355 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			355 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2005 Matteo Frigo
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2005 Massachusetts Institute of Technology
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is free software; you can redistribute it and/or modify
							 | 
						||
| 
								 | 
							
								 * it under the terms of the GNU General Public License as published by
							 | 
						||
| 
								 | 
							
								 * the Free Software Foundation; either version 2 of the License, or
							 | 
						||
| 
								 | 
							
								 * (at your option) any later version.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is distributed in the hope that it will be useful,
							 | 
						||
| 
								 | 
							
								 * but WITHOUT ANY WARRANTY; without even the implied warranty of
							 | 
						||
| 
								 | 
							
								 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
							 | 
						||
| 
								 | 
							
								 * GNU General Public License for more details.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * You should have received a copy of the GNU General Public License
							 | 
						||
| 
								 | 
							
								 * along with this program; if not, write to the Free Software
							 | 
						||
| 
								 | 
							
								 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Do an R{E,O}DFT00 problem (of an odd length n) recursively via an
							 | 
						||
| 
								 | 
							
								   R{E,O}DFT00 problem and an RDFT problem of half the length.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   This works by "logically" expanding the array to a real-even/odd DFT of
							 | 
						||
| 
								 | 
							
								   length 2n-/+2 and then applying the split-radix algorithm.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   In this way, we can avoid having to pad to twice the length
							 | 
						||
| 
								 | 
							
								   (ala redft00-r2hc-pad), saving a factor of ~2 for n=2^m+/-1,
							 | 
						||
| 
								 | 
							
								   but don't incur the accuracy loss that the "ordinary" algorithm
							 | 
						||
| 
								 | 
							
								   sacrifices (ala redft00-r2hc.c).
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "reodft/reodft.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								typedef struct {
							 | 
						||
| 
								 | 
							
								     solver super;
							 | 
						||
| 
								 | 
							
								} S;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								typedef struct {
							 | 
						||
| 
								 | 
							
								     plan_rdft super;
							 | 
						||
| 
								 | 
							
								     plan *clde, *cldo;
							 | 
						||
| 
								 | 
							
								     twid *td;
							 | 
						||
| 
								 | 
							
								     INT is, os;
							 | 
						||
| 
								 | 
							
								     INT n;
							 | 
						||
| 
								 | 
							
								     INT vl;
							 | 
						||
| 
								 | 
							
								     INT ivs, ovs;
							 | 
						||
| 
								 | 
							
								} P;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* redft00 */
							 | 
						||
| 
								 | 
							
								static void apply_e(const plan *ego_, R *I, R *O)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const P *ego = (const P *) ego_;
							 | 
						||
| 
								 | 
							
								     INT is = ego->is, os = ego->os;
							 | 
						||
| 
								 | 
							
								     INT i, j, n = ego->n + 1, n2 = (n-1)/2;
							 | 
						||
| 
								 | 
							
								     INT iv, vl = ego->vl;
							 | 
						||
| 
								 | 
							
								     INT ivs = ego->ivs, ovs = ego->ovs;
							 | 
						||
| 
								 | 
							
								     R *W = ego->td->W - 2;
							 | 
						||
| 
								 | 
							
								     R *buf;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     buf = (R *) MALLOC(sizeof(R) * n2, BUFFERS);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
							 | 
						||
| 
								 | 
							
									  /* do size (n-1)/2 r2hc transform of odd-indexed elements
							 | 
						||
| 
								 | 
							
									     with stride 4, "wrapping around" end of array with even
							 | 
						||
| 
								 | 
							
									     boundary conditions */
							 | 
						||
| 
								 | 
							
									  for (j = 0, i = 1; i < n; i += 4)
							 | 
						||
| 
								 | 
							
									       buf[j++] = I[is * i];
							 | 
						||
| 
								 | 
							
									  for (i = 2*n-2-i; i > 0; i -= 4)
							 | 
						||
| 
								 | 
							
									       buf[j++] = I[is * i];
							 | 
						||
| 
								 | 
							
									  {
							 | 
						||
| 
								 | 
							
									       plan_rdft *cld = (plan_rdft *) ego->cldo;
							 | 
						||
| 
								 | 
							
									       cld->apply((plan *) cld, buf, buf);
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									  /* do size (n+1)/2 redft00 of the even-indexed elements,
							 | 
						||
| 
								 | 
							
									     writing to O: */
							 | 
						||
| 
								 | 
							
									  {
							 | 
						||
| 
								 | 
							
									       plan_rdft *cld = (plan_rdft *) ego->clde;
							 | 
						||
| 
								 | 
							
									       cld->apply((plan *) cld, I, O);
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									  /* combine the results with the twiddle factors to get output */
							 | 
						||
| 
								 | 
							
									  { /* DC element */
							 | 
						||
| 
								 | 
							
									       E b20 = O[0], b0 = K(2.0) * buf[0];
							 | 
						||
| 
								 | 
							
									       O[0] = b20 + b0;
							 | 
						||
| 
								 | 
							
									       O[2*(n2*os)] = b20 - b0;
							 | 
						||
| 
								 | 
							
									       /* O[n2*os] = O[n2*os]; */
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  for (i = 1; i < n2 - i; ++i) {
							 | 
						||
| 
								 | 
							
									       E ap, am, br, bi, wr, wi, wbr, wbi;
							 | 
						||
| 
								 | 
							
									       br = buf[i];
							 | 
						||
| 
								 | 
							
									       bi = buf[n2 - i];
							 | 
						||
| 
								 | 
							
									       wr = W[2*i];
							 | 
						||
| 
								 | 
							
									       wi = W[2*i+1];
							 | 
						||
| 
								 | 
							
								#if FFT_SIGN == -1
							 | 
						||
| 
								 | 
							
									       wbr = K(2.0) * (wr*br + wi*bi);
							 | 
						||
| 
								 | 
							
									       wbi = K(2.0) * (wr*bi - wi*br);
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
									       wbr = K(2.0) * (wr*br - wi*bi);
							 | 
						||
| 
								 | 
							
									       wbi = K(2.0) * (wr*bi + wi*br);
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
									       ap = O[i*os];
							 | 
						||
| 
								 | 
							
									       O[i*os] = ap + wbr;
							 | 
						||
| 
								 | 
							
									       O[(2*n2 - i)*os] = ap - wbr;
							 | 
						||
| 
								 | 
							
									       am = O[(n2 - i)*os];
							 | 
						||
| 
								 | 
							
								#if FFT_SIGN == -1
							 | 
						||
| 
								 | 
							
									       O[(n2 - i)*os] = am - wbi;
							 | 
						||
| 
								 | 
							
									       O[(n2 + i)*os] = am + wbi;
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
									       O[(n2 - i)*os] = am + wbi;
							 | 
						||
| 
								 | 
							
									       O[(n2 + i)*os] = am - wbi;
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  if (i == n2 - i) { /* Nyquist element */
							 | 
						||
| 
								 | 
							
									       E ap, wbr;
							 | 
						||
| 
								 | 
							
									       wbr = K(2.0) * (W[2*i] * buf[i]);
							 | 
						||
| 
								 | 
							
									       ap = O[i*os];
							 | 
						||
| 
								 | 
							
									       O[i*os] = ap + wbr;
							 | 
						||
| 
								 | 
							
									       O[(2*n2 - i)*os] = ap - wbr;
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     X(ifree)(buf);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* rodft00 */
							 | 
						||
| 
								 | 
							
								static void apply_o(const plan *ego_, R *I, R *O)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const P *ego = (const P *) ego_;
							 | 
						||
| 
								 | 
							
								     INT is = ego->is, os = ego->os;
							 | 
						||
| 
								 | 
							
								     INT i, j, n = ego->n - 1, n2 = (n+1)/2;
							 | 
						||
| 
								 | 
							
								     INT iv, vl = ego->vl;
							 | 
						||
| 
								 | 
							
								     INT ivs = ego->ivs, ovs = ego->ovs;
							 | 
						||
| 
								 | 
							
								     R *W = ego->td->W - 2;
							 | 
						||
| 
								 | 
							
								     R *buf;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     buf = (R *) MALLOC(sizeof(R) * n2, BUFFERS);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
							 | 
						||
| 
								 | 
							
									  /* do size (n+1)/2 r2hc transform of even-indexed elements
							 | 
						||
| 
								 | 
							
									     with stride 4, "wrapping around" end of array with odd
							 | 
						||
| 
								 | 
							
									     boundary conditions */
							 | 
						||
| 
								 | 
							
									  for (j = 0, i = 0; i < n; i += 4)
							 | 
						||
| 
								 | 
							
									       buf[j++] = I[is * i];
							 | 
						||
| 
								 | 
							
									  for (i = 2*n-i; i > 0; i -= 4)
							 | 
						||
| 
								 | 
							
									       buf[j++] = -I[is * i];
							 | 
						||
| 
								 | 
							
									  {
							 | 
						||
| 
								 | 
							
									       plan_rdft *cld = (plan_rdft *) ego->cldo;
							 | 
						||
| 
								 | 
							
									       cld->apply((plan *) cld, buf, buf);
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									  /* do size (n-1)/2 rodft00 of the odd-indexed elements,
							 | 
						||
| 
								 | 
							
									     writing to O: */
							 | 
						||
| 
								 | 
							
									  {
							 | 
						||
| 
								 | 
							
									       plan_rdft *cld = (plan_rdft *) ego->clde;
							 | 
						||
| 
								 | 
							
									       if (I == O) {
							 | 
						||
| 
								 | 
							
										    /* can't use I+is and I, subplan would lose in-placeness */
							 | 
						||
| 
								 | 
							
										    cld->apply((plan *) cld, I + is, I + is);
							 | 
						||
| 
								 | 
							
										    /* we could maybe avoid this copy by modifying the
							 | 
						||
| 
								 | 
							
										       twiddle loop, but currently I can't be bothered. */
							 | 
						||
| 
								 | 
							
										    A(is >= os);
							 | 
						||
| 
								 | 
							
										    for (i = 0; i < n2-1; ++i)
							 | 
						||
| 
								 | 
							
											 O[os*i] = I[is*(i+1)];
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									       else
							 | 
						||
| 
								 | 
							
										    cld->apply((plan *) cld, I + is, O);
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									  /* combine the results with the twiddle factors to get output */
							 | 
						||
| 
								 | 
							
									  O[(n2-1)*os] = K(2.0) * buf[0];
							 | 
						||
| 
								 | 
							
									  for (i = 1; i < n2 - i; ++i) {
							 | 
						||
| 
								 | 
							
									       E ap, am, br, bi, wr, wi, wbr, wbi;
							 | 
						||
| 
								 | 
							
									       br = buf[i];
							 | 
						||
| 
								 | 
							
									       bi = buf[n2 - i];
							 | 
						||
| 
								 | 
							
									       wr = W[2*i];
							 | 
						||
| 
								 | 
							
									       wi = W[2*i+1];
							 | 
						||
| 
								 | 
							
								#if FFT_SIGN == -1
							 | 
						||
| 
								 | 
							
									       wbr = K(2.0) * (wr*br + wi*bi);
							 | 
						||
| 
								 | 
							
									       wbi = K(2.0) * (wi*br - wr*bi);
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
									       wbr = K(2.0) * (wr*br - wi*bi);
							 | 
						||
| 
								 | 
							
									       wbi = K(2.0) * (wr*bi + wi*br);
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
									       ap = O[(i-1)*os];
							 | 
						||
| 
								 | 
							
									       O[(i-1)*os] = wbi + ap;
							 | 
						||
| 
								 | 
							
									       O[(2*n2-1 - i)*os] = wbi - ap;
							 | 
						||
| 
								 | 
							
									       am = O[(n2-1 - i)*os];
							 | 
						||
| 
								 | 
							
								#if FFT_SIGN == -1
							 | 
						||
| 
								 | 
							
									       O[(n2-1 - i)*os] = wbr + am;
							 | 
						||
| 
								 | 
							
									       O[(n2-1 + i)*os] = wbr - am;
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
									       O[(n2-1 - i)*os] = wbr + am;
							 | 
						||
| 
								 | 
							
									       O[(n2-1 + i)*os] = wbr - am;
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  if (i == n2 - i) { /* Nyquist element */
							 | 
						||
| 
								 | 
							
									       E ap, wbi;
							 | 
						||
| 
								 | 
							
									       wbi = K(2.0) * (W[2*i+1] * buf[i]);
							 | 
						||
| 
								 | 
							
									       ap = O[(i-1)*os];
							 | 
						||
| 
								 | 
							
									       O[(i-1)*os] = wbi + ap;
							 | 
						||
| 
								 | 
							
									       O[(2*n2-1 - i)*os] = wbi - ap;
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     X(ifree)(buf);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void awake(plan *ego_, enum wakefulness wakefulness)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     P *ego = (P *) ego_;
							 | 
						||
| 
								 | 
							
								     static const tw_instr reodft00e_tw[] = {
							 | 
						||
| 
								 | 
							
								          { TW_COS, 1, 1 },
							 | 
						||
| 
								 | 
							
								          { TW_SIN, 1, 1 },
							 | 
						||
| 
								 | 
							
								          { TW_NEXT, 1, 0 }
							 | 
						||
| 
								 | 
							
								     };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     X(plan_awake)(ego->clde, wakefulness);
							 | 
						||
| 
								 | 
							
								     X(plan_awake)(ego->cldo, wakefulness);
							 | 
						||
| 
								 | 
							
								     X(twiddle_awake)(wakefulness, &ego->td, reodft00e_tw, 
							 | 
						||
| 
								 | 
							
										      2*ego->n, 1, ego->n/4);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void destroy(plan *ego_)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     P *ego = (P *) ego_;
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(ego->cldo);
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(ego->clde);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void print(const plan *ego_, printer *p)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const P *ego = (const P *) ego_;
							 | 
						||
| 
								 | 
							
								     if (ego->super.apply == apply_e)
							 | 
						||
| 
								 | 
							
									  p->print(p, "(redft00e-splitradix-%D%v%(%p%)%(%p%))", 
							 | 
						||
| 
								 | 
							
										   ego->n + 1, ego->vl, ego->clde, ego->cldo);
							 | 
						||
| 
								 | 
							
								     else
							 | 
						||
| 
								 | 
							
									  p->print(p, "(rodft00e-splitradix-%D%v%(%p%)%(%p%))", 
							 | 
						||
| 
								 | 
							
										   ego->n - 1, ego->vl, ego->clde, ego->cldo);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int applicable0(const solver *ego_, const problem *p_)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const problem_rdft *p = (const problem_rdft *) p_;
							 | 
						||
| 
								 | 
							
								     UNUSED(ego_);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     return (1
							 | 
						||
| 
								 | 
							
									     && p->sz->rnk == 1
							 | 
						||
| 
								 | 
							
									     && p->vecsz->rnk <= 1
							 | 
						||
| 
								 | 
							
									     && (p->kind[0] == REDFT00 || p->kind[0] == RODFT00)
							 | 
						||
| 
								 | 
							
									     && p->sz->dims[0].n > 1  /* don't create size-0 sub-plans */
							 | 
						||
| 
								 | 
							
									     && p->sz->dims[0].n % 2  /* odd: 4 divides "logical" DFT */
							 | 
						||
| 
								 | 
							
									     && (p->I != p->O || p->vecsz->rnk == 0
							 | 
						||
| 
								 | 
							
										 || p->vecsz->dims[0].is == p->vecsz->dims[0].os)
							 | 
						||
| 
								 | 
							
									     && (p->kind[0] != RODFT00 || p->I != p->O || 
							 | 
						||
| 
								 | 
							
										 p->sz->dims[0].is >= p->sz->dims[0].os) /* laziness */
							 | 
						||
| 
								 | 
							
									  );
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int applicable(const solver *ego, const problem *p, const planner *plnr)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     return (!NO_SLOWP(plnr) && applicable0(ego, p));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     P *pln;
							 | 
						||
| 
								 | 
							
								     const problem_rdft *p;
							 | 
						||
| 
								 | 
							
								     plan *clde, *cldo;
							 | 
						||
| 
								 | 
							
								     R *buf;
							 | 
						||
| 
								 | 
							
								     INT n, n0;
							 | 
						||
| 
								 | 
							
								     opcnt ops;
							 | 
						||
| 
								 | 
							
								     int inplace_odd;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     static const plan_adt padt = {
							 | 
						||
| 
								 | 
							
									  X(rdft_solve), awake, print, destroy
							 | 
						||
| 
								 | 
							
								     };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     if (!applicable(ego_, p_, plnr))
							 | 
						||
| 
								 | 
							
								          return (plan *)0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     p = (const problem_rdft *) p_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     n = (n0 = p->sz->dims[0].n) + (p->kind[0] == REDFT00 ? (INT)-1 : (INT)1);
							 | 
						||
| 
								 | 
							
								     A(n > 0 && n % 2 == 0);
							 | 
						||
| 
								 | 
							
								     buf = (R *) MALLOC(sizeof(R) * (n/2), BUFFERS);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     inplace_odd = p->kind[0]==RODFT00 && p->I == p->O;
							 | 
						||
| 
								 | 
							
								     clde = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(
							 | 
						||
| 
								 | 
							
											     X(mktensor_1d)(n0-n/2, 2*p->sz->dims[0].is, 
							 | 
						||
| 
								 | 
							
													    inplace_odd ? p->sz->dims[0].is
							 | 
						||
| 
								 | 
							
													    : p->sz->dims[0].os), 
							 | 
						||
| 
								 | 
							
											     X(mktensor_0d)(), 
							 | 
						||
| 
								 | 
							
											     TAINT(p->I 
							 | 
						||
| 
								 | 
							
												   + p->sz->dims[0].is * (p->kind[0]==RODFT00),
							 | 
						||
| 
								 | 
							
												   p->vecsz->rnk ? p->vecsz->dims[0].is : 0),
							 | 
						||
| 
								 | 
							
											     TAINT(p->O
							 | 
						||
| 
								 | 
							
												   + p->sz->dims[0].is * inplace_odd,
							 | 
						||
| 
								 | 
							
												   p->vecsz->rnk ? p->vecsz->dims[0].os : 0),
							 | 
						||
| 
								 | 
							
											     p->kind[0]));
							 | 
						||
| 
								 | 
							
								     if (!clde) {
							 | 
						||
| 
								 | 
							
									  X(ifree)(buf);
							 | 
						||
| 
								 | 
							
								          return (plan *)0;
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     cldo = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(
							 | 
						||
| 
								 | 
							
											     X(mktensor_1d)(n/2, 1, 1), 
							 | 
						||
| 
								 | 
							
											     X(mktensor_0d)(), 
							 | 
						||
| 
								 | 
							
											     buf, buf, R2HC));
							 | 
						||
| 
								 | 
							
								     X(ifree)(buf);
							 | 
						||
| 
								 | 
							
								     if (!cldo)
							 | 
						||
| 
								 | 
							
								          return (plan *)0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     pln = MKPLAN_RDFT(P, &padt, p->kind[0] == REDFT00 ? apply_e : apply_o);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     pln->n = n;
							 | 
						||
| 
								 | 
							
								     pln->is = p->sz->dims[0].is;
							 | 
						||
| 
								 | 
							
								     pln->os = p->sz->dims[0].os;
							 | 
						||
| 
								 | 
							
								     pln->clde = clde;
							 | 
						||
| 
								 | 
							
								     pln->cldo = cldo;
							 | 
						||
| 
								 | 
							
								     pln->td = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
							 | 
						||
| 
								 | 
							
								     
							 | 
						||
| 
								 | 
							
								     X(ops_zero)(&ops);
							 | 
						||
| 
								 | 
							
								     ops.other = n/2;
							 | 
						||
| 
								 | 
							
								     ops.add = (p->kind[0]==REDFT00 ? (INT)2 : (INT)0) +
							 | 
						||
| 
								 | 
							
									  (n/2-1)/2 * 6 + ((n/2)%2==0) * 2;
							 | 
						||
| 
								 | 
							
								     ops.mul = 1 + (n/2-1)/2 * 6 + ((n/2)%2==0) * 2;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* tweak ops.other so that r2hc-pad is used for small sizes, which
							 | 
						||
| 
								 | 
							
									seems to be a lot faster on my machine: */
							 | 
						||
| 
								 | 
							
								     ops.other += 256;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     X(ops_zero)(&pln->super.super.ops);
							 | 
						||
| 
								 | 
							
								     X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
							 | 
						||
| 
								 | 
							
								     X(ops_madd2)(pln->vl, &clde->ops, &pln->super.super.ops);
							 | 
						||
| 
								 | 
							
								     X(ops_madd2)(pln->vl, &cldo->ops, &pln->super.super.ops);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     return &(pln->super.super);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* constructor */
							 | 
						||
| 
								 | 
							
								static solver *mksolver(void)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
							 | 
						||
| 
								 | 
							
								     S *slv = MKSOLVER(S, &sadt);
							 | 
						||
| 
								 | 
							
								     return &(slv->super);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void X(reodft00e_splitradix_register)(planner *p)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     REGISTER_SOLVER(p, mksolver());
							 | 
						||
| 
								 | 
							
								}
							 |