251 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			251 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | #include "dft/dft.h"
 | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |      solver super; | ||
|  | } S; | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |      plan_dft super; | ||
|  |      INT n;     /* problem size */ | ||
|  |      INT nb;    /* size of convolution */ | ||
|  |      R *w;      /* lambda k . exp(2*pi*i*k^2/(2*n)) */ | ||
|  |      R *W;      /* DFT(w) */ | ||
|  |      plan *cldf; | ||
|  |      INT is, os; | ||
|  | } P; | ||
|  | 
 | ||
|  | static void bluestein_sequence(enum wakefulness wakefulness, INT n, R *w) | ||
|  | { | ||
|  |      INT k, ksq, n2 = 2 * n; | ||
|  |      triggen *t = X(mktriggen)(wakefulness, n2); | ||
|  | 
 | ||
|  |      ksq = 0; | ||
|  |      for (k = 0; k < n; ++k) { | ||
|  | 	  t->cexp(t, ksq, w+2*k); | ||
|  |           /* careful with overflow */ | ||
|  |           ksq += 2*k + 1; while (ksq > n2) ksq -= n2; | ||
|  |      } | ||
|  | 
 | ||
|  |      X(triggen_destroy)(t); | ||
|  | } | ||
|  | 
 | ||
|  | static void mktwiddle(enum wakefulness wakefulness, P *p) | ||
|  | { | ||
|  |      INT i; | ||
|  |      INT n = p->n, nb = p->nb; | ||
|  |      R *w, *W; | ||
|  |      E nbf = (E)nb; | ||
|  | 
 | ||
|  |      p->w = w = (R *) MALLOC(2 * n * sizeof(R), TWIDDLES); | ||
|  |      p->W = W = (R *) MALLOC(2 * nb * sizeof(R), TWIDDLES); | ||
|  | 
 | ||
|  |      bluestein_sequence(wakefulness, n, w); | ||
|  | 
 | ||
|  |      for (i = 0; i < nb; ++i) | ||
|  |           W[2*i] = W[2*i+1] = K(0.0); | ||
|  | 
 | ||
|  |      W[0] = w[0] / nbf; | ||
|  |      W[1] = w[1] / nbf; | ||
|  | 
 | ||
|  |      for (i = 1; i < n; ++i) { | ||
|  |           W[2*i] = W[2*(nb-i)] = w[2*i] / nbf; | ||
|  |           W[2*i+1] = W[2*(nb-i)+1] = w[2*i+1] / nbf; | ||
|  |      } | ||
|  | 
 | ||
|  |      { | ||
|  |           plan_dft *cldf = (plan_dft *)p->cldf; | ||
|  | 	  /* cldf must be awake */ | ||
|  |           cldf->apply(p->cldf, W, W+1, W, W+1); | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      INT i, n = ego->n, nb = ego->nb, is = ego->is, os = ego->os; | ||
|  |      R *w = ego->w, *W = ego->W; | ||
|  |      R *b = (R *) MALLOC(2 * nb * sizeof(R), BUFFERS); | ||
|  | 
 | ||
|  |      /* multiply input by conjugate bluestein sequence */ | ||
|  |      for (i = 0; i < n; ++i) { | ||
|  | 	  E xr = ri[i*is], xi = ii[i*is]; | ||
|  |           E wr = w[2*i], wi = w[2*i+1]; | ||
|  |           b[2*i] = xr * wr + xi * wi; | ||
|  |           b[2*i+1] = xi * wr - xr * wi; | ||
|  |      } | ||
|  | 
 | ||
|  |      for (; i < nb; ++i) b[2*i] = b[2*i+1] = K(0.0); | ||
|  | 
 | ||
|  |      /* convolution: FFT */ | ||
|  |      { | ||
|  |           plan_dft *cldf = (plan_dft *)ego->cldf; | ||
|  |           cldf->apply(ego->cldf, b, b+1, b, b+1); | ||
|  |      } | ||
|  | 
 | ||
|  |      /* convolution: pointwise multiplication */ | ||
|  |      for (i = 0; i < nb; ++i) { | ||
|  | 	  E xr = b[2*i], xi = b[2*i+1]; | ||
|  |           E wr = W[2*i], wi = W[2*i+1]; | ||
|  |           b[2*i] = xi * wr + xr * wi; | ||
|  |           b[2*i+1] = xr * wr - xi * wi; | ||
|  |      } | ||
|  | 
 | ||
|  |      /* convolution: IFFT by FFT with real/imag input/output swapped */ | ||
|  |      { | ||
|  |           plan_dft *cldf = (plan_dft *)ego->cldf; | ||
|  |           cldf->apply(ego->cldf, b, b+1, b, b+1); | ||
|  |      } | ||
|  | 
 | ||
|  |      /* multiply output by conjugate bluestein sequence */ | ||
|  |      for (i = 0; i < n; ++i) { | ||
|  | 	  E xi = b[2*i], xr = b[2*i+1]; | ||
|  |           E wr = w[2*i], wi = w[2*i+1]; | ||
|  |           ro[i*os] = xr * wr + xi * wi; | ||
|  |           io[i*os] = xi * wr - xr * wi; | ||
|  |      } | ||
|  | 
 | ||
|  |      X(ifree)(b);	   | ||
|  | } | ||
|  | 
 | ||
|  | static void awake(plan *ego_, enum wakefulness wakefulness) | ||
|  | { | ||
|  |      P *ego = (P *) ego_; | ||
|  | 
 | ||
|  |      X(plan_awake)(ego->cldf, wakefulness); | ||
|  | 
 | ||
|  |      switch (wakefulness) { | ||
|  | 	 case SLEEPY: | ||
|  | 	      X(ifree0)(ego->w); ego->w = 0; | ||
|  | 	      X(ifree0)(ego->W); ego->W = 0; | ||
|  | 	      break; | ||
|  | 	 default: | ||
|  | 	      A(!ego->w); | ||
|  | 	      mktwiddle(wakefulness, ego); | ||
|  | 	      break; | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static int applicable(const solver *ego, const problem *p_,  | ||
|  | 		      const planner *plnr) | ||
|  | { | ||
|  |      const problem_dft *p = (const problem_dft *) p_; | ||
|  |      UNUSED(ego); | ||
|  |      return (1 | ||
|  | 	     && p->sz->rnk == 1 | ||
|  | 	     && p->vecsz->rnk == 0 | ||
|  | 	     /* FIXME: allow other sizes */ | ||
|  | 	     && X(is_prime)(p->sz->dims[0].n) | ||
|  | 
 | ||
|  | 	     /* FIXME: avoid infinite recursion of bluestein with itself.
 | ||
|  | 		This works because all factors in child problems are 2, 3, 5 */ | ||
|  | 	     && p->sz->dims[0].n > 16 | ||
|  | 
 | ||
|  | 	     && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > BLUESTEIN_MAX_SLOW) | ||
|  | 	  ); | ||
|  | } | ||
|  | 
 | ||
|  | static void destroy(plan *ego_) | ||
|  | { | ||
|  |      P *ego = (P *) ego_; | ||
|  |      X(plan_destroy_internal)(ego->cldf); | ||
|  | } | ||
|  | 
 | ||
|  | static void print(const plan *ego_, printer *p) | ||
|  | { | ||
|  |      const P *ego = (const P *)ego_; | ||
|  |      p->print(p, "(dft-bluestein-%D/%D%(%p%))", | ||
|  |               ego->n, ego->nb, ego->cldf); | ||
|  | } | ||
|  | 
 | ||
|  | static INT choose_transform_size(INT minsz) | ||
|  | { | ||
|  |      while (!X(factors_into_small_primes)(minsz)) | ||
|  | 	  ++minsz; | ||
|  |      return minsz; | ||
|  | } | ||
|  | 
 | ||
|  | static plan *mkplan(const solver *ego, const problem *p_, planner *plnr) | ||
|  | { | ||
|  |      const problem_dft *p = (const problem_dft *) p_; | ||
|  |      P *pln; | ||
|  |      INT n, nb; | ||
|  |      plan *cldf = 0; | ||
|  |      R *buf = (R *) 0; | ||
|  | 
 | ||
|  |      static const plan_adt padt = { | ||
|  | 	  X(dft_solve), awake, print, destroy | ||
|  |      }; | ||
|  | 
 | ||
|  |      if (!applicable(ego, p_, plnr)) | ||
|  | 	  return (plan *) 0; | ||
|  | 
 | ||
|  |      n = p->sz->dims[0].n; | ||
|  |      nb = choose_transform_size(2 * n - 1); | ||
|  |      buf = (R *) MALLOC(2 * nb * sizeof(R), BUFFERS); | ||
|  | 
 | ||
|  |      cldf = X(mkplan_f_d)(plnr,  | ||
|  | 			  X(mkproblem_dft_d)(X(mktensor_1d)(nb, 2, 2), | ||
|  | 					     X(mktensor_1d)(1, 0, 0), | ||
|  | 					     buf, buf+1,  | ||
|  | 					     buf, buf+1), | ||
|  | 			  NO_SLOW, 0, 0); | ||
|  |      if (!cldf) goto nada; | ||
|  | 
 | ||
|  |      X(ifree)(buf); | ||
|  | 
 | ||
|  |      pln = MKPLAN_DFT(P, &padt, apply); | ||
|  | 
 | ||
|  |      pln->n = n; | ||
|  |      pln->nb = nb; | ||
|  |      pln->w = 0; | ||
|  |      pln->W = 0; | ||
|  |      pln->cldf = cldf; | ||
|  |      pln->is = p->sz->dims[0].is; | ||
|  |      pln->os = p->sz->dims[0].os; | ||
|  | 
 | ||
|  |      X(ops_add)(&cldf->ops, &cldf->ops, &pln->super.super.ops); | ||
|  |      pln->super.super.ops.add += 4 * n + 2 * nb; | ||
|  |      pln->super.super.ops.mul += 8 * n + 4 * nb; | ||
|  |      pln->super.super.ops.other += 6 * (n + nb); | ||
|  | 
 | ||
|  |      return &(pln->super.super); | ||
|  | 
 | ||
|  |  nada: | ||
|  |      X(ifree0)(buf); | ||
|  |      X(plan_destroy_internal)(cldf); | ||
|  |      return (plan *)0; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | static solver *mksolver(void) | ||
|  | { | ||
|  |      static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; | ||
|  |      S *slv = MKSOLVER(S, &sadt); | ||
|  |      return &(slv->super); | ||
|  | } | ||
|  | 
 | ||
|  | void X(dft_bluestein_register)(planner *p) | ||
|  | { | ||
|  |      REGISTER_SOLVER(p, mksolver()); | ||
|  | } |