210 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			210 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:46:47 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cb_9 -include rdft/scalar/r2cb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 32 FP additions, 24 FP multiplications, | ||
|  |  * (or, 8 additions, 0 multiplications, 24 fused multiply/add), | ||
|  |  * 35 stack variables, 12 constants, and 18 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/r2cb.h"
 | ||
|  | 
 | ||
|  | static void r2cb_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP1_705737063, +1.705737063904886419256501927880148143872040591); | ||
|  |      DK(KP1_969615506, +1.969615506024416118733486049179046027341286503); | ||
|  |      DK(KP984807753, +0.984807753012208059366743024589523013670643252); | ||
|  |      DK(KP176326980, +0.176326980708464973471090386868618986121633062); | ||
|  |      DK(KP1_326827896, +1.326827896337876792410842639271782594433726619); | ||
|  |      DK(KP1_532088886, +1.532088886237956070404785301110833347871664914); | ||
|  |      DK(KP766044443, +0.766044443118978035202392650555416673935832457); | ||
|  |      DK(KP839099631, +0.839099631177280011763127298123181364687434283); | ||
|  |      DK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); | ||
|  |      DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) { | ||
|  | 	       E T3, Tp, Tb, Th, Ti, T8, Tl, Tq, Tg, Tr, Tv, Tw; | ||
|  | 	       { | ||
|  | 		    E Ta, T1, T2, T9; | ||
|  | 		    Ta = Ci[WS(csi, 3)]; | ||
|  | 		    T1 = Cr[0]; | ||
|  | 		    T2 = Cr[WS(csr, 3)]; | ||
|  | 		    T9 = T1 - T2; | ||
|  | 		    T3 = FMA(KP2_000000000, T2, T1); | ||
|  | 		    Tp = FMA(KP1_732050807, Ta, T9); | ||
|  | 		    Tb = FNMS(KP1_732050807, Ta, T9); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4, T7, Tk, Tf, Tj, Tc; | ||
|  | 		    T4 = Cr[WS(csr, 1)]; | ||
|  | 		    Th = Ci[WS(csi, 1)]; | ||
|  | 		    { | ||
|  | 			 E T5, T6, Td, Te; | ||
|  | 			 T5 = Cr[WS(csr, 4)]; | ||
|  | 			 T6 = Cr[WS(csr, 2)]; | ||
|  | 			 T7 = T5 + T6; | ||
|  | 			 Tk = T6 - T5; | ||
|  | 			 Td = Ci[WS(csi, 4)]; | ||
|  | 			 Te = Ci[WS(csi, 2)]; | ||
|  | 			 Tf = Td + Te; | ||
|  | 			 Ti = Td - Te; | ||
|  | 		    } | ||
|  | 		    T8 = T4 + T7; | ||
|  | 		    Tj = FNMS(KP500000000, Ti, Th); | ||
|  | 		    Tl = FNMS(KP866025403, Tk, Tj); | ||
|  | 		    Tq = FMA(KP866025403, Tk, Tj); | ||
|  | 		    Tc = FNMS(KP500000000, T7, T4); | ||
|  | 		    Tg = FNMS(KP866025403, Tf, Tc); | ||
|  | 		    Tr = FMA(KP866025403, Tf, Tc); | ||
|  | 	       } | ||
|  | 	       R0[0] = FMA(KP2_000000000, T8, T3); | ||
|  | 	       Tv = T3 - T8; | ||
|  | 	       Tw = Ti + Th; | ||
|  | 	       R1[WS(rs, 1)] = FNMS(KP1_732050807, Tw, Tv); | ||
|  | 	       R0[WS(rs, 3)] = FMA(KP1_732050807, Tw, Tv); | ||
|  | 	       { | ||
|  | 		    E To, Tm, Tn, Tu, Ts, Tt; | ||
|  | 		    To = FMA(KP839099631, Tg, Tl); | ||
|  | 		    Tm = FNMS(KP839099631, Tl, Tg); | ||
|  | 		    Tn = FNMS(KP766044443, Tm, Tb); | ||
|  | 		    R1[0] = FMA(KP1_532088886, Tm, Tb); | ||
|  | 		    R1[WS(rs, 3)] = FMA(KP1_326827896, To, Tn); | ||
|  | 		    R0[WS(rs, 2)] = FNMS(KP1_326827896, To, Tn); | ||
|  | 		    Tu = FMA(KP176326980, Tq, Tr); | ||
|  | 		    Ts = FNMS(KP176326980, Tr, Tq); | ||
|  | 		    Tt = FMA(KP984807753, Ts, Tp); | ||
|  | 		    R0[WS(rs, 1)] = FNMS(KP1_969615506, Ts, Tp); | ||
|  | 		    R0[WS(rs, 4)] = FMA(KP1_705737063, Tu, Tt); | ||
|  | 		    R1[WS(rs, 2)] = FNMS(KP1_705737063, Tu, Tt); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kr2c_desc desc = { 9, "r2cb_9", { 8, 0, 24, 0 }, &GENUS }; | ||
|  | 
 | ||
|  | void X(codelet_r2cb_9) (planner *p) { X(kr2c_register) (p, r2cb_9, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cb_9 -include rdft/scalar/r2cb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 32 FP additions, 18 FP multiplications, | ||
|  |  * (or, 22 additions, 8 multiplications, 10 fused multiply/add), | ||
|  |  * 35 stack variables, 12 constants, and 18 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/r2cb.h"
 | ||
|  | 
 | ||
|  | static void r2cb_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP984807753, +0.984807753012208059366743024589523013670643252); | ||
|  |      DK(KP173648177, +0.173648177666930348851716626769314796000375677); | ||
|  |      DK(KP300767466, +0.300767466360870593278543795225003852144476517); | ||
|  |      DK(KP1_705737063, +1.705737063904886419256501927880148143872040591); | ||
|  |      DK(KP642787609, +0.642787609686539326322643409907263432907559884); | ||
|  |      DK(KP766044443, +0.766044443118978035202392650555416673935832457); | ||
|  |      DK(KP1_326827896, +1.326827896337876792410842639271782594433726619); | ||
|  |      DK(KP1_113340798, +1.113340798452838732905825904094046265936583811); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      DK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); | ||
|  |      DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) { | ||
|  | 	       E T3, Tq, Tc, Tk, Tj, T8, Tm, Ts, Th, Tr, Tw, Tx; | ||
|  | 	       { | ||
|  | 		    E Tb, T1, T2, T9, Ta; | ||
|  | 		    Ta = Ci[WS(csi, 3)]; | ||
|  | 		    Tb = KP1_732050807 * Ta; | ||
|  | 		    T1 = Cr[0]; | ||
|  | 		    T2 = Cr[WS(csr, 3)]; | ||
|  | 		    T9 = T1 - T2; | ||
|  | 		    T3 = FMA(KP2_000000000, T2, T1); | ||
|  | 		    Tq = T9 + Tb; | ||
|  | 		    Tc = T9 - Tb; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4, T7, Ti, Tg, Tl, Td; | ||
|  | 		    T4 = Cr[WS(csr, 1)]; | ||
|  | 		    Tk = Ci[WS(csi, 1)]; | ||
|  | 		    { | ||
|  | 			 E T5, T6, Te, Tf; | ||
|  | 			 T5 = Cr[WS(csr, 4)]; | ||
|  | 			 T6 = Cr[WS(csr, 2)]; | ||
|  | 			 T7 = T5 + T6; | ||
|  | 			 Ti = KP866025403 * (T5 - T6); | ||
|  | 			 Te = Ci[WS(csi, 4)]; | ||
|  | 			 Tf = Ci[WS(csi, 2)]; | ||
|  | 			 Tg = KP866025403 * (Te + Tf); | ||
|  | 			 Tj = Tf - Te; | ||
|  | 		    } | ||
|  | 		    T8 = T4 + T7; | ||
|  | 		    Tl = FMA(KP500000000, Tj, Tk); | ||
|  | 		    Tm = Ti + Tl; | ||
|  | 		    Ts = Tl - Ti; | ||
|  | 		    Td = FNMS(KP500000000, T7, T4); | ||
|  | 		    Th = Td - Tg; | ||
|  | 		    Tr = Td + Tg; | ||
|  | 	       } | ||
|  | 	       R0[0] = FMA(KP2_000000000, T8, T3); | ||
|  | 	       Tw = T3 - T8; | ||
|  | 	       Tx = KP1_732050807 * (Tk - Tj); | ||
|  | 	       R1[WS(rs, 1)] = Tw - Tx; | ||
|  | 	       R0[WS(rs, 3)] = Tw + Tx; | ||
|  | 	       { | ||
|  | 		    E Tp, Tn, To, Tv, Tt, Tu; | ||
|  | 		    Tp = FMA(KP1_113340798, Th, KP1_326827896 * Tm); | ||
|  | 		    Tn = FNMS(KP642787609, Tm, KP766044443 * Th); | ||
|  | 		    To = Tc - Tn; | ||
|  | 		    R1[0] = FMA(KP2_000000000, Tn, Tc); | ||
|  | 		    R1[WS(rs, 3)] = To + Tp; | ||
|  | 		    R0[WS(rs, 2)] = To - Tp; | ||
|  | 		    Tv = FMA(KP1_705737063, Tr, KP300767466 * Ts); | ||
|  | 		    Tt = FNMS(KP984807753, Ts, KP173648177 * Tr); | ||
|  | 		    Tu = Tq - Tt; | ||
|  | 		    R0[WS(rs, 1)] = FMA(KP2_000000000, Tt, Tq); | ||
|  | 		    R0[WS(rs, 4)] = Tu + Tv; | ||
|  | 		    R1[WS(rs, 2)] = Tu - Tv; | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kr2c_desc desc = { 9, "r2cb_9", { 22, 8, 10, 0 }, &GENUS }; | ||
|  | 
 | ||
|  | void X(codelet_r2cb_9) (planner *p) { X(kr2c_register) (p, r2cb_9, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 |