; | ||
|  | 			 T8c = T84 - T8b; | ||
|  | 			 T8j = T8f - T8i; | ||
|  | 			 T8k = FMA(KP956940335, T8c, KP290284677 * T8j); | ||
|  | 			 T8S = FNMS(KP956940335, T8j, KP290284677 * T8c); | ||
|  | 			 T8H = T8F - T8G; | ||
|  | 			 T8K = T8I - T8J; | ||
|  | 			 T8L = T8H - T8K; | ||
|  | 			 T97 = T8H + T8K; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8M, T8N, T8v, T8C; | ||
|  | 			 T8M = FNMS(KP831469612, T7Y, KP555570233 * T7V); | ||
|  | 			 T8N = FMA(KP555570233, T7R, KP831469612 * T7O); | ||
|  | 			 T8O = T8M - T8N; | ||
|  | 			 T8Y = T8N + T8M; | ||
|  | 			 T8v = T8n - T8u; | ||
|  | 			 T8C = T8y - T8B; | ||
|  | 			 T8D = FNMS(KP956940335, T8C, KP290284677 * T8v); | ||
|  | 			 T8T = FMA(KP290284677, T8C, KP956940335 * T8v); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T81, T8E, T8V, T8W; | ||
|  | 			 T81 = T7L + T80; | ||
|  | 			 T8E = T8k + T8D; | ||
|  | 			 ro[WS(os, 45)] = T81 - T8E; | ||
|  | 			 ro[WS(os, 13)] = T81 + T8E; | ||
|  | 			 T8V = T8L + T8O; | ||
|  | 			 T8W = T8S + T8T; | ||
|  | 			 io[WS(os, 45)] = T8V - T8W; | ||
|  | 			 io[WS(os, 13)] = T8V + T8W; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8P, T8Q, T8R, T8U; | ||
|  | 			 T8P = T8L - T8O; | ||
|  | 			 T8Q = T8D - T8k; | ||
|  | 			 io[WS(os, 61)] = T8P - T8Q; | ||
|  | 			 io[WS(os, 29)] = T8P + T8Q; | ||
|  | 			 T8R = T7L - T80; | ||
|  | 			 T8U = T8S - T8T; | ||
|  | 			 ro[WS(os, 61)] = T8R - T8U; | ||
|  | 			 ro[WS(os, 29)] = T8R + T8U; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8Z, T96, T9f, T9g; | ||
|  | 			 T8Z = T8X + T8Y; | ||
|  | 			 T96 = T92 + T95; | ||
|  | 			 ro[WS(os, 37)] = T8Z - T96; | ||
|  | 			 ro[WS(os, 5)] = T8Z + T96; | ||
|  | 			 T9f = T97 + T98; | ||
|  | 			 T9g = T9c + T9d; | ||
|  | 			 io[WS(os, 37)] = T9f - T9g; | ||
|  | 			 io[WS(os, 5)] = T9f + T9g; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T99, T9a, T9b, T9e; | ||
|  | 			 T99 = T97 - T98; | ||
|  | 			 T9a = T95 - T92; | ||
|  | 			 io[WS(os, 53)] = T99 - T9a; | ||
|  | 			 io[WS(os, 21)] = T99 + T9a; | ||
|  | 			 T9b = T8X - T8Y; | ||
|  | 			 T9e = T9c - T9d; | ||
|  | 			 ro[WS(os, 53)] = T9b - T9e; | ||
|  | 			 ro[WS(os, 21)] = T9b + T9e; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kdft_desc desc = { 64, "n1_64", { 808, 144, 104, 0 }, &GENUS, 0, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void X(codelet_n1_64) (planner *p) { X(kdft_register) (p, n1_64, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 |